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1. Introduction* The foundations of a mathematical theory of
"games of strategy" were laid by John von Neumann between 1928
and 1941.ι The publication in 1944 of the book "Theory of Games and
Economic Behavior" by von Neumann and Morgenstern climaxed this
pioneering effort. The first part of this volume is concerned with games
with a finite number of pure strategies with particular emphasis on the
"zero-sum two-person" type of game. There it is shown that in most
instances a player is at a disadvantage if he always plays the same
pure strategy and that it is better to " mix" his pure strategies by
some chance device. The starting point of all discussions of this type
of game is the celebrated " Main Theorem " or Min-Max Theorem which
is concerned with existence and properties of optimal mixed strategies
for both players.

The first proofs of this theorem, given by von Neumann, made
rather involved use of topology, functional calculus, and fixed point
theorems of L. E. J. Brouwer. The first proof of an elementary
character was given by J. Ville, 1938. The von Neumann-Morgenstern
book, with the purpose of having a proof which is accessible to a less
highly trained group, carries the theme of elementarization further [6].
At this late date there still continues to be a need for a truly elementary
proof for example, the recent book of McKinsey on game theory [5]
omitted a self-contained proof because none was available.

Kuhn [4] gives a bibliography of some of the better known proofs
of the Min-Max Theorem, together with a discussion of their general
characteristics which he broadly classifies into (1) those based on sepa-
ration properties of convex sets and (2) those using some notion of a
fixed point of a transformation. Kuhn [4] and McKinsey [5] provide proofs
along the lines of von Neumann [6] based on a separation theorem. Dresher
[3] gives a self-contained proof along the lines of Ville. As was pointed
out in [7], the Min-Max Theorem is completely algebraic and should be
given an algebraic proof. The purely algebraic proofs, when made self-
contained and elementary, appear to be quite long, [3], [4], [7], and,
with the exception of WeyPs proof [7], make use of nonalgebraic concepts
as the minimum of a continuous function on a closed bounded set is
assumed on the set. All these proofs are either pure existence proofs
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or, from the viewpoint of practical computations, nonconstructive.
The present proof has the following features : It is purely algebraic

(in the spirit of Weyl) and elementary in the sense that it used nothing
more advanced than the notion of an inverse of a matrix. It is short,
self-contained, and noninductive. The very nature of the solution, if
desired, could be used to advantage to establish well-known theorems
regarding the structure of the class of optimal strategies. It is a special
adaptation for games of the simplex method used for solving linear
programming problems [I]. 2 As such, it provides perhaps the most
efficient means currently available for explicitly constructing optimal
mixed strategies for both players.

2 The Min-Max Theorem, It has been found convenient in a part
of the proof to compare certain vectors "lexicographically." The term
is borrowed from an alphabetical ordering of words (as in a dictionary).
Thus a vector A is greater than B (written A > B) if (A—£)> 0 where
by (A—-B)>0 is meant that (A—B) has nonzero components, the first
of which is positive.

Let [(%] be the payoff matrix of a finite zero-sum two-person game
where atJ is the payoff to player I (the maximizing player) when player
I plays pure strategy i and player II (the minimizing player) plays pure
strategy j . Player I (in order to guard against his strategy being " found
out") chooses a mixed strategy (xlfx2f , xm) where xt is the probability
of playing strategy i accordingly, player Γs expected payoff becomes
( Σ Uijχi) if the minimizing player plays pure strategy j . If player Γs

i

mixed strategy is found out he can expect that player II will choose j
such that Σ atJXi is minimum. Thus, player I wishes to choose his xt

such that the smallest such sum (which we will denote by xQ) is a
maximum. For similar reasons player II chooses a mixed strategy yu

V i, , 2/« such that the largest sum Σα«2/j (denoted by yQ) is minimum.
j

The Min-Max Theorem states that there exists a choice for player I of
xi=xι and a choice for player II of ys=y3 such that the corresponding
xΰ=x0 is the maximum value for xQ and the corresponding yo=yo is the
minimum value for y0 and, moreover, xo=yo The common value of x0

and y0 known as the "value" of the game.
To establish this result we shall consider, as is often done, a

related linear inequality problem. Let xt and yό satisfy the system of
relations

2 That the simplex method itself could be used to prove the Min-Max Theorem was
first pointed out by Dorfman (and H. Rubin) [2]. This paper, by incorporating methods
for avoiding " degeneracy " and " cycling" in the simplex algorithm [1], puts the proof
on a completely rigorous foundation.
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(1) x^O, (i=l,-",m); (4) y^O, (j = l, •••,»);

(2) Σ * . = I (5) Σ2/i=i
i l j l

( 3 ) a ? 0 ^ Σ » A j > O'^l, •••,«); ( 6 )
ii - l

If we multiply (3) through by any ^ satisfying (4), (5), and (6) and
sum with respect to j similarly multiply through (6) by any xt satisfying
(1), (2), (3) and sum with respect to i, one obtains immediately

(7) χύ^χύ Σ ^ ^ Σ Σ XiβijVj ^ Vo Σ ^=2/0

so that the lower bounds xQ never exceed the upper bounds y0.
We shall, however, construct a solution xt=^xt and 2 ^ = ^ with the

property that

In particular (7) holds for yΛ and any x0 and also for x0 and any y0. It
follows, therefore, that xQ<Lyo=xQ^yo and

(9) ά o=max# o and ^ 0 =

and the Min-Max Theorem would be demonstrated.

3 Proof of the Min-Max Theorem. We shall begin the proof by
augmenting the matrix of the game atJ and consider the matrix

(10)

0 1 1 0 . 0
-4 -i

- 1 ••

&ml * * * ttmn U 1

The columns of this matrix will be denoted Po P19 , Pn; P n + ι = Ϊ7i, ,
Pn+m=Um where U% are unit vectors with 1 as the (ΐ-f-l)st component.
It will be convenient to arrange the rows of the matrix such that

(11) α^^maxot ! .
i

Let B (which we will call a basis) be a subset of m + 1 columns of
(10) (including Po as first column) which, considered as an m-f 1 square
matrix, is nonsingular and let the rows of B~ι be denoted by βt (i=0, 1,
•• ,m). We shall further require that B, to be a basis, have the
property that each row (except i=0) of B~τ have its first nonzero com-
ponent positive. Thus we are assuming in the lexicographic sense that

(12) A > 0 . (<=1,2, .- ,m).
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For example, we may choose B=B0 as consisting of the first two columns
of (10) and the unit vectors Ulf •••, Z7m-i. This near identity matrix

BQ=[PQ, P I , Uit •••, Z7m_1] = [ P 0 , Plf Pn + u *i Pn+m-i]

is obviously non-singular and possesses a simple inverse

(13)

1

b,

0
0

1

0

0
0

0

1

0
0
•

— 1
0

- 1

#

0 0 1 -

where bi=aml — atl. Because of (11) it follows that bt^> 0 and our special
lexicographic assumption (12) holds.

Let the columns of a general basis be denoted by

(14) B=[PQ,Ph, -- ,P3J

and note that the conditions βΊcPJi = Q for iφk and ftP^l for i, k=0,
1, , m (io=O) must hold between B and its inverse. The 0-row of B~ι

is used to compute the scalar quantities βQPj for j—1, 2, , n, , n + m,.
We shall now prove the following.

THEOREM. If for all j = l , 2, , n + rh we have

(15) βoPj^O,

then the components of the 0-row and 0-column of B~ι yield the required
optimal strategies.

Proof. Denote the components of the 0-row of B~ι by

(16) [χ0, -χ19

the components of the 0-column of B~ι by

(17) >yjj

We shall now show that an optimum mixed strategy for player I is obtained
by setting xi=xί for i=l,2, •• ,m; and one for player II, by setting
yj.=yj.forjί<Lnandyj=yJ=Qfor all other j<Ln. Moreover, the value
of the game is xo=yo. Indeed, for player I, it is easy to verify the
condition β0P0=l is the same as (2); moreover, βQPj<L0 for l<Lj<Ln
are the same as (3), while for n + l<Lj <Ln + m they are the same as (1).
For player II, the lexicographic property of the rows of B~\ namely
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βi^>0 for i = l , *'fm implies that the first component of βt (which by
definition is jjj) is nonnegative thus, (4) is satisfied. Multiplying B on
the right by 0-column of B~ι yields (ra-f-1) linear expressions in (yo,yJl9

•••fijjm) which may be equated to unit vector Uo.
The first of these (m-f-1) linear equations yields (5) since the 1st

components of P< are unity for l<Ljt<,n and zero otherwise. The
remaining m equations yield the inequalities (6) if the terms involving
jt > n are dropped (the latter are nonnegative because y^ I> 0 and their
coefficients are the components of the unit vectors Pn+i). Finally, the
proof is completed by noting that (8) or xd=y0 holds since both are
defined in (16) and (17) as the (0, 0) element of B~\

Constructing an Optimal Basis. It is clear now that the central
problem is one of constructing a basis B with the property that βQP3 < Q
for j=l, 2, ,n + m since this in turn yields an optimal mixed strategy
for each player. We shall show that if some basis B, such as BQ, does
not have the requisite property (15), then it is easy to construct from
B a new basis S* which differs from B by only one column where 0-row
of [i?*]"1 (which we denote by βt) has the property that

(18) βo>β?

that is, the first nonzero component of (βQ — β^) is positive. If the new
basis 5* does not satisfy (15) then the algorithm just outlined for B
is iterated, with B replaced by Z?*, etc. This process generates a
sequence of bases which terminates when a basis is obtained that has
the required property. This must occur in a finite number of steps
since the condition (18) is a strict inequality which insures that no
basis can be repeated and the number of different bases cannot exceed
the number of ways of choosing m columns out of n + m from (10).3

The 0-column of successive bases of the iterative process may be inter-
preted as a succession of improved mixed strategies for player II for
which his expected loss, y0, if his opponent is playing optimally, is de-
creasing to a minimum. Indeed, the components of the first column of
any basis (as in (17) and sequel) satisfy (4) and (5) independently of
condition (15), while yQ, the first component of βQ, is nonincreasing from
basis to basis by virtue of (18).

To construct B* from B let Ps denote the column of (10) which
replaces the rth column of B where Ps and PJr are determined by the
following rules: Choose Ps such that

3 In practical computations with the simplex method, of which this is a variation, the
number of iterations is usually very small. In a game case where, say, m/2 of pure
strategies are used with positive probability in an optimal mixed strategy, something in
the order of m/2 iterations might be expected before an optimal basis is obtained.
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(19) &P, = m a x & P , > 0 , (j=l, . . . ,

In case the choice of s is not unique, then choose s with the smallest
index satisfying (23). Next, compute the column vector V satisfying
BV=PS. It is clear that components of V={vOfvlf * fvm} are given
by

(20) v4=&P, (i=0, . . . ,m)

where, in particular vQ=β0Psy>0 from (19). We now choose to drop
from B that column P)r such that the lexicographic minimum of the
vectors (l/^OA ί ° r vί^>^ i s attained for i=r. Thus,

(21) ±βr= min -ift (vr > 0, V l > 0)

where ΐ, rφQ, and where it is assumed for the moment that there is
at least one ̂ > 0 . The minimizing vector is easily obtained in practice
by finding the vector whose first component is the least if there is a
tie, then one passes to the second components of the tying vectors and
selects the least, etc. A relation which will be used later that follows
from (21) is

(22) ft-UL/3r>o (*i>0).
vr

It is clear from the structure of the augmented matrix (10) that
the first column Po can not be formed as a positive linear combination of
the other columns Pj. However, if we assume, contrary to the assump-
tion of (21), that all vt<L0, (iφO) and write

then, by transposing to the left all terms other than v0PQ, we obtain
a positive linear combination of columns Ps and PJt that yields vQPQ,
where v0y>0; a contradiction.

There remains only to show that B* has the requisite properties
(12) and (18). The proof, as well as the efficiency of the computational
algorithm, is obtained by constructing [J9*]"1 from B~ι using the relations

(23) β* = βt-Άβrf (iφr),
vr

βΐ^+-βr

where βf is the ith row of [S*]"1. To verify that (23) is indeed the
inverse of 2?*, one notes from (23) that for iφr the values βχP5: are
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the same as βJcPj,=0 (or 1 if i=k) moreover, it follows readily from
the definitions of v% given in (20) that β*Ps = l and βfPs = 0 for iφr.

The required properties of βf are immediately evident: Thus, the
first nonzero component of βf is positive because βr has this property
and t v > 0 . Next, for all other i = l , 2, « ,m the property must hold
if vt<L0 since βt is the sum of two vectors with this property. If
^ > 0 then A*>0 by (22) and (23). Finally we note that the relation
βo>β(f (and not /30^β*) holds because βr, a row of a nonsingular
matrix, possesses at least one nonzero component and β£ is formed by
subtracting from β0 a vector (volvr)βr where v0y>0, vr^>0; hence, (18)
holds and the proof is complete.

4. Example. Solve the 3x6 game matrix M

4 3 3 2 2 6

6* 0 4 2 6 2

0 7 3 6 2 2

from [8, Chap. 3, Ex. 10]. Element an of M has been starred. It will
be noted that this is the maximal element in the first column. For
convenience, see (11), the second and third rows have been interchanged
so that this element appears in the bottom position of this column in
forming the augmented matrix, [Po, •• ,Pβ], given below:

Po

0

- 1

- 1

- 1

P i

1

4

0

6

Pi

1

3

7

0

Ps

1

3

3

4

P.
1

2

6

2

Pί,

1

2

2

6

Pe

1

6

2

2

P 7

1

P P

s

1

1 .

Initial Iteration. The initial basis, B=BQ, consists of Po, P2, P7=UU

PS=U2. The inverse of So (given below) is determined by formula (13).
The entries vt shown, for the moment, cannot be filled in until Ps is
first determined.

βl

β,

Next, PS=P2 is determined by

β0P$=β0P2= max 0 ^ = 6 > 0

6
1

2

6

0
0

1

0

0
0

0

1

— 1 v

0

- 1

- 1 ,

vo=6

vλ=l

vs=13
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so that the entries vί=βίPs (given above) can now be computed. The
column r to be dropped from the basis is determined by forming the
lexicographic minimum of the vectors (See § 2).

1 1 1
— βr

==—&= min (lexico.)—βt
Vr 5 vι>o, «=#> Vι

Drop col r = 2 that is, P7.

1st Iteration. The next basis B*=Bτ is [Po, Plf PZf P 8]. To obtain
its inverse set: βl^βi — iv^v^β,., (kφr) and βl =(llvr)βr where r = 2
where the superscript (in place of *) refers to the basis B=Bk .

v=J2
5

1 5

5

3 5

βi

βl

βl

(
5

3

5

2

5

4

5

_ 6
5

_ 1

5

1

5

5

0

0

0

5

5

+ i
5

+ 1

5

_ 1

5

8

5

where PS=P5 is determined by

12-/?JPS=/3JP5= max /?JP J = =^> 0
j ^ 5

and Pj =Pj =Ps is determined by

- βr=~βl- min (lexico.) i - β\
vr 36 ϋi>o, î o vt

#wcZ (Final) Iteration.

P JD Έ) Ό

0 - ^ 1 -*̂  2 -*̂  5
s

0

- 1

1

4

0

6

1

3

7

0

1

2

2

6

02

βi

βl
\ J

50 _ ^ _ ^ _ 5
15 15 15 15

16 11 _7_ _±
36 36 36 36

16 2_ 2^ _±
36 36 36 36

i. -I? A A
36 36 36 36

where no P$ can be determined since ffiP} ^ 0 for j ^> 1. Thus an optimal
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solution has been obtained (from top row) ^=5/15, #2=5/15, #3=5/15
and (from first column) ^=16/36, &=16/36, &=4/36 where all other
i/4=0. The "value of the game" (from upper left corner) is xo=yo=
50/15. It will be noted that actually βlPj=0 for all i l > l , which means
there exist other bases and corresponding solutions. Williams shows in
his book, in all, eight such solutions.
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