THE SYMMETRY FUNCTION IN A CONVEX BODY

S. STEIN

Let K_n be an *n*-dimensional convex body in *n*-dimensional Euclidean space E_n . At each point P in K_n consider the largest subset S(P) of K_n radially symmetric with respect to the point P. This set is well-defined and convex for it is simply the intersection of K_n with its radial reflection through the point P. Let m(P) equal the measure of S(P) and let f(P) equal $m(P)V_n^{-1}$ where V_n is the measure of K_n . Clearly $0 \leq f(P) \leq 1$ for all P in K_n and f(P)=0 only if P is on the boundary of K_n ; also f is continuous. Moreover f attains the value 1 only if K_n is radially symmetric. The object of this note is to present various properties of this function f.

THEOREM 1. (Besicovitch [1], n=2). There is a point P in K_2 such that f(P)=2/3. (In [3, p. 46] this theorem is ascribed to S. S. Konvyer.)

THEOREM 2. (Besicovitch [2], n=2). If K_2 is of constant width then there is a point P in K_2 such that $f(P)=.840\cdots$.

H. G. Eggleston [4] studied further the symmetric function in a body of constant width.

Using a result of P. C. Hammer [5] on the ratio which the centroid of a convex body divides the chords passing through it, F. W. Levi [6] obtained the following.

THEOREM 3. If P is the centroid of K_n then

 $f(P) \ge 2(1+n^n)^{-1}$.

The following properties of f will be obtained.

THEOREM 4. $\int_{\kappa_n} f = 2^{-n} V_n$.

COROLLARY. There is a point P in K_n such that $f(P) > 2^{-n}$.

THEOREM 5. If a is a real number then the set of points P in K_n at which $f(P) \ge a$ is convex. Furthermore f attains its maximum value at precisely one point.

Received Nov. 17, 1953, and in revised forms March 19, 1954, and Oct. 4, 1954.

S. STEIN

COROLLARY (to proof of Theorem 5, suggested by referee). If $0 \leq \lambda \leq 1$ and P and Q are in K_n then

$$f(\lambda P + (1-\lambda)Q) \ge \lambda f(P) + (1-\lambda)f(Q) .$$

THEOREM 6. If K_n is an n-dimensional simplex and P is its centroid, then f attains its maximum at P and $f(P)=2(n+1)^{-1}$.

Proof of Theorem 4. Consider the set of points

$$K_{2n} = \{(P, Q) | P \in K_n, Q \in S(P)\}$$
.

In a straightforward manner this set can be shown to be convex and hence measurable. By Fubini's theorem on the relation between iterated and multiple integrals, the volume V_{2n} of K_{2n} is seen to equal $\int_{K_n} m$ and also $\int_{K_n} h$ where h(Q) denotes the measure of the cross section of K_{2n} defined by

$$\{(P, Q)|(Q \text{ fixed}), S(P) \ni Q\}$$
.

Now $S(P) \ni Q$ only if P is less than half way from Q to the boundary of K_n along the line determined by P and Q. Thus $h(Q)=2^{-n}V_n$ independently of Q [7, p. 38]. Thus

$$\int_{K_n} f = V_n^{-1} \int_{K_n} h = V_n^{-1} 2^{-n} (V_n)^2 = 2^{-n} V_n .$$

Proof of Corollary to Th. 4. Since the average value of f on K_n is 2^{-n} and since $f(P) < 2^{-n}$ on (and near) the boundary of K_n there must be a point at which f exceeds 2^{-n} .

Proof of Theorem 5. Let P and Q be distinct points of K_n such that f(P)=f(Q). We shall show¹ that f((P+Q)/2) > f(P). This fact, combined with the fact that $\{P|f(P) \ge a\}$ is closed, would prove the theorem. Consider the convex body (S(P)+S(Q))/2. This body is symmetric, and, if so translated that (P+Q)/2 is its center, lies within K_n . By the Brunn-Minkowski theorem [7, p. 88] the measure of this set is strictly larger than m(P) if S(P) is not congruent to S(Q) by a translation. If S(P) is congruent to S(Q) by a translation, consider the convex hull of the set union of S(P) and S(Q). This set is clearly symmetric with respect to the point (P+Q)/2, lies in K_n , and has a measure greater than m(P). Thus f((P+Q)/2) > f(P) = f(Q).

Proof of Corollary to Th. 5. A continuous function which satisfies 1 If P and Q are on the boundary of K_n it may happen that f((P+Q)/2)=f(P)).

146

$$f(\lambda P + (1 - \lambda)Q) \ge \lambda f(P) + (1 - \lambda)f(Q)$$

for $\lambda = 1/2$ and all P, Q in a line segment satisfies the inequality for all λ , $0 \leq \lambda \leq 1$, and P, Q, in the line segment.

Proof of Theorem 6. Since affine transformations preserve symmetry, centroids, and ratio of volumes it will be sufficient to consider the case where K_n is regular.

Let Q be the point in K_n maximizing f. If T is an orthogonal transformation interchanging two of the vertices of K_n , and leaving the remaining vertices fixed then f(Q)=f(T(Q)). Thus, by Theorem 5, T(Q)=Q. Since this is true for each pair of vertices of K_n , Q must be equidistant from all the vertices of K_n . Thus Q=P.

Now to compute f(P).

Let K'_n be the reflection of K_n through P of altitude h and volume V. The boundary of $K_n \cap K'_n$ is readily seen to be composed of 2(n+1) congruent n-1 dimensional sets B_i , $1 \leq i \leq 2(n+1)$ each of volume V^* . Let S denote the volume of $K_n \cap K'_n$.

Considering $K_n \cap K'_n$ as being composed of 2(n+1) congruent joins with the common vertex P, bases B_i , and altitude $h(n+1)^{-1}$ one obtains

(1)
$$S=2(n+1)h(n+1)^{-1}V^*n^{-1}$$

On the other hand, considering $K_n \cap K'_n$ as being obtained from K_n by the removal of n+1 congruent sets, each of which is a join of a vertex of K_n with a B_i and has an altitude $(n-1)(n+1)^{-1}h$, one obtains

(2)
$$S = V - (n+1)(n-1)(n+1)^{-1}hV^*n^{-1}$$

Elimination of the product hV^* from (1) and (2) yields

$$S=2(n+1)^{-1}V$$

and thus

$$f(P)=2(n+1)^{-1}$$
.

References

1. A. S. Besicovitch, *Measure of asymmetry of convex curves*, J. London Math. Soc., **23** (1948), 237-240.

2. _____, Measure of asymmetry of convex curves II, J. London Math. Soc., 26 (1951), 280-293.

 I. Iaglom and V. G. Boltianskii, Vypuklye Figury (Convex Figures), Moscow, 1951.
H. G. Eggleston, Measure of asymmetry of convex curves of constant width and restricted radii of curvature, Quart. J. Math., Ser (2), 3 (1952), 63-72.

5. P. C. Hammer, The centroid of a convex body, Proc. Amer. Math. Soc., 2 (1951), 522-525.

6. F. W. Levi, Über zwei Sätze von Herrn Besicovitch, Arch. Math., **3** (1952), 125-129.

7. T. Bonnesen and W. Fenchel, Konvexe Körper, Chelsea, New York, 1948.

UNIVERSITY OF CALIFORNIA, DAVIS