A RELATION BETWEEN PERFECT SEPARABILITY,
COMPLETENESS, AND NORMALITY IN
SEMI-METRIC SPACES

Louis F. MCAULEY

1. Introduction. This paper proves that a regular semi-metric!
topological space S may have such properties as hereditary separability,
collectionwise normality [1], paracompactness [10], and weak complete-
ness without being either a developable space [1] or a metric space.
However, if S is strongly complete, then hereditary separability implies
perfect separability [12] and consequently metrizability. It has been
proved [1; 12] that a regular developable topological space (Moore space)
is metrizable provided that it is perfectly separable. Thus, a regular
semi-metric topological space may be far removed from a Moore space
contrary to a result announced by C. W. Vickery [11]. The notion of
p-separability due to Frechet is generalized and a question raised by W.
A. Wilson [14, p. 336] is answered in the affirmative. Throughout this
paper, S denotes a regular semi-metric topological space.

2. Weak and strong completeness.

weakly complete} ro-
strongly complete b

vided there exists a distance function d such that (1) the topology of
S is invariant with respect to d and (2) if {M;} is a monotonic decending
sequence of closed subsets of S such that, for each ¢, there exists a

1/i-neighborhood of a point p; {i?n]gi} which contains M,;, then [TM;

DEFINITION 2.1. A space S is said to be {

contains a point.
It is now shown that strong completness is sufficient to bridge a
gap between a hereditarily separable space S and a developable space.
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L A topological space S is said to be a semi-metric topological space provided there
is a distance function d defined for S such that (1) if each of the letters # and y denotes
a point of S, then d(z, ¥)=d(y, ¥) denotes a non-negative number, (2) d(z, ¥)=0 if and
only if =y, and (3) the topology of S is invariant with respect to the distance function
d, that is, if p is a limit point of a subset M of S, then p is a distance limit point of M
and conversely. As usual, S is said to be regular provided that if R is an open set

containing a point p of S, then there exists an open set D such that R>D>p. A
topological space (7)) is defined as in [9)].

315



316 L. F. MCAULEY

THEOREM 2.2. Ewery hereditarily separable and strongly complete
space S is perfectly separable.

Proof. Let d denote a semi-metric for the space S. For each pair
of natural numbers 2 and %, let M,, denote the set of all points p such
that for some open set R, the spherical neighborhoods U,,(p) and U, (p)

satisfy U, (p) DRDORDOU,(p). It should be noted that the spherical
neighborhoods defined by d may fail to be open sets. Since S is here-
ditarily separable, there exists a countable dense subset N,, of M,..
Let G, denote a countable collection of open sets such that for each

point p in N, there exists an open set R in G,, such that U, ,(p) DR
DRDOU,(p). Clearly, G,, covers M,,. Furthermore, each point of S
lies in M,, for some % and k.

Let G denote a countable collection of open sets covering S such
that (1) the intersection of two elements of G is an element of G and
(2) if @ is an element of G,, for some %~ and k, then Qe G. The col-
lection G is a basis for S. For, suppose that there exists an open set
R containing a point p such that there exists no element of G that
contains » and lies in B. Then, for each ¢, there exists an integer £,

and an element R; of G, which contains p such that ﬁRj fails to lie
7=1

in R. Now, there exists a point p, such that U,;,(p;) DR, D fll—%j-(S —R)
J=1

=M,;. Since M is strongly complete, //M, contains a point ¢7%p. Thus,
d(p;, @)<1/t and d(p,, p)<1/i for each 7. This is impossible. Hence,
S is perfectly separable.

It is an interesting fact that Cauchy completeness, when defined in
a natural way for a space S (see [9] and footnote 2), is equivalent to
weak completeness in S.

THEOREM 2.3. A mecessary and sufficient condition® that a semi-
metric space S be weakly complete is that every Cauchy sequence® of points
of S have a limit point in S.

Proof. The condition is necessary. Suppose that there exists a
Cauchy sequence {p;} of points of S which has no limit point in S.
Thus, there exists a subsequence {p,,} of {p;} such that for each q,

2 This theorem was proved independently by my classmate Wyman Richardson in
one of F. B. Jones’ classes.

3 A Cauchy sequence {p;} of points is said to have a limit point p provided that
there exists a subsequence {p”z} of {p:} which converges to p. There exists a Cauchy
sequence of points in a space S which has a limit point but which has no sequential
limit point.
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U, ji(Pn;) D pay for j=1. Let Mi———ip,,j. Since [IM,=0, there is a con-
T=4

tradiction to the hypothesis that S is weakly complete.

The condition is sufficient. Suppose that {M,} denotes a monotonic
descending sequence of closed subsets of S such that for each 4, there
exists a point p, such that p,e M, U, (p;). Since {p;,} is a Cauchy
sequence, the set /7TM, contains a point p.

3. Non-equivalence of regular semi-metric topological spaces and
regular developable (Moore) spaces. Many theorems which are true for
Moore spaces have analogues which hold for regular semi-metric topolo-
gical spacest. However, the fact that a regular semi-metric topological
space S is far removed from a Moore space is stressed by the following
examples and theorems. From these, it follows that the condition of
either separability or screenability for the metrization of a normal Moore
space due to Jones [5] and Bing [1], respectively, has no analogue which
holds in a normal space S.

Consider the following example of a regular semi-metric space which
is not a Moore space. Some additional properties of this space are given
in Theorem 3.2.

ExampLE 3.1. Let X denote the x-axis of the Cartesian plane E-.
A semi-metric D(p, ¢) will be defined for E® in the following way.
Suppose that each of the letters » and ¢ denotes a point of E*. If X
contains both or neither of the points p and ¢, then define D(p, q¢) to
be the Cartesian distance d(p, ¢). If pe X and ¢ ¢ X, then define D(p, q)
to be d(p, ¢)+a where « is a non-obtuse angle (measured in radians)
between X and the line L determined by p and ¢. If p¢ X and ¢ge X,
define D(p, q) to be D(q, p). Clearly, D is a semi-metric for E*. For
each positive integer n and each point p, U,,.(p) is defined to be an
open set provided that either pe X or U,,(p) lies in one of the two
components of E*—X. Considering the open sets defined in this way as
the elements of basis for a topology, E* becomes a regular connected and
locally connected semi-metric topological space S which is not a Moore
space. It should be noted that S is hereditarily separable since it is
the sum of two hereditarily separable sets S—X and X.

THEOREM 3.2. There exists a connected and locally connected regular
semi-metric topological space S which is hereditarily separable, weakly
complete, strongly screenable [1], collectionwise normal, completely nor-
mal, and paracompact but which is neither perfectly separable nor
Moore space nor metrizable.

4 This 13 included in unpublished work of F. B. Jones.
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Proof. Let S be the space E* with the topology defined in Example
3.1. The space S is not metrizable since it is not a Moore space.

Suppose that S is perfectly separable. Then there exists a countable
collection H of spherical neighborhoods in S that defines the topology
of S. For each number ¢>0 and each point p in X, U,(p) contains an
element %(e, p) of H. By the definition of U,(p), it follows that the
center of the spherical neighborhood Z%(e, p) is p. This is impossible
since H is countable and X is uncountable.

In order to show that S is weakly complete, a distance function E
different from that given in Example 8.1 will be introduced. Let L,
and L, be two distinct lines parallel to and at a unit distance from X,
and denote by C(X) the component of S—(L,+ L,) that contains X. For
any pair of points p and ¢ of C(X)—X, define E(p, q) to be d(p, q)/
d(X, p)d(X, q), where d is the ordinary Cartesian distance function. If
either of two points p and ¢ fails to lie in C(X)—X, then define E(p, q)
to be D(p, q) as given in Example 3.1. It follows that the topology of
S is unchanged by E. In the remainder of this paragraph, the spherical
neighborhoods considered will be those defined by . Now, suppose that
{M,} is a monotonic descending sequence of closed point sets and {p;}
is a sequence of points such that for each 4, p,€ M;CU,(p;). If there
exists a subscript » such that X-M,=0, then X-M;=0 for ¢ >x. From
this it follows that there exists m >n such that U,,.(p.)-X=0. For,
suppose that this is not the case. Then there must exist a subsequence
{vn,} of {p} such that {d(X, p,)} converges to 0. Consequently, by
the definition of E, the sequence {E(p,, p.,)} of real numbers is un-
bounded. This is contrary to the assumption that U,.,(p,) > M,. Thus,
the existence of the required integer m is established. It follows that
IIM,5~0 in this case. For the remaining case, suppose that for each
i, X-M,;5~0. Since {X-M,} is a bounded monotonic descending sequence
of non-empty closed subsets of X, it follows that I/M,%40. Hence, S is
weakly complete.

The space S is strongly screenable. Consider the metric subspaces
S—X and X of S. These are strongly screenable by theorems due to
Bing [1]. Let G denote an open covering of S. Denote by H and K
open coverings of X and S— X, respectively, such that forg in G, g-Xe H
and g-(S—X)e K. There exists a sequence {H,} of discrete collections
[1] of open intervals of X such that XH, covers X and for each ¢, H,
is a refinement of H. Let I deote an interval in H, for some 4. Since

I contains no point of the closure of (H,—I)* [the logical sum of the
elements of H,—I] and [ lies in some element g of G, it follows that
there exist discrete collections P and @ of 1/n-neighborhoods of points
in X such that (1) each element of P and each element of @ lies in g,
(2) the closure of no element of either P or @ intersects the closure of
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(H;—D)*, and (8) P+Q covers I. It follows that there exists a sequence
{X;} of discrete collections each of which is a refinement of G and such
that =X, D X. Similarly, there exists a sequence {K;} of discrete col-
lections each of which is a refinement of K and such that 2K, D> S—X.
For each natural number 7, let G,,=X, and G,,_,=K,. Thus, {G;} is a
sequence of discrete collections of open subsets of S such that =G,
covers S and G, refines G for each <. Hence, S is strongly screenable.

Now S, being a regular strongly screenable topological space, is
collectionwise normal [1]. It also follows that S is paracompact by a
theorem due to Ernest Michael [6].

To complete the proof of theorem 3.2, it must be shown that S is
completely normal. It has been proved by F. B. Jones [5] that every
normal Moore space is completely normal’. A simple modification of his
argument shows that every normal semi-metric topological space is com-
pletely normal. This completes the proof.

Mary E. Estill [3] has considered complete Moore spaces in any one
of three definitions of completeness. Perhaps intuition would lead one
to suspect that a complete Moore space, in one of these senses, would
be strongly complete. The following example and theorem shows that
this is not the case. As a matter of fact, in a Moore space, the concept
of strong completeness is more restrictive than that of completeness.

ExAMPLE 3.8. Let X denote the z-axis of the Cartesian plane E”.
A semi-metric D(p, q) will be defined for E” in the following way.
Suppose that p and ¢ are two distinct points of E’. If neither p nor ¢
lies in X, then define D(p, q) to be d(p, q) where d is the ordinary
Cartesian metric. If pe X, then let D(p, q)=d(p, ¢)+« where « is an
angle (measured in radians) between a line L, containing p+¢ and a
vertical line L, containing p such that 0{a<z/2. If D(q, p) is not
defined above, then let D(q, p)=D(p, ¢). For p in X, let D(p, p)=0.
Clearly, D is a semi-metric for E*. For each point p in E* and each
natural number n, U,,(p) is defined to be an open set. With this defi-
nition of open sets, E* becomes a regular connected and locally connected
semi-metric topological space S. It should be noted that S is separable
but not hereditarily separable.

THEOREM 8.4. There exists a complete Moore space S which s not
strongly complete.

Proof. Let S be the space E* with the topology defined in Example

5 A space S is said to be completely normal provided that for two mutually separate
subsets H and K of S there exists matually exclusive open coverings of H and K. See [5].
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3.3. It will first be shown that S is not strongly complete.

Suppose that S is strongly complete. Then there exists a semi-
metric £ defined for S such that (1) the topology of S is unchanged by
E and (2) if {M,} is a monotonic descending sequence of closed subsets
of S such that for each ¢ and some point p; in S, Uy(p:) DM, , then
IIM,=~0. It should be noted that the spherical neighborhoods defined
by E may fail to be open sets.

Consider an interval A of X. For each pair of natural numbers 7
and %k, let M,, denote the subset of A4 of all points p such that for
some open set R, U,,(p) DRDOU,(p). For some natural number 7%,,
the set M,, is uncountable. Now, M, contains an uncountable subset
N, such that

(1) there exists a line L, parallel to X where d(L,, X)<1 and

(2) for each point p in N, , there exists an open set R(p) where
U,(p) D R(p) D Uy (p) such that R(p) contains an interval I of L, whose
length (in the Cartesian sense) is greater than a positive number e
and which has as its center a point ¢ whose projection on X is p.

Now there exists an integer A,>#%, such that Ny, contains an un-
countable subset N,,, such that

(1) there exists a line L, parallel to X where d(L,, X)<{1/2 and

(2) for each point p in N,,,, there exists an open set R(p) where
Us(p) D R(p) D U,y (p) such that R(p) contains an interval I of L, whose
length is greater than a positive number e, and which has as its center
a point ¢ whose projection on X is p.

If follows that there exists a monotonic descending sequence {Nj }
of subsets of A and a sequence {L,} of lines parallel to X and converging
to it such that for each 4, if p, is a point of N;,,, there exists an open
set R(p;) where U, (p;) DR(p;) DU, u,(p;) such that R(p) contains an
interval I, of L, whose length is greater than a positive number ¢, and
which has as its center a point ¢, whose projection on X is p,. Since
A is a compact subset of E* there exists a monotone sequence {p;} of
points converging to a point p in A such that for each %, p,e Ni,,. Let
L be a vertical line containing p, and for each ¢, define z;=L-L,. It
follows that there exists a monotonic increasing sequence {k;} of natural
numbers such that for each 4, E(x;, p,)< 1/i for all j>k,. The set

M,= ipk is closed in S for each 1 and Uy(x,) D> M,. It follows that

k=k;
ITM,=0.

This is contrary to the assumption that S is strongly complete.

It now remains to be shown that S is a complete Moore space. For
a point p in X, there exists a sequence {R;} of open sets closing down®

6 A sequence of open sets {R;} is said to close down on a point p if for each 1,
RiDR,+1 and TR;=p.



PERFECT SEPARABILITY, COMPLETENESS, AND NORMALITY 321

on p. On the other hand, if p denotes a point of S—X, there exists
a sequence {R;} of open sets closing down on p such that for each
4, R,-X=0. With each point p of S, associate exactly one such
sequence {R;}. For each 4, let G, denote the collection of all open sets
R such that for some point p of S, R is the jth member of the sequ-
ence associated with p, and j2>4¢. It follows that S is a complete Moore
space.

4., A question due to W. A. Wilson. An affirmative answer is
given in this section to a question raised by Wilson [14, p. 366] in 1931.
The following axioms and definitions [14] are listed for convenience.

A set Z is said to be a (Menger) semi-metric space provided that
corresponding to each pair of points (a, b) of Z, there is a non-negative
real number d(a, b) satisfying the following axioms:

Axiom I. d(a, b)=d(b, a).

Axiom II. d(a, b)=0 if and only if a=b.

Wilson has introduced the following additional axiom:

Axiom W. For each point a and each positive number %, there is
a positive number 7 such that if b is a point for which d(a, b)>% and
¢ is any point, then d(a, ¢)+d(b, ¢c)=>.

Now, let r=f(a, k) denote the largest » such that d(a, ¢)+d(b, ¢)=>r
in Axiom W. For each point a and each positive number %, let = f(a, k),
r=f(a, r), and 7, denote a positive number such that r,<7,. Wilson
calls the set s of points = such that d(a, )< r, an inner sphere, with
center a, corresponding to a and k.

THEOREM 4.1. Suppose that Z denotes a separable semi-metric space
satisfying Axiom W. If d denotes a distance function defined for Z
which leaves limit points invariant, then there exists a countable dense
subset E=2p, of Z such that for any positive number k, each point p of
Z lies in anm inner sphere o corresponding to p, and k for some natural
number 1.

Proof. By a corollary due to Wilson [14], Z is homeomorphic to a
metric space. Since a separable metric space is hereditarily separable,
it follows that Z is hereditarily separable.

Let S,(p) denote a spherial neighborhood in Z. For each pair of
natural numbers %~ and %, let M,, denote the set of all points p such
that there exists an inner sphere o corresponding to 1/2 and p such
that S,,,(p) D6 Sy(p). Since Z is hereditarily separable, M, contains
a countable dense subset N,,. Let K,, be a countable collection of
inner spheres such that if pe N,,, then there exists an inner sphere o
in K,, corresponding to 1/ and p such that S,,(p) DoDSp). It



322 L. . MCAULEY

follows that K,, covers M,,. Denote by E=2Xp,, the countable dense
subset M\ N, of Z.
k=1

The set E satisfies the conclusion of Theorem 4.1. For, if ¢ is any
positive number, there exists a positive integer % such that 1/A<Tec.
Also, for p in Z, there exists & such that pe M,,. Since K,, covers
N,.;, there exists an inner sphere o corresponding to p, and 1/ for
some ¢ such that s >p. Hence, the inner sphere s, which corresponds
to p; and ¢ contains » and p.

Now Wilson’s question referred to above is answered.

5. Generalized Frechet p-separability. The following definition is a
natural generalization of the notion of p-separability [4]. It is proved
that in a space S this notion is equivalent to hereditary separability.

DEFINITION 5.1. A regular semi-metric topological space S (or semi-
metric space Z) is said to be p-separable provided that

(1) given any distance function d which leaves limit points invariant
and

(2) given any collection H of subsets of S which has the property
that for each number £ >0 and each point p of S, there exists 4 in I/
such that U, (p) Dk > U,(p) for some positive number e,
then there exists a countable dense subset E=ZXp, such that for each
positive number f, each point p of S lies in an element 2 of H such
that U,(p;) Dk D p, for some 4.

The following theorem may be proved in a manner analogous 1o
that used in the proof of Theorem 4.1.

THEOREM 5.2. Ewvery hereditarily separable semi-metric space Z 1is
p-separable.

THEOREM 5.3. A mnecessary and suflicient condition that a regqular
semi-metric topological space S be hereditarily separable is that S be p-
separable.

Proof. The necessity of the condition follows from Theorem 5.2.

It will now be shown that the condition is sufficient. Suppose that
d denotes a semi-metric for S, and that S is not hereditarily separable.
Then S contains an uncountable subset N which has no limit point in
S. Now, consider a semi-metric D defined in the following way. For
each 7, let D, denote the set of all points  of S such that for some
point p in N, x lies in an open set R Cu,;(p) where u,,(p) is a spherical
neighborhood defined by d. Thus, {D,} is a monotonic descending sequ-
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ence of open setls such that /I/D,=N. For cach ¢ and cach point p in
D,— N, associale cxactly one open sel R,(p) containing p and lying in
D, such that for some number e, u,(p)DR(p) and u,(p)-N=0. If =z
and y denote points of S—N such that for some 4, D,DOwx+y and
D;..Dx+y, then define D(x,y) to be ¢ provided that R,(x)py and
R(y)2«. For points  and y of S for which D(z, y) is not defined
above, let D(x, y)=d(x, y). It follows that limit points are invariant
with respect to D.

Next, let H denote a collection of open sets such that for each
natural number 7 and each point p in S, there exists Z in H such that
U, (p) Dh>p where U, (p) is a spherical neighborhood defined by D.
Since S is p-separable, there exists a countable dense subset E=3Zp, of
S such that for each positive number f, each point p of S lies in an
element A(p) of H such that for some 4, U, (p;) Dh(p). There exists an
uncountable subset M of N—FE and a natural number ¢ such that if «
is a point and D(x, M) < 1/t, then « lies in D,. Let pe M. Then there
exist

(1) a number ¢>0 such that D(p, N—p)=d(p, N—p) >e,

(2) a positive integer n such that 1/n<Tsmaller [e, 1/¢],

3) kin H,

(4) an integer ¢ such that Ui, (p;) D% >Dp [thus, p,eD,],

(5) an integer m >t such that p,e D,—D,.+,

(6) an open set R,(p;) associated with p, and D, such that for

some number ¢, u,(p;) DR, (p;) and u(p;) - N=0,

(7) a positive number z such that for ¢ in S—R,(p), d(p;, @) >z,

8) zeh-D,—|[R,(p)+N] such that D(p, )<z, and

(9) an open set R,(x) associated with « and D,, such that for some
number b, u,(x) D R,(x) and u,(x)- N=0.
Therefore, b<z. Consequently, R,(z)2p,. By definition, D(z, p,)
=m >1/n. This is impossible since U, (p) D~ >Op+2. Hence, S is
hereditarily separable.

It follows from Theorem 3.2 that S may fail to be either perfectly
separable or a metric space.

6. Conditions for semi-metric, regular developable (Moore), and
metric spaces. Consider the following three conditions on a topological
space T.

A. There exists a sequence {H,} such that (a) for each ¢, H, is a
collection of open subsets of 7, (b) if p is a point and R is an open
set containing p, then there exists an integer n such that H, contains
exactly one element g(p) associated with » such that R>g(p) Dp and
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(¢) if » is an integer and {gi(p;)} is a sequence such that for each
%, 9,(p;) belongs to H, and is associated with p;, then Zp; has no limit
point in T—2g,(p,).

B. If p is a point and R is an open set containing p, then there
exists an integer n such that for m >n, each element g of H, which
contains p has the property that R Dg.

C. For each ¢, the sum of the closures of any subcollection of H,
is closed.

THEOREM 6.1. A necessary and sufficient condition that a topological
space T be semi-metric is that T satisfy Condition A.

Proof. It will first be shown that the condition is sufficient. It
follows from Condition A that T satisfies the first axiom of countability.
Consider a semi-metric d defined as follows. For two distinct points p
and ¢ of T, denote by 4 the least integer such that FH, contains an
element g¢g(p) associated with p but not containing ¢. Similarly, let 5
denote the least integer such that H, contains an element g(¢) associated
with ¢ but not containing p. Define d(p, ¢) to be 1/min(s, 5). For each
point p, define d(p, p) to be 0.

Limit points are invariant with respect to d. For suppose that p
is a limit point (defined by the open sets of 7T) of a subset M of T and
that p is not a distance limit point of M. Then there exists a sequence
{p;} of points of M—p which converges to p such that for some integer
n and each 4, d(p, p;)>1/n. Thus, there exists an integer m, such
that, for infinitely many integers 7, either (1) H, contains g¢,(p) and
9n(P) Dp; or (2) H, contains g,(p;) and g.(p;) 2>p. Since {p;} —p, (1) is
impossible. By Condition A, (2) is impossible. Hence, p is a distance
limit point of M. It also follows easily that a distance limit point of
a subset M of T is an open set limit point of M. This completes the
proof of the sufficiency.

The condition is necessary. For each point » and each pair of natural
numbers %~ and k, let R,,(p) denote an open set when it exists, such that
Un(p) D Ru(p) DU (p). With 2, k, and p associate exactly one such
open set, and let G,, denote the corresponding collection of open sets
for each point p in T. There exists a sequence {H,} such that there
is a one to one correspondence between the elements of {H;} and the
elements of {G,,}. It follows that {H,} satisfies Condition A.

As Example 3.1 illustrates, a regular semi-metric topological space
may fail to be a Moore space.

THEOREM 6.2. A necessary and sufficient condition that a topological
space T be a Moore space is that T satisfy Conditions A and B.
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Proof. The condition is sufficient. TFor each positive integer <, let
Gz=§,Hj. If the word “region” is interpreted as “open set,” then it
G=i

follows that Axioms 0 and 1 (1)-(3) due to Moore [7] are satisfied.

The condition is necessary. It will be shown first that 7 is a semi-
metric topological space. Let p and ¢ be distinet points of 7. Denote
by m» the least positive integer such that if g(p) and g¢(g) are regions in
G, containing p and ¢, respectively, then g(p)-9(¢)=0. Note that {G;}
is given by Axiom 1 of [7]. Consequently, define d(p, q) to 1/n. It
follows that d is a semi-metric distance function and that limit points
are invariant with respect to d. By Theorem 6.1, T satisfies Condition
A.

Now, define {H,} in a manner described in the proof of Theorem 6.1
with the additional requirement that R, (p) lie in a region of G,. It
follows that {H;} satisfies Conditions A and B.

THEOREM 6.3. A necessary and sufficient condition that a topological
space T be metric s that it satisfy Conditions A, B, and C.

A proof of Theorem 6.3 follows by use of Bing’s Theorem 4 of [1]
and Theorem 6.1 above.

Question. Is it possible to partition either Bing’s Theorem 4 of [1]
or Moore’s metrization theorem [8; 13], stated below, into three or more
parts which begins with a condition for a topological space and which
ends with a condition for a metrizable space, but with necessary and
sufficient conditions somewhere between these extremes for semi-metric
spaces and Moore spaces ?

THEOREM (Moore)'. A necessary and sufficient condition that a space
S satisfying Axiom 0 of [7] be metrizable is that there ewist a Ssequence
(K} such that (1) for each natural number n, K, is a collection of
regions in S covering S and (2) if » s a point, ¢ s @ point distinct
from p, and R is a region containing p, then there ewxists o natural
number n such that if each of the letters h and k denotes an element of
K., 9DOp, and g-h%0, then R—qDh.
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