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l Introduction* This paper proves that a regular semi-metric1

topological space S may have such properties as hereditary separability,
collectionwise normality [1], paracompactness [10], and weak complete-
ness without being either a developable space [1] or a metric space.
However, if S is strongly complete, then hereditary separability implies
perfect separability [12] and consequently metrizability. It has been
proved [1; 12] that a regular developable topological space (Moore space)
is metrizable provided that it is perfectly separable. Thus, a regular
semi-metric topological space may be far removed from a Moore space
contrary to a result announced by C. W. Vickery [11]. The notion of
p-separability due to Frechet is generalized and a question raised by W.
A. Wilson [14, p. 336] is answered in the affirmative. Throughout this
paper, £ denotes a regular semi-metric topological space.

2. Weak and strong completeness •

DE™m0N 2.1. A space S is said to be { * £ * ^ * | pro-

vided there exists a distance function d such that (1) the topology of
S is invariant with respect to d and (2) if {Mt} is a monotonic decending
sequence of closed subsets of S such that, for each i, there exists a

1/i-neighborhood of a point pt j1? Q 4 which contains Mi9 then ΠM%in
contains a point.

It is now shown that strong completness is sufficient to bridge a
gap between a hereditarily separable space S and a developable space.

Received August 13, 1954 and in revised form April 15, 1955. Presented to the Ame-
rican Mathematical Society, April 24, 1954. The author wishes to express appreciation
to Professor F. B. Jones for having stimulated this research in classes at The University
of North Carolina.

1 A topological space S is said to be a semi-metric topological space provided there
is a distance function d defined for S such that (1) if each of the letters x and y denotes
a point of S, then d(x, y)=d(y, x) denotes a non-negative number, (2) d(x, y) = 0 if and
only if x=y, and (3) the topology of S is invariant with respect to the distance function
d, that is, if p is a limit point of a subset M of S, then p is a distance limit point of M
and conversely. As usual, S is said to be regular provided that if R is an open set
containing a point p of S, then there exists an open set D such that Rz^D^p. A
topological space (TL) is defined as in [9].
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THEOREM 2.2. Every hereditarily separable and strongly complete
space S is perfectly separable.

Proof. Let d denote a semi-metric for the space S. For each pair
of natural numbers h and k, let Mhk denote the set of all points p such
that for some open set R, the spherical neighborhoods U1!h(p) and UUk{p)

satisfy Ulih(p)~Z}R~^)R'^Ullk{p). It should be noted that the spherical
neighborhoods defined by d may fail to be open sets. Since S is here-
ditarily separable, there exists a countable dense subset Nhk of Mhk.
Let Ghk denote a countable collection of open sets such that for each

point p in Nhk, there exists an open set R in Ghk such that Uιίh(p)'^)R
Z^R~^Uiίk{p). Clearly, Ghk covers Mhk. Furthermore, each point of S
lies in Mhk for some h and k.

Let G denote a countable collection of open sets covering S such
that (1) the intersection of two elements of G is an element of G and
(2) if Q is an element of Ghk for some h and k, then QeG. The col-
lection G is a basis for S. For, suppose that there exists an open set
R containing a point p such that there exists no element of G that
contains p and lies in R. Then, for each i, there exists an integer ki

i

and an element R% of Gίk. which contains p such that TlRj fails to lie
3 = 1

ί

in R. Now, there exists a point pt such that U1ιi(pί)Z2Rί~DlίRj (S — R)
3 = 1

=Mt. Since M is strongly complete, ΠMh contains a point qφp. Thus,
d(pi9 g ) < l / ϊ and d(pi9 p ) < l / i for each i. This is impossible. Hence,
S is perfectly separable.

It is an interesting fact that Cauchy completeness, when defined in
a natural way for a space S (see [9] and footnote 2), is equivalent to
weak completeness in S.

THEOREM 2.3. A necessary and sufficient condition2 that a semi-
metric space S be weakly complete is that every Cauchy sequence^ of points
of S have a limit point in S.

Proof. The condition is necessary. Suppose that there exists a
Cauchy sequence {pt} of points of S which has no limit point in S.
Thus, there exists a subsequence {pn.} of {pt} such that for each i,

2 This theorem was proved independently by my classmate Wyman Richardson in
one of F. B. Jones' classes.

3 A Cauchy sequence {pi} of points is said to have a limit point p provided that
there exists a subsequence {pn^ of {pi} which converges to p. There exists a Cauchy
sequence of points in a space & which has a limit point but which has no sequential
limit point.
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Uin(Pn-)'DPni for j^>i. Let Λf t =ΣP» Since ΠMi = 0, there is a con-
J j = i J

tradiction to the hypothesis that S is weakly complete.
The condition is sufficient. Suppose that {ΛfJ denotes a monotonic

descending sequence of closed subsets of S such that for each i, there
exists a point pι such that pt e MidUιn{pι). Since {p.t} is a Cauchy
sequence, the set ΠMi contains a point p.

3 Non-equivalence of regular semi-metric topological spaces and
regular developable (Moore) spaces* Many theorems which are true for
Moore spaces have analogues which hold for regular semi-metric topolo-
gical spaces4. However, the fact that a regular semi-metric topological
space S is far removed from a Moore space is stressed by the following
examples and theorems. From these, it follows that the condition of
either separability or screenability for the metrization of a normal Moore
space due to Jones [5] and Bing [1], respectively, has no analogue which
holds in a normal space S.

Consider the following example of a regular semi-metric space which
is not a Moore space. Some additional properties of this space are given
in Theorem 3.2.

EXAMPLE 3.1. Let X denote the #-axis of the Cartesian plane E\
A semi-metric D(p, q) will be defined for E1 in the following way.
Suppose that each of the letters p and q denotes a point of E'\ If X
contains both or neither of the points p and q, then define D(p, q) to
be the Cartesian distance d(p, q). If pe X and qφX, then define D(p, q)
to be d(p, q)Jrθi where a is a non-obtuse angle (measured in radians)
between X and the line L determined by p and q. If p$ X and g e l ,
define D(p, q) to be D(q, p). Clearly, D is a semi-metric for E\ For
each positive integer n and each point p> ULjn(p) is defined to be an
open set provided that either p e l or Ulln{p) lies in one of the two
components of E2 — X. Considering the open sets defined in this way as
the elements of basis for a topology, E2 becomes a regular connected and
locally connected semi-metric topological space S which is not a Moore
space. It should be noted that S is hereditarily separable since it is
the sum of two hereditarily separable sets S—X and X.

THEOREM 3.2. There exists a connected and locally connected regular
semi-metric topological space S which is hereditarily separable, weakly
complete, strongly screenable [1], collectionwise normal, completely nor-
mal, and paracompact but which is neither perfectly separable nor a
Moore space nor metrizable.

4 This is included in unpublished work of F. B. Jones.
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Proof. Let S be the space E'2 with the topology defined in Example
3.1. The space S is not metrizable since it is not a Moore space.

Suppose that S is perfectly separable. Then there exists a countable
collection // of spherical neighborhoods in S that defines the topology
of S. For each number e > 0 and each point p in X, Ue(p) contains an
element h(e, p) of H. By the definition of Ue(p), it follows that the
center of the spherical neighborhood h(e, p) is p. This is impossible
since H is countable and X is uncountable.

In order to show that S is weakly complete, a distance function E
different from that given in Example 3.1 will be introduced. Let Lλ

and L2 be two distinct lines parallel to and at a unit distance from X,
and denote by C(X) the component of S — ^-hL^) that contains X. For
any pair of points p and q of C(X) — X, define E(p, q) to be d(p, q)l
d(X, p)d(Xy q), where d is the ordinary Cartesian distance function. If
either of two points p and q fails to lie in C(X) — X, then define E(p, q)
to be D(p, q) as given in Example 3.1. It follows that the topology of
S is unchanged by E. In the remainder of this paragraph, the spherical
neighborhoods considered will be those defined by E. Now, suppose that
{Mt} is a monotonic descending sequence of closed point sets and {pt}
is a sequence of points such that for each i, pte MidUili(pi). If there
exists a subscript n such that X-Mn=0, then X-Mi=0 f o r i > w . From
this it follows that there exists m^>n such that Uum(pm) X=0. For,
suppose that this is not the case. Then there must exist a subsequence
{pni} of fa} such that {d(X, pni)} converges to 0. Consequently, by
the definition of E, the sequence {E(pn, pn.)} of real numbers is un-
bounded. This is contrary to the assumption that Uιln(pn)ZDMn. Thus,
the existence of the required integer m is established. It follows that
ΠM^O in this case. For the remaining case, suppose that for each
i, X MiφO. Since {JSΓ ikfJ is a bounded monotonic descending sequence
of non-empty closed subsets of X, it follows that ΠM^O. Hence, S i s
weakly complete.

The space S is strongly screenable» Consider the metric subspaces
S—X and X of S. These are strongly screenable by theorems due to
Bing [1]. Let G denote an open covering of S. Denote by H and K
open coverings of X and S—X, respectively, such that for g in G, g*Xe H
and g (S—X)e K. There exists a sequence {£Γ4} of discrete collections
[1] of open intervals of X such that ΣHi covers X and for each i, Hi

is a refinement of H. Let / deote an interval in ΈL% for some i. Since

/ contains no point of the closure of (Hi—I)* [the logical sum of the
elements of Hi—I] and / lies in some element g of G, it follows that
there exist discrete collections P and Q of 1/%-neighborhoods of points
in X such that (1) each element of P and each element of Q lies in g,
(2) the closure of no element of either P or Q intersects the closure of
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(Ht—I)*, and (3) P + Q covers /. It follows that there exists a sequence
{XJ of discrete collections each of which is a refinement of G and such
that ΣXίZD-X". Similarly, there exists a sequence {ϋΓJ of discrete col-
lections each of which is a refinement of K and such that ΊtK^S—X.
For each natural number i, let G2i=Xi and GH-ι=Ki. Thus, {GJ is a
sequence of discrete collections of open subsets of S such that SCr*
covers S and Gt refines G for each i. Hence, S is strongly screenable.

Now S, being a regular strongly screenable topological space, is
collection wise normal [1]. It also follows that S is paracompact by a
theorem due to Ernest Michael [6].

To complete the proof of theorem 3.2, it must be shown that S is
completely normal. It has been proved by F. B. Jones [5] that every
normal Moore space is completely normal3. A simple modification of his
argument shows that every normal semi-metric topological space is com-
pletely normal. This completes the proof.

Mary E. Estill [3] has considered complete Moore spaces in any one
of three definitions of completeness. Perhaps intuition would lead one
to suspect that a complete Moore space, in one of these senses, would
be strongly complete. The following example and theorem shows that
this is not the case. As a matter of fact, in a Moore space, the concept
of strong completeness is more restrictive than that of completeness.

EXAMPLE 3.3. Let X denote the £-axis of the Cartesian plane E\
A semi-metric D(p, q) will be defined for E2 in the following way.
Suppose that p and q are two distinct points of E2. If neither p nor q
lies in X, then define D(p, q) to be d(p, q) where d is the ordinary
Cartesian metric. If peX, then let D(p, q)=d(pf q) + a where a is an
angle (measured in radians) between a line Lλ containing pΛ q and a
vertical line L2 containing p such that 0<lα:<Ξ>/2. If D(q, p) is not
defined above, then let D(q, p)=D(p, q). For p in X, let D(p, p)=0.
Clearly, D is a semi-metric for E2. For each point p in Eι and each
natural number n, Uιln{p) is defined to be an open set. With this defi-
nition of open sets, E2 becomes a regular connected and locally connected
semi-metric topological space S. It should be noted that S is separable
but not hereditarily separable.

THEOREM 3.4. There exists a complete Moore space S which is not
strongly complete.

Proof. Let S be the space E'2 with the topology defined in Example
5 A space S is said to be completely normal provided that for two mutually separate

subsets Hand K oί S there exists matually exclusive open coverings of H and K. See [5].
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3.3. It will first be shown that S is not strongly complete.
Suppose that S is strongly complete. Then there exists a semi-

metric E defined for S such that (1) the topology of S is unchanged by
E and (2) if {MJ is a monotonic descending sequence of closed subsets
of S such that for each i and some point pi in S, Z7κt(Pt) ID M t , then
ΠM%Φ§. It should be noted that the spherical neighborhoods defined
by E may fail to be open sets.

Consider an interval A of X. For each pair of natural numbers h
and k, let Mhk denote the subset of A of all points p such that for
some open set R, Ul!h(p)'^R'^U1ik(p). For some natural number hl9

the set Mlhl is uncountable. Now, Mlhi contains an uncountable subset
Nlhi such that

(1) there exists a line Lx parallel to X where d(Ll9 X)<L1 and
(2) for each point p in JV1Λl, there exists an open set R(p) where

UΊ(p) ID R(p) 1^> Uljhi(p) such that R(p) contains an interval / of Lτ whose
length (in the Cartesian sense) is greater than a positive number e1

and which has as its center a point q whose projection on 1 is p.
Now there exists an integer h.z^>hi such that JV1Λl contains an un-

countable subset N2h.2 such that
(1) there exists a line L2 parallel to X where d(L2, X)<il/2 and
(2) for each point p in Nih.,, there exists an open set R(p) where

Uii2(v)^)R(p)Z2Uiih9(p) s u c h that R{p) contains an interval /of L2 whose
length is greater than a positive number e2 and which has as its center
a point q whose projection on X is p.

If follows that there exists a monotonic descending sequence {Nίh.}
oΐ subsets of A anά a sequence {L4} of lines parallel to X and converging
to it such that for each i, if pt is a point of Nih., there exists an open
set R(pt) where UlH{p^R{Vi)1^Uιlhι{p^ such that R(pt) contains an
interval It of Lt whose length is greater than a positive number et and
which has as its center a point qt whose projection on X is pt. Since
A is a compact subset of E2 there exists a monotone sequence {pj of
points converging to a point p in A such that for each i, pteNihi. Let
L be a vertical line containing p, and for each i, define xi=L Li. It
follows that there exists a monotonic increasing sequence {&J of natural
numbers such that for each i, E(xi9 pjXlfi for all i > ^ . The set

is closed in S for each i and Ulίi{xi)Z^Mi. It follows that

This is contrary to the assumption that S is strongly complete.
It now remains to be shown that S is a complete Moore space. For

a point p in X, there exists a sequence {ϋJJ of open sets closing down6

6 A sequence of open sets {Ri} is said to close down on a point p if for each i,

i and ΠRi^p.
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on p. On the other hand, if p denotes a point of S—X, there exists
a sequence {i24} of open sets closing down on p such that for each
i, i2ί X = 0 . With each point p of $, associate exactly one such
sequence {JΪJ. For each ί, let G4 denote the collection of all open sets
R such that for some point p of S, R is the j th member of the sequ-
ence associated with p, and j^>i. It follows that S is a complete Moore
space.

4. A question due to W A, Wilson. An affirmative answer is
given in this section to a question raised by Wilson [14, p. 366] in 1931.
The following axioms and definitions [14] are listed for convenience.

A set Z is said to be a (Menger) semi-metric space provided that
corresponding to each pair of points (a, b) of Z, there is a non-negative
real number d(a, b) satisfying the following axioms:

Axiom I. d(a, b)=d(b, α).
Axiom II. d(a, b)=0 if and only if α=6.
Wilson has introduced the following additional axiom:
Axiom W. For each point a and each positive number k, there is

a positive number r such that if b is a point for which d(a, b)2>k and
c is any point, then d(a, c)-hd(b, c)^>r.

Now, let r=f(a, k) denote the largest r such that d(a, c) + d(b, c)^>r
in Axiom W. For each point a and each positive number k, let r=f(a, k),
r1=f(ai r)y and r2 denote a positive number such that r 2 <Vi . Wilson
calls the set a of points x such that d(α, # ) < > , an inner sphere, with
center α, corresponding to a and k.

THEOREM 4.1. Suppose that Z denotes a separable semi-metric space
satisfying Axiom W. If d denotes a distance function defined for Z
which leaves limit points invariant, then there exists a countable dense
subset £*=2pi of Z such that for any positive number k, each point p of
Z lies in an inner sphere a corresponding to pt and k for some natural
number i.

Proof. By a corollary due to Wilson [14], Z is homeomorphic to a
metric space. Since a separable metric space is hereditarily separable,
it follows that Z is hereditarily separable.

Let Se(p) denote a spherial neighborhood in Z. For each pair of
natural numbers h and kf let Mhk denote the set of all points p such
that there exists an inner sphere a corresponding to ljh and p such
that Slίh{p)ZD<OSΊ/fc(p) Since Z is hereditarily separable, Mh]c contains
a countable dense subset Nhk. Let Khlc be a countable collection of
inner spheres such that if p e Nhk, then there exists an inner sphere σ
in Khk corresponding to \\h and p such that Si/Λ(p)D<Oί?i/fc(;p). It
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follows that Kh!, covers Mhkι, Denote by /?=!£/>$, ^ e countable dense

subset Σ2V/ifc °f Z-

The set E satisfies the conclusion of Theorem 4.1. For, if c is any

positive number, there exists a positive integer h such that
Also, for p in Z, there exists k such that p e MhΊc. Since Khk covers
Nhk, there exists an inner sphere a corresponding to pi and \\h for
some i such that Ό p . Hence, the inner sphere ax which corresponds
to Pi and c contains 0 and p.

Now Wilson's question referred to above is answered.

5 Generalized Frechet f>-seρarabϋity The following definition is a
natural generalization of the notion of p-separability [4]. It is proved
that in a space S this notion is equivalent to hereditary separability.

DEFINITION 5.1. A regular semi-metric topological space S (or semi-
metric space Z) is said to be p-separable provided that

(1) given any distance function d which leaves limit points invariant
and

(2) given any collection H of subsets of S which has the property
that for each number k^>0 and each point p of S, there exists h in II
such that UJC(p)'^hZ^Ue(p) for some positive number e,
then there exists a countable dense subset E=^pt such that for each
positive number / , each point p of S lies in an element h of H such
that Ufip^Z^h^Pt for some i.

The following theorem may be proved in a manner analogous to
that used in the proof of Theorem 4.1.

THEOREM 5.2. Every hereditarily separable semi-metric space Z is
p-separable.

THEOREM 5.3. A necessary and sufficient condition that a regular
semi-metric topological space S be hereditarily separable is that S be p-
separable.

Proof, The necessity of the condition follows from Theorem 5.2.
It will now be shown that the condition is sufficient. Suppose that

d denotes a semi-metric for S, and that S is not hereditarily separable.
Then S contains an uncountable subset N which has no limit point in
S. Now, consider a semi-metric D defined in the following way. For
each i, let Dt denote the set of all points x of S such that for some
point p in N, x lies in an open set RCLu^p) where u^^p) is a spherical
neighborhood defined by d. Thus, {Z)J is a monotonic descending sequ-
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ence of open sets such that ΠDι=N. For each i and each point p in
Di — N, associate exactly one open set R£v) containing- p and lying in

Di such that for some number e, ue(p)^)R(p) and ue(p) N=0. If x
and y denote points of S—N such that for some i, D^x + y and

then define D(x, y) to be i provided that Ri(x)'~ύy and
For points x and y of S for which JD(#, y) is not defined

above, let D(x, y)=d(x, y). It follows that limit points are invariant
with respect to Zλ

Next, let H denote a collection of open sets such that for each
natural number i and each point p in S, there exists h in H such that
Ulii{p)Z^h'^)p where Uin(p) is a spherical neighborhood defined by Zλ
Since & is ^-separable, there exists a countable dense subset E=llpί of
S such that for each positive number /, each point p of S lies in an
element h(p) of H such that for some i, Uf{p^^>h{p). There exists an
uncountable subset M of N—E and a natural number t such that if x
is a point and Z?(#, Λf)<l/£, then x lies in Z?e. Let pe M. Then there
exist

(1) a number e > 0 such that D(p, N—p)=d(p, N—p)y>e,
(2) a positive integer w. such that l/w<Csmaller [β, 1/ί],
(3) fc in £Γ,
(4) an integer i such that Ulin(p^)~^hZ^V [thus, ^ e f l j ,
(5) an integer m^>t such that pieDm—Dm+ι,

(6) an open set Rm(pd associated with pt and Dm such that for

some number c, u^Pi)^Rm(vd a n d uc(Pί)-N= 0,
(7) a positive number z such that for g in S—Rm(pά> d(Pί, Q)^>Z>

(8) xek'Dm-[Rm(p)JrN] such that Z)(p, a?)O, and

(9) an open set Rm(x) associated with ίu and Dm such that for some

number 6, κ6(a?)^Rm{x) and ιtb(x) N=0.
Therefore, 6<2:. Consequently, Rm{x)~^)pi. By definition, D(x, PΪ)
=m>l/rc. This is impossible since U^p^^h^p-^-x. Hence, S is
hereditarily separable.

It follows from Theorem 3.2 that S may fail to be either perfectly
separable or a metric space.

6. Conditions for semi-metric, regular developable (Moore), and
metric spaces. Consider the following three conditions on a topological
space T.

A. There exists a sequence {Hi} such that (a) for each i, Ht is a
collection of open subsets of T, (b) if p is a point and iϋ is an open
set containing p, then there exists an integer n such that Hn contains
exactly one element g(p) associated with p such that R^Dg(p)Z^>P and
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(c) if n is an integer and {g%(Vtϊ) *s a sequence such that for each
if 9i(Pt) belongs to Hn and is associated with p%, then Σp* has no limit
point in T-Σ

B. If p is a point and R is an open set containing p, then there
exists an integer n such that for my>n, each element g of Hm which
contains p has the property that

C. For each i, the sum of the closures of any subcollection of IIt

is closed.

THEOREM 6.1. A necessary and sufficient condition that a topological
space T be semi-metric is that T satisfy Condition A.

Proof. It will first be shown that the condition is sufficient. It
follows from Condition A that T satisfies the first axiom of countability.
Consider a semi-metric d defined as follows. For two distinct points p
and q of T, denote by i the least integer such that Ht contains an
element g(p) associated with p but not containing q. Similarly, let j
denote the least integer such that H5 contains an element g(q) associated
with q but not containing p. Define d(p, q) to be l/min(i, j). For each
point p, define d(p, p) to be 0.

Limit points are invariant with respect to d. For suppose that p
is a limit point (defined by the open sets of T) of a subset M of T and
that p is not a distance limit point of M. Then there exists a sequence
{Pi} of points of M — p which converges to p such that for some integer
n and each ΐ, d(p, p^^lln. Thus, there exists an integer m, such
that, for infinitely many integers i, either (1) Hm contains gm(p) and
9Jj>)ΦVi or (2) Hm contains gm{p%) and gm(Pt) Φv> Since {pt} -±p, (1) is
impossible. By Condition A, (2) is impossible. Hence, p is a distance
limit point of M. It also follows easily that a distance limit point of
a subset M of T is an open set limit point of M. This completes the
proof of the sufficiency.

The condition is necessary. For each point p and each pair of natural
numbers h and k, let Rhk{p) denote an open set when it exists, such that
U1ιh(p)^>Rhic(p)Z^U1ι1c(p). With hj k, and p associate exactly one such
open set, and let Gh7c denote the corresponding collection of open sets
for each point p in T. There exists a sequence {H^ such that there
is a one to one correspondence between the elements of {.Hi} and the
elements of {Gnm}. It follows that {Ht} satisfies Condition A.

As Example 3.1 illustrates, a regular semi-metric topological space
may fail to be a Moore space.

THEOREM 6.2. A necessary and sufficient condition that a topological
space T be a Moore space is that T satisfy Conditions A and B.
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Proof. The condition is sufficient. For each positive integer i, let

Gi=ΈιHj If the word "region" is interpreted as "open set," then it
j = i

follows that Axioms 0 and 1 (l)-(3) due to Moore [7] are satisfied.
The condition is necessary. It will be shown first that T is a semi-

metric topological space. Let p and q be distinct points of T. Denote
by n the least positive integer such that if g(p) and g(q) are regions in
Gn containing p and q, respectively, then g(p)Λg(q) = 0. Note that {Gι}
is given by Axiom 1 of [7]. Consequently, define d(p, q) to \\n. It
follows that d is a semi-metric distance function and that limit points
are invariant with respect to d. By Theorem 6.1, T satisfies Condition
A.

Now, define {iί j in a manner described in the proof of Theorem 6.1
with the additional requirement that Rh7c(p) lie in a region of Gh. It
follows that {Ht} satisfies Conditions A and B.

THEOREM 6.3. A necessary and sufficient condition that a topological
space T be metric is that it satisfy Conditions A, B, and C.

A proof of Theorem 6.3 follows by use of Bing's Theorem 4 of [1]
and Theorem 6.1 above.

Question. Is it possible to partition either Bing's Theorem 4 of [1]
or Moore's metrization theorem [8; 13], stated below, into three or more
parts which begins with a condition for a topological space and which
ends with a condition for a metrizable space, but with necessary and
sufficient conditions somewhere between these extremes for semi-metric
spaces and Moore spaces ?

THEOREM (Moore)7. A necessary and sufficient condition that a space
S satisfying Axiom 0 of [7] be metrizable is that there exist a sequence
{Kt} such that (1) for each natural number n, Kn is a collection of
regions in S covering S and (2) if p is a point, q is a point distinct
from p, and R is a region containing p, then there exists a natural
number n such that if each of the letters h and k denotes an element of

then R —
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