A NON-ARCHIMEDIAN MEASURE IN THE SPACE OF
REAL SEQUENCES

L. W. CoHEN

1. Introduction. Let S be the set of real sequences X=(x,). For
X, Ye S we define X+ Y=(x,+%,), 0 as the sequence z,=0 and introduce
order by writing X >0 when for some m, 2,=0 for n<m and z,, > 0.
Thus S may be considered as an ordered abelian group with a non-
archimedian order. Let S be topologized by considering the open
intervals

X, V)={Z|XZY}

as a basis for the open sets. Then S is a topological group. We note
that S is not locally compact. We wish to define a measure on S which
is invariant with respect to translations of measurable sets by elements
in S and which assigns a nonzero measure to the sets in a basis for
the topology in S. It is evident from a consideration of the spheres
in Hilbert space that such a measure can not in general be real valued
for spaces which are not locally compact. In the example studied here
the range of the measure function is a subset of S.

The ring of measurable sets which serves as the domain of the
measure function is generated by a class of sets called intervals. We
shall show that these intervals are a basis for the topology of S defined
by the open intervals. They have some properties of the real half-open
intervals o’ <a<a’’ which are useful in deriving the properties of a
measure function.

For a positive integer p and real numbers

gy = ooy Aoy Oy Ly
let I,=I(ay, «-+, a,_;; dyp, a,) be the set of X=(x,)e S such that
To=0y , for n<p,
@ <z, <oy
—oco <L a, < 4+ oo, n>p.

If p=1 there are no conditions on the z, for n<p. If a; <a, then
I, is empty. That the sets I, and the open intervals (X, Y') are equiva-
lent as bases for neighborhood topologies is shown as follows:
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Consider
X=(@,) € l(an, « -+, Aps; Oy, @) -
Then
T,=0y,, for n<p, and o, L 2, <a, .
Now consider X,=(«}), X’'=(x;) where
T, =X,=X, for n<p,
Tpar < Lpar < Ty -
Clearly
X, X" eI(hyy ++y Gpey; Gy Gy
XXX,
Now if Y=(y,) e (X’, X’’) then
T =Y =2, =y, for n<p,
O S @y =T, =Y, =2, < 0
and so Yel(a, *++,a,_1; 0, a,). Hence
Xe(X, X)) C Iy +++) Qpoy; Uy Gy) -

Conversely, consider X=(w,) e (X’, X'’) where X'=(x,) X" =(a,).
From the definition of order in S it follows that there is an integer p
such that

Th=x,=x, for n<p, x,<wx,
and one of the following is true:
(1) =<z, <z,
(2) z,<z,=wx,,
(3) @p=w,<a, .
If (1) is true let
‘ a, =z, for n<p, a,=z,, a,=x, .
It follows that
Xel(ay, <« Opoy; @y ay) (X', X)) .

Suppose (2) is true. Since X< X’’, there is a smallest integer
g > p such that z,<x;. Now let

a,=xz, for n<q, a;,=x, and a;=x, .
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It follows that
Xel(a, ) g1 8y 0g) (X', X)) .

Suppose (3) is true. Since X’ <X, there is a smallest integer ¢ >p
such that z,<w,. Let

a,=z, for n<q, a,=w, a, =x,+1.
Again it follows that
Xella, <+ tqy; 0 a;) (X, X) .

The equivalence of the two bases is established.
For each interval I, the element (x,)€ S where

z,= max [a, —a,, 0] and x,=0 if n%~p

is called the length of I, and is denoted by p(I,). Clearly p(I,)=0 in
S and the equality holds if and only if I, is empty. It will be shown
that: The intervals I, generate a ring over which the function z# can
be extended to an additive, nonnegative function with values in S. If
M is a set in the ring and X+ M is the set of X+Y for Ye M then
p(M)=p(X+M). The function ¢ may be called an invariant measure
on the ring.

2. Properties of Intervals I,. Consider two intervals
I=Iay, +++, Qy_1; 0, a;), I=I(b, ++-,b,1;0,0)) .

The following two lemmas are immediate consequences of the
definition of interval.

LEMMA 1. 05£I, I, of and only if p<gq, ond a,=b,, n<p,

a, < b, <ay , p<gq,
a,<b,<b,<a,, p=q.

LemMma 2. If p<<q and I,N\I,5%~0 then I, C1I,.

Proof. Since p< g and there is some X=(«,)el,N1,, we have
an‘—:xn:bn ’ n<p’
a, < x,=b,<a, .

It follows from Lemma 1 that I, C1,.
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LEmma 3. If I,N1,540 then I,N\I,=I, where r=max[p, ql.

LEMMA 4. The union of o finite number of intervals is the union of
a finite number of disjoint intervals.

Proof. The statement is true for a single interval. Assume that
the statement is true for the union of any m intervals. Consider

(1) I,, i=1, -+, m+1.

If the intervals (1) are disjoint the statement is true for them. Suppose
that for A4j, I,,h/’\ij;éO. If p,<p,; then, by Lemma 2, ijCIph.
Then the intervals (1) have the same union as some m of them and
the statement follows from the assumption. If p,=p,=p then, since
I, NI,70, we have

Ipn=I(a1’ sy Qyeyy a/;n a/;ol) y ij=I(a1, ey Qyoyy b;,, b;a,) y

and the real half open intervals [a;, a,), [b,, b,) have a nonempty inter-
section. If

¢y= min (), b), ¢~ max (a}, b})
then [a,, a;) U [}, b,)=[¢;, ¢;) and
I, I, =I(a, « -, 0,15 Cp €;)=1, .

The intervals (1) have the same union as the m intervals I,, I, where

1% h, j, and the statement again follows from the assumption. Induection
completes the proof.

LEMMA 5. If I 2,7 =1, «--, m, are disjoint nonempty subintervals of

I, and I,,=i=('311,,i then py=p for i=1, «++,m, and
IARSWIAY

Proof. Let
Ip=I(a1’ Tty Opogs Cb;,, a’;v/)
I, =I(t, -+ -, Qi =15 Uy Oy =1, <+, m.
Since 05~1, C1I,, we have p <p;, and
Qg =0ly, , np, 1=1,---,m,
Ay < i, <O n>p,
t <, <a;<a P=p.
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Consider the half-open intervals [a;,i, a,) for p;=p and the numbers a;,

for p,>p. Let ¢, ---,¢, be the distinct numbers among those a,;,.
Since UZ’;IIPi=Ip and the I, are disjoint,

k
14, @)= U a5, @3)) U (U Ie)
D;=D J=1
and the summands are disjoint sets. But a half-open real interval is

not such a union unless there are no sets [¢,] consisting of single points.
Hence p;=p for i=1, ---, m and

m
(1) ap_a’p:g;(a'pi_api) .

If p,)=(2.), pI,)=(,) then, since p,=p and I, #0,

T =2n=0, nF#p, i=1, -+, m,
Tp=0a, — 0y ,
wiﬂ:d,;’t_a;i , 1=1, -, m,

and it follows from (1) that

3 ut,)~( San) =@ =nT,) .

i=1
LEMMA 6. If Ipi, 9=1, «+-, m, and qu, j=1, ---, n, are two sets of
disjoint intervals with the same union then

Sul,)=5p0,) .

Proof. Since, by Lemma 2, the intersection of two intervals is an
interval, possibly empty, the sets Ipi N qu are disjoint intervals. Since

the I, and the J, have the same union, we have

Ip,;:j\;jl(lpiﬂJqJ) ’ =1, -+, m,
o= U, NI, i=1, -, n.

Applying Lemma 5 and recalling that u#(f,)=0eS if I, is empty, we
obtain

wL)= 310, N T.)

)= S oL, N T,) -
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Since S is an abelian group,

Sul,)=5 S al, N Jo)= 5 n.) -

=1j

In order to obtain properties of differences of unions of intervals

m

UL, =\,

i=1

it will be sufficient to consider the special class &7 of sets
E=I,—\JI,
i=1 ¢

I,,i disjoint, I,,i 1, i=1, -+, m.
Sinee I, C1I,, either p,=>p or I, =0." A set Ee & is called proper
if, among the I, Ipi used to represent it, p, > p.

LEMMA 7. If E€ &7 then E s the union of a finite number of
disjoint proper elements of Z .

Proof. If Fe &7 then

E=I,— z\=j1 I,

2
where

Ip=1(a1v *rey Opor; a’;w a’;;) ’

I, =I(ay, «-, i, p,-15 s a'z',z) , 1=1,2, «++, m,
and the I,,i are disjoint subsets of I,. Hence p,=>p and a,,=a, for

n<p. If p,=p then "i=[“;z’ ay,) Clay, a;)=o0 and the o, are disjoint.

h
o— U 0'z=jU_17.1

pi=p
where the r,=[b}, b)) are disjoint. Let
L=Ka, -+, 051305 07),  a,=lila, €z, and p.>p}, j=1, -+, A

The «, are disjoint ; and Ipi C I} if and only if p,>>p and ¢ea,. The
sets

E;=I§'" U Ipt .7=]-9 ) hy

zewj

1 It will be assumed that the Ipt in a representation of a set K are not empty. This
does not sacrifice any generality.
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are disjoint proper elements of < whose union is £. This is so because

13
Ip"' U [pi=1\=J1[§r

p=p;

and every Ipi with p, > p is in some IJ.
LEmMMmaA 8. If
E=I,—\Ul,, F=J,—\J,
i=1 j=1
are proper sets in I then E N\ F=0 if and only of I, N\ J,=0.
Proof. Since E CI,, F CJ,itis clear that £ N\ F=0 if I, N J,=0.
Suppose I, N\ J,7% 0. Let
I,,=I((L1, ooy Qyos CL;,, a';a,) ’ Jp=I(b1’ M) bp-l ; b;n b;;) ’
Iﬂizl(a’u’ cy ai.pi—l ’ a;oiy a’,;i) ’ Jpsz(bjly *y bj, pj—l ’ b;jy b,;j) y
73:1’ cee, M, .7=17 cr, M.

Since E and F are proper, p;, q¢; >p. Since I,N\J,7%0, we have
a,=b,, n<p, and [a,, @;) N\ [b,, b,)=[c’, ¢'’)%0. The half-open interval
[¢/,¢’) contains a number 3£ ay, b, i=1,--+,m, j=1,---,n. If
X=(=,) where z,=2 and z,=a,, for n<p, then Xe ENF. Hence if
E N F=0 then I, N J,=0.

For

E=I,—\/IL,e

i=1

we define p(E)e S by

wE)y=pl)— > L) -
It is to be noted that a set £ may have two representations ;
E=I,— \UI,=J,—\UJ,
i= =1 J

and the uniqueness of u#(E) must be proved (cf. corollary to Lemma 11).
In order to do this and to prove the additivity of g as a function on

Z to S we make some definitions which are useful.
If

Ip=1(a1, c ey a’p—l ; a;’l a;’)

we call p the rank of I,, a, the nth point component of I, and [a,, a;)
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the interval component of I,. Given a set of nonempty intervals I, ---,
I, the number N of distinet ranks p; is called the spread of the set
of intervals. For example, if £ is a proper set in <7, then the spread
of E is 1 if and only if E is an interval I,.

LEmMA 9. If
(@) I, i=1, ---,m, are nonempty, disjoint intervals,
(b) E,=Jy,—\Jy, o, §=1, -+, h, are nonempty, disjoint, proper
sets in <,
(c) imdp, =\ B,
then

S rl,)= S HE)

Proof. Let N be the spread of the set of intervals I,,i, qu, quk.
If N=1, p,=q,=p and the sets E, are the intervals qu since the E,
are proper. The conclusion follows from Lemma 6.

Assume that N >1 and that the lemma is proved if the spread of
the set of intervals in (a), (b) is N—1.

First we show that if p=min(p, ---, »,), ¢g=min(g, ---, ¢,) then
p=q. Suppose p<_q. There is some p,=p. The pth component of
I, is a half-open interval s and the pth component of J, is a point
b,. There is a number x€o—{b, ---,b,}. If X=(x,) where z,=x and
x,, n<p, is the nth component of I,,T then

h m 3
Xel, — U JqJC Ul,—-\UE,

j=1 i=1 "' =1

contrary to (c). Hence ¢ <p. Suppose ¢<_p. There is some ¢,=¢ and
k’l‘

ET:qu— k\=Jl quk, # 0 ’ qu> -
The gth component of qu is a nonempty half-open interval z, the ¢th
components of J, , k=1,---, k., and of I, are points, say ¢, ---,c,.

There is a number zer—{¢;, +-+, ¢}. If X=(x,) where x,=z and z,,
n<_q, is the nth component of Jos

kr m h m
Xe (qu- kgqum)— 01, <UE-U1,,

contrary to (¢). Hence p=g.
Next, we show that

(1) pypI”iz U ']qj'

qj=11
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Let
A=\ Ipi , A= \J qu.

p;=Dp a;=p
Suppose A"’ —A’=~0. For some ¢,=p, there is
X=(@,)ed, — U I, .
;=0 v

Let
o=the interval component of Jos
o;~=the interval component of Ipi where p,~=p,
a={ilJ, N1,,70 and p,=p} .

Then

.’Z?pea— U a;
i€a

and so there is a nonempty, half-open interval : such that

tCo— \J gy .

i€a

The pth components of the Ipi, P, >p, and of J‘,M, k=1, .-., k., are
finite in number, say ¢, -++,¢,. Hence there is a number y such that

yer—-{cl, ---,Cy} .

If Y=(y,) where y,=y and y,, n<p, is the nth component of Ja,s
kr m h m
Ye(J,,_— U, k)— UrI, € \UE-UI, ,
Tog=1 7 i=1 ¢ =1 i=1

contrary to (¢). A similar argument shows that A’— A’ 40 leads to
a contradiction. Hence (1) is proved.

Since the E, are disjoint proper sets in <7 it follows from Lemma
8 that Iqr [\Iqszo if p=q¢,=¢; and r%s. Hence, from (1) and Lemma 6,

(2) 3 ul)= 3 ) .
From (c) and (1)

RN AVESIVIGVI S (VR CARIVENN ) VIRVR-D8

Qj=p

It follows from (a), (1) that the two unions on the left are disjoint and
from (b) that the two unions on the right are disjoint. Hence

(4) (U L)U( U U )= U E,.
p;>P j

q;=p k=1 qj>p
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The ranks of the intervals 7,, qu, quk occurring in (4) exclude p since
D, > D, ¢ >q;=p on the left and ¢, >¢; > p on the right. Hence the
spread of the set of intervals in (4) is N—1. Since the E, are disjoint
it follows from Lemma 8 that the qu, q,=p, are disjoint. Since for
each j, the Jqﬁc are disjoint in £ and quk Cqu, the quk are disjoint in
7, k for g;=p. It follows from (1), (a) that the intervals on the left
of (4) are disjoint. Thus the set of nonempty intervals on the left of
(4) satisfy (a) of the lemma, the set of E, on the right satisfy (b), and
(4) is (c) for the intervals involved. Since the spread is N—1, we have,
by the assumption of the lemma for N—1,

k
J
(5) S wl)+ S S, )= 5 ME) .
;> q;=p k=1 N qj>p
Combining (2), (5), it follows that

;=D

Sub)= S )+ 3 )= 5 (#0) St + 2 HE)
= 5 HE) 5 u(B)= 3B
LEMMA 10. For Ee &, p(E)=0¢e S if E is empty and
HE)= 3 1(E)
iof E=\J%.E, where the E, are nonempty, disjoint, proper sets in .
Proof. If Ee <, then
E~I,— U1,

where the I,,i are disjoint subsets of I,. If E is empty, then

Cs

IIpi‘_‘Ip

-
)

and it follows from Lemma 5 that
mE)=ply)— 3 p,)=0€e S .

If E=\J7.,E, where the E, are nonempty, disjoint, proper sets in
<7 then

1=V ) v (91)

and the intervals in the set {I,, B, I, 70} satisfy the conditions of
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Lemma 9. Since p(I,)=0 if I, is empty, it follows that
L)= 3 pE)+ Sl

HE)= pL,) = S p(L,) = 3 ()

j=

Lemma 11. If Ee & and E,, ---, E,, are disjoint elements of =
such that

then

HE)= 3\ B .

i=

Proof. It follows from Lemma 10 that the statement is true if
E=0 and that if =40 only E,7 0 need be considered. By Lemma 7,

i
Eiz j\'leij y ’lr=1, "‘,m

where the E;;, j=1, .-+, j,, are disjoint, nonempty, proper elements of
7. Since the E, are disjoint, the E;; are disjoint in 4,j. Now

J

8

Cs

E= Eij .
1

-
it

17

By Lemma 10,

HE)= 5 3 mE)= S uE) .

COROLLARY. For EFe &7, p(E) is unique.

This folloWs from Lemma 11 with m=1.
LEMMA 12. For Ee <7, p(E)=>0 in the order in S.

Proof. If E=0, p(E)=0. If E is a nonempty, proper set in &
then

E=I,— I

D,
i=1 ¢

and pi>p' Now #(Ip)=(xn)7 /“(Ipi)=(xin)’ 7’:17 cee,m, and
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x, >0, x,=0, nF#p
xin:—_o ’ n§p<pu ’1:=1, e, M.

Since
HE) = (L) = 3% L) = (@a= S1wi)

m
Xp— leinzoy n<py
iz

m
r,— g‘{ Tp=ux, >0,

it follows that g(£)>>0 in the order in S.
It now follows from Lemmas 7, 11 and the fact that the sum of
positive elements of S is positive that w(E)>0 for Ee .

3. On Generating a Ring. The set of intervals I,, having the
properties of Lemmas 2, 4 is an example of a class & of sets satisying
the following conditions :

(i) 0e &

(ii) If A,Be ¥ then AN\ Be &

(iii) If 4,, ---, A,€ & there are disjoint By, +-+, B,€ < such that

U Ai= }JIBJ .

i=1

Let &7 be the class of sets E such that
(iv) E=A-\JLA, A A ez, A, disjoint, A, C A.
Let <2 be the class of sets M such that
(v) M=\JrE, E,e &, E, disjoint.
We note that € &2 C <. It will be shown that <2 is a ring.

LEMMA 13. If E,Fe &J then EN\Fe 7.

Proof. There are sets A, A,, B, B, satisfying (iv) such that
E=A— \"J 4,, F=B- j\:/lBj .
Now
EnF=4nB-(U@nB))u(Uwnm).

By (i), ANB, ANB,, AN\ B are in <. It follows from (iii) that
there are disjoint C,, -+, C; e € such that
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Since C, C AN B and
ENF=A nB—chk,
we have E N\ Fe 2.

LEMMA 14. E,Fe 2 there are disjoint E,, «-+-,E;e & such that

E—F—\JE,.
k=0

Proof. There are A, A;,, B, B,e < satisfying (iv) such that
E=A—\J4,, F=B—\JB,.
i=1 J=1

Let
EOZ(A"A[\B)/'\E ’ Ej:Bj ﬂE 3 J=1, e, N

Now A—A N Be & and it follows from Lemma 13 that E;e &, j=0,
«++,n. Since E, "\ B=0, E;C B;C B and the B,, j=1, -+, n, are dis-
joint, E,, E,, ---, E, are disjoint. From

\JE,CE
j=0
and

EO[\FC(A——A[\B)[\B=07 EjﬂFCBjﬂF=Or j=1,"‘,n

follows
,U E,CE—-F.
On the other hand

E-Fc(a- ) A,;)——(B— nlBJ>C(A—A NBNEU (JQI(BJ NE))

i=1 Jj=

Hence

E—F= U0 E,, E,e=, E, disjoint.
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THEOREM 1. .72 4s « 7ring.

Proof. For M, Ne .2 there are disjoint sets E,e€ < and disjoint
sets F';e <7 such that

M: (nj Ei ’ N= O F?' .
i=1 it
The sets E, N F'; are disjoint and, by Lemma 13, belong to 2. Hence
(1) MAN=(UE)N(UF)=0 U@Emnrez.

Now
m

= gf F\(Ez_Ez(—\Fj) .

1 j=1

By Lemma 14, M,;=E,—FE; N\ F, is the union of a finite number of dis-
joint sets in <7 and so M, e .2#. It follows from (1) that

n
M= N\ M;e. 7%, =1, -, m.
j=1

Since each M, C E, and the E, are disjoint, the M, are disjoint. Each
M, is the union of a finite number of disjoint sets in <. Hence

(2) M—MNAN=)Mec.
=1

Finally,
M\JN=M-MNN)UMNN)JN-MNN) .

It follows from (1), (2) that each summand is in .22. Since the summands
are disjoint and are the unions of disjoint sets in <,

(3) M\JNe .72 .

That 22 is a ring follows from (1), (2), (3).

4. The Measure Function on %% to S. The function (I,) on the
class = of intervals I, to S is extended to a function on .~ to S which
is additive and nonnegative in the sense of the corollary to Lemma 11
and Lemma 12. If M is in the ring .’ of unions of disjoint sets in
< then
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where the E; are disjoint sets in &. We define

)= 3 u(B) -

THEOREM 2. p(M) is a single valued function on <2 to S such that
uM)=0 and

(M)= ﬁ‘, wM) if M= iu M, Me 5%, M, disjoint.
i=1 =1
Proof. Suppose
M=E~F,
i=1 J=1

where the sets E; and the sets F, are disjoint elements of <7. Then

E=\)(ENF), i=1, e, m,
j=1
FJ=}=}1(E1[\FJ)! j=1,---,n,

and the disjoint sets E; N\ F, are elements of & by Lemma 13. From
Lemma 11,

E)= 3 WENF),

ME)= S uENF).
Since S is an abelian group,
M= 3, p(E)= 5, 3 BN F )= 3 p(F)

Hence p(M) is a single valued function on &2 to S.

Since #(E)=0 in S for Ee <& and the sum of nonnegative elements
in S is nonnegative, we have p¢(M)=>=0 in 2.

If M= \Jr.M, and the M, are disjoint elements in 2,

Mi-—“oEij’ =1, ..., m,
j=1
and
M= U U Eij

k4

)
-
.

i
-

where the E;; are disjoint elements in <. Hence
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p)= 8, 3 )= 500

THEOREM 3. If Me <?, Xe S and
X+M={X+Y|YeM}
then X+Me 92 and p(X+M)=u(M).

Proof. 1f I,=I(a, ++, @,;; a,, ¢,) and X=(z,) then

X+L,=Ix,+ay, ) Tpr+0pey, T+ 0y, T, +0,) € G 4

and
(1) m(X+1)=p(l,) .
If
M=E—1,- Ul,e 2,

then

X+M=(X+1,)— U (X+1,)e ZC .7
and, by (1),
(2) X+ M)=pll) = 3% L) = (M) -

If M=\J.E, and the E, are disjoint sets in <, then X+E, are dis-
joint sets in & and, by (2), W(E))=p(X+E;). Since

X+M=\)(X+E)e #,
i=1
we have

HE+M)= 3 pX+E)= 3, mE)=p(M) .

The following observations were suggested by O. Nikodym, to
whom the author is indebted for a helpful reading of the manuscript.
Given X=(x,) e S such that all but a finite number of the x, are zero,
there is a measurable Me % such that p(M)=X. The results obtained
here for real valued sequences (over the ordinals n < w) may be ex-
tended by the same methods to the space of real valued sequences z,
over any given initial section of ordinals a <eé.
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