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Let Kn be an ^-dimensional convex body in π-dimensional Euclidean
space En. At each point P in Kn consider the largest subset S(P) of Kn

radially symmetric with respect to the point P. This set is well-defined
and convex for it is simply the intersection of Kn with its radial re-
flection through the point P. Let m{P) equal the measure of S(P) and
let f(P) equal ?n(P)V~ι where Vn is the measure of Kn. Clearly 0<I
f(P)<Ll for all P in Kn and /(P) = 0 only if P is on the boundary of
Kn; also / is continuous. Moreover / attains the value 1 only if Kn is
radially symmetric. The object of this note is to present various pro-
perties of this function / .

THEOREM 1. (Besicovitch [1], n=2). There is a point P in K2 such
that /(P)=*2/3. (In [3, p. 46] this theorem is ascribed to S. S. Konvyer.)

THEOREM 2. (Besicovitch [2], n=2). If K2 is of constant width
then there is a point P in K% such that /(P)=.840 .

H. G. Eggleston [4] studied further the symmetric function in a body
of constant width.

Using a result of P. C. Hammer [5] on the ratio which the centroid
of a convex body divides the chords passing through it, F. W. Levi [βi
obtained the following.

THEOREM 3. If P is the centroid of Kn then

The following properties of / will be obtained.

THEOREM 4. f f=2~nVn .
J *n

COROLLARY. There is a point P in Kn such that / ( P ) > 2 ~ \

THEOREM 5. If a is a real number then the set of points P in Kn

at which f(P)^>a is convex. Furthermore f attains its maximum value
at precisely one point.
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COROLLARY (to proof of Theorem 5, suggested by referee). If
0<IA<Il and P and Q are in Kn then

/(ΛP + (1 - λ)Q) ^ λf{P) + (1 - λ)f(Q) .

THEOREM 6. If Kn is an n-dimensional simplex and P is its centroid,
then f attains its maximum at P and f(P)=2(n + l)~ι.

Proof of Theorem 4. Consider the set of points

K2n={(P,Q)\PeKnfQeS(P)} .

In a straightforward manner this set can be shown to be convex and
hence measurable. By Fubini's theorem on the relation between iterated

and multiple integrals, the volume V2n of K*n is seen to equal \ m and

also I h where h(Q) denotes the measure of the cross section of K>n

defined by

{(P,Q)\(QΆxeά),S(P)θQ} .

Now S(P) B Q only if P is less than half way from Q to the boundary
of Kn along the line determined by P and Q. Thus h(Q)=2-nVn in-
dependently of Q [7, p. 38]. Thus

Proof of Corollary to Th. 4. Since the average value of / on Kn is
2~n and since /(P)<2~ w on (and near) the boundary of Kn there must
be a point at which / exceeds 2~n.

Proof of Theorem 5. Let P and Q be distinct points of Kn such
that f(P)=f(Q). We shall show1 that /((P+Q)/2)>/(P). This fact,
combined with the fact that {P|/(P)i^α} is closed, would prove the
theorem. Consider the convex body (S(P) + S(Q))[2. This body is sym-
metric, and, if so translated that (P-f Q)/2 is its center, lies within Kn.
By the Brunn-Minkowski theorem [7, p. 88] the measure of this set is
strictly larger than m{P) if S(P) is not congruent to S(Q) by a translation.
If S(P) is congruent to S(Q) by a translation, consider the convex hull
of the set union of S(P) and S(Q). This set is clearly symmetric with
respect to the point (P-hQ)/2, lies in KnJ and has a measure greater than
m{P). Thus /((P+Q)/2)>/(P)=/(Q).

Proof of Corollary to Th. 5. A continuous function which satisfies
1 If P and Q are on the boundary of Kn it may happen that/((P+Q)/2)=/(P)).
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for Λ=l/2 and all P, Q in a line segment satisfies the inequality for all
λ> 0<IΛ<Ξil, and P, Q, in the line segment.

Proof of Theorem 6. Since affine transformations preserve symmetry,
centroids, and ratio of volumes it will be sufficient to consider the case
where Kn is regular.

Let Q be the point in Kn maximizing / . If T is an orthogonal
transformation interchanging two of the vertices of Kni and leaving the
remaining vertices fixed then f(Q)=f(T(Q)). Thus, by Theorem 5,
JP(Q)=Q. Since this is true for each pair of vertices of Kn, Q must be
equidistant from all the vertices of Kn. Thus Q=P.

Now to compute f(P).
Let K'n be the reflection of Kn through P of altitude h and volume

V. The boundary of Kn f\Kή is readily seen to be composed of 2(n + l)
congruent n — l dimensional sets Bt, l<Li<L2(92 + 1) each of volume y*.
Let S denote the volume of Knf\K'n.

Considering Knf\K'n as being composed of 2(n + l) congruent joins
with the common vertex P, bases Bi7 and altitude Λ(^-fl)"1 one obtains

(1) S=2(n + l)h(n + l)'1V¥n'1 .

On the other hand, considering Kn f\ K'n as being obtained from Kn

by the removal of ra-f 1 congruent sets, each of which is a join of a
vertex of Kn with a Bt and has an altitude (n — lX^-l-l)-1^, one obtains

(2) S = y

Elimination of the product kV* from (1) and (2) yields

and thus
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