FUNCTIONALS ASSOCIATED WITH A CONTINUOUS
TRANSFOMATION

WM. M. MYERS, JR.

1. Let T: z=t(w), we R, be a continuous transformation from a
simply connected polygonal region R,, in the Euclidean plane =, into
Euclidean three-space. The transformation 7' is a representation for
an F-surface of the type of the 2-cell in Euclidean three-space, which
will be called, in brief, a surface S. [4, II. 3.7, II. 3.44].

In connection with transformation 7', T. Rado defines a non-negative
(possibly infinite) functional a(7"), which he shows is independent of the
representation 7' for the surface S. [4, V. 1.6]. Radé calls a(7') the
lower area of the surface, and it plays an important role in the study
of surface area.

P. V. Reichelderfer has also defined a non-negative (possibly in-
finite) functional ¢A(S), which he calls the essential area of the surface
S. [5, p. 274]. It too is an important concept in surface area theory.

The question arises as to what relationship exists between the lower
area a(T) and the essential area eA(S). In this paper, we show that eA(S)
=a(T). In addition, we introduce certain other functionals, which we
show yield the same value as that of eA(S) and a(7'). These functionals,
as well as eA(S) and a(7"), will be defined in § 3, after a discussion in
§ 2 of necessary topological concepts.

2. Let M be a metric space. If ACM, then M—A, c(4), i(4),
and fr(4) denote respectively, the complement, closure, interior, and
frontier of A. If ACM, BT M, then A\UB, AN B, and A—B denote
the union, intersection, and difference of A and B. ¢ denotes the empty
set. If {4,} is a sequence of subsets of M, then OAn and ﬁ A,

n=1 ne=1

denote respectively the union and intersection of these sets.

Let F: z=f(w), we M, be a continuous transformation from a
metric space M into a metric space N. If PC M, the symbol F'|P
denotes the transformation F with its domain restricted to P.

If ze N, let (F'|P)~'2 denote the set of points w such that we P,
Sfw)=z. If (F'|P)'25¢, then the components of (F|P)-'z are called
maximal model components for z under F|P. If a maximal model
component for z under F'|P is a continuum, then it is called a maximal
model continuum (henceforth abbreviated m.m.c.) for z under F'|P.

Now let F: z=f(w), weR,, be a continuous transformation from a
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simply connected polygonal region R, in the Euclidean plane = into the
Euclidean plane 7.

If R is a Jordan region, R R, let C,, ---, C,_, denote the interior
boundary curves, if any, of R, oriented in the negative sense, and let
C, denote the exterior boundary curve of R, oriented the positive sense.
If 3e F( _(ch:,.), let pz, F, R)=0. If E¢ﬁ’(QCi), let n(z, I, R):;"ﬁl G,
F, C;), where iz, F, C,) denotes the topological index of zZ with respect
"~ to the oriented closed curve F(C,), [4, II. 4.34, IV. 1.24]. If zeT,
then p(z, F, R) is an integer.

If P is a Jordan region or a domain, PCR, we shall call P an
admissible set.

Suppose P is an admissible set, and consider F'|P: z=f(w), we P.
Suppose 7 is a maximal model component for z under F'|P. If, for
every open set (G containing 7, there is a Jordan region R such that
r Ci(R), RCTGN\i(P), (note that this implies that r is a continuum),
and such that gz, F, R)=40, then we say that r is an essential maximal
model continuum, (henceforth abbreviated e.m.m.c.), for z under F'|P.

If P and @ are admissible sets, Q CP, and if ze 7w, then «(z, F'| P,
Q) will denote the number of e.m.m.c.’s for z under F'|P which are
contained in i(Q). «(z, F'| P, Q) is possibly infinite, while, if finite, it
is a non-negative integer. It may be shown that

6z, F|Q, @)=k, F|P, Q=k(z, F, Q).
I'urther, it is clear that if P, ---, P, is a colleclion of admissible
sets with disjoint interiors, and if P;,C @ for j=1, «--, n, then ﬁjm(%,
F, P)<i(z F, Q). o

If P is an admissible set, then &(z, F, P), ze7, is a lower semi-
continuous function, and hence is a Lebesgue measurable function.

“ v(z, F, P)dz will denote the Lebesgue integral of &r(z, F, P) over
K
the set F(P).

3. Let R, be a simply connected polygonal region in the Euclidean
plane =. We shall consider the following types of collections of sets
(where it is to be understood that the collections consist of a finite
number of sets, each of which is contained in R):

(1) Collections of disjoint simply connected polygonal regions.

(2) Collections of disjoint polygonal regions.

(8) Collections of simply connected Jordan regions with disjoint

interiors.

(4) Collections of Jordan regions, with disjoint interiors.

(5) Collections of disjoint simply connected domains.



FUNCTIONALS ASSOCIATED WITH A TRANSFORMATION 519

(6) Collections of disjoint domains.

Collections of the type described in (j) will be called collections of
class 7, =1, ---, 6. If ACR,, and if @ is a collection of class j such
that Re @ implies RCA, then we shall say that @ is a collection of
class 7 in A.

The transformation 7: z=t(w), weR,, described in §1, may be
written T': z=t(w)=(x(w), z(w), xs(w)), we R, where x(w), x,(w), and
z(w) are the rectangular coordinates of ¢(w). We now define three
plane transformations.

T: z=t(w)=(@w), z(w)), wekR,
T,: z=t(w)= (xs(w)r z(w)), wek,
Ty z=t(w)=(x,(w), x(w)), wek,.

For i=1, 2, 3, T,: z,=t,(w), we R, is a continuous transformation from
R, into the Euclidean plane r;.
If P is an admissible set, (see § 2), let g(T}, P):——H 5(z,, Ty, P)dz, ,
T:;(P)

for 4=1, 2, 3, and let G(T, P)=[ii (9(T';, P))7]**. These quantities are

non-negative and possibly infinite.
If @ is a collection of admissible sets, let ¢(T%, @)= 3. ¢(T;, P), for
Pred

i=1,2,3, and let G(Z, 9)= S\G(T, P).

For j=1, ---, 6, let a,(T)=1lu.b. G(T, @), where the least upper
bound is taken with respect to all collections @ of class j. These qu-
antities are non-negative, possibly infinite. We note that ay(T) is pre-
cisely the lower area a(T), and ay(T') is the essential area eA(S), discussed
in §1, [4, V. 1.8], [5, p. 274].

The purpose of this paper is to show that the functionals a,(7),
j=1, -++, 6, all yield the same value.

4. It is quite obvious from the definitions set forth in §3. that
a(T) = a(T) <al(T), a(T)<ay(T) <ay(T), and a(T) <au(T).

Further, if R, ---, R, is a collection of class 3, then i(R), ---, i(R,)
is a collection of class 5, while, for k=1, ---,n, and i=1, 2, 8, we have,
(see §2), «(z,, Ty, R)=6@;, Ty, i(Ry)). From this it follows that a(T)
<as(T). The same type of reasoning shows that aJ(7") <a«(T).

5. If D is a domain, DCR,, then there exists a sequence {R,}
of polygonal regions, such that R, Ci(R,.,) for each %, and O R,=D,
[4, 1. 2.48]. Then lim«(z, T, R,)=x(z, T;,D), for i=1,2,3, [4; IV.
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1.43], and this implies that a(T) < a,(T).

In addition, if D is simply connected, then the polygonal regions
R, n=1,2, -+-, may be chosen to be simply connected, and thus a.(7)
< a(7).

6. The inequalities in §4 and in §5 yield a(7)=a;(T)=as(T)y and
a,(T)=a,(T)=asT), while a,(T)<a,(T). To establish the equality of
these six functionals, therefore, it is sufficient to show that a,(7)=>a(T).

Note that if G(T, R))=+ o, then a(T)=+ o, and so a(T)=a(T).
Thus we shall assume henceforth, without loss of generality, that
G(T, R)) <+ oo. This in turn implies that if @ is any collection of class

jy .721, cty 67 then G(Ty @)_:<; é g(Tzv $):<: ig(Tu R0)§3G(T7 RO)' COD'
i=1 i=1
sequently, ay(T)<3G(T, R,) <+ o, that is, a(7) is finite, j=1, -, 6.

7. In this section, we suppose that all sets considered are subsets
of the Euclidean plane =.

Suppose 4 and B are connected sets, C is a closed set and AUBRB
Cn—C. We shall say that C separates 4 and B if A and B are con-
tained in distinet components of =—C.

Suppose that C is closed, CCR, where R is a polygonal region.
Let Q,, ---, Q,_, denote the bounded components of z—R, (if any), and
let @, be the unbounded component of z—R. We shall say that C
separates in R if there exists %k, 1<k <¢g—1, such that C separates @,
and Q.

Let # be an upper semi-continuous collection of continua 7, such
that U y=R, [4; II. 1.10]. Let E be the set of points belonging to

Yey
continua of < which separate in . Then Z is closed. If R—FE7#¢,
let M be a component of R—FE, and let N=M Ni(R). Then there exist
a finite number of sets, 71, +--, 74, such that either 7,=¢, or else 7, is

a continuum of &, k=1, ---. ¢, and such that fr(N)Ni(R) C Cj a
k=1

Suppose further that R’ is a polygonal region, and R CN. Let
Q., ---, @,_, denote the bounded components of ~—R’, if any, and let
@, denote the unbounded component z—R’. Suppose also that @, < N,
k=1, ++-, t. Let 7 be an upper semi-continuous collection of continua
v’ such that \J y’=R’, and such that if y" € 27, then there exists
Ve g
y € < for which y"Cy. Then no continuum of 27z separates in R’.
Next, suppose & is an upper semi-continuous collection of continua
7, for which < y=R’, and such that no continuum of & separates in
Tew
R. Suppose . is an upper semicontinuous collection of continua 7/,
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\J 7'=R’, such that if y e & there exists ye. & for which vy 7.
ez
Then no continuum of &7 separates in R'.

8. We now state several lemmas concerning the transformation 7
defined in §1 and §3. It is assumed that G(T, R) <+ .

LemMMA 1. If R s a polygonal region, R R,, then, for i=1, 2, 3,
there exists a set K;, K, CT(R)Cm;, for which m(K,)=0, (where m(K;)
denotes the Lebesgue measure of K;), and such that if z, &€ K,, then every
m.n.c. v for z, under T, |R is also an m.m.c. for z, under T|R. |1; vol.
10, p. 287].

LemMA 2. If R is a polygonal region, RCR,, then for i=1, 2, 3,
there exists a set B,, B, CT{R)Cn,, for which m(B,)=0, and such that
UT(r) CB,, where the union is extended over every e.m.m.c. v under
T;| R such that n=—7r has more than one component. [3; pp.593-6].

LEMMA 3. Suppose R is a polygonal region, R CR,. Suppose that,
for i=1,2,3, F, is a bounded Lebesque measurable set, F;Cm;,. Then,
given ¢ >0, there exists a closed, totally disconnected set E,, such that
E,CF, and

Sg oz T,y R)dz,> SS w(z Ty R)dz,—c .

&l

9. As stated previously, we wish to show that a(T)=aJ(T), 7, %
=1, --+, 6, and it was noted in § 6 that to do this, it is sufficient to
show that a,(7)=>a.(T) under the assumption that G(T, R)<+ . The

proof that a,(7T)=a,(T) when G(T, R)< + o will be a consequence of
Theorem 1 and Theorem 2, which we now consider.

THEOREM 1. If R is a polygonal region, R CR,, then, given ¢ >0,
there is a collection @, of class 2 in R, and a subcollection ¥, of @, such
that

(@) 9T, @)>9(T;, R)—e, i=1, 2, 3.

(b) o7\, ¥)>9(T,, R)—e.

(¢) If Re¥,, then no m.m.c. under T,|R separates in R.

(d) If Re¥., and if, for some i, 1<:1<3, no m.m.c. under T,|R
separates in R, then mo m.m.c. under T,|R separates in R.

(There exist similar collections @,, ¥,, and @,, ¥, having similar
properties relative to the transformations 7, and 7', respectively.)
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Proof. (1) If R is simply connccted, then @, and ¥, may both
be chosen to consist of K alonc.

(2) 1If Ris not simply connecled, let @, ---, ,_, denote the bounded
components of 7—FR and let @, be the unbounded component of =—ER.
Let o, -+, r, denote the disjoint simple closed polygons which constitute
the frontier of R, in such a way that »,=fr(Q,), k=1, ---, ¢. Consider
T |R: z,=t(w), weR Let '~ denote the collection of all m.m.c.’s
under 7', |R. Then ~ is an upper semi-continuous collection of continua
7, such that U 7=ZF, and the statements of §7 apply. Let E be the

e
set of points which belong to m.m.c.’s under 7T,|R which separate in
R. FE is closed.

(3) If E is empty, then @, and ¥, may both be chosen to consist
of R alone.

If i(R) CE, then E=R. In this case, every m.m.c. y under 7T,|R
is such that =—7 has more than one component. Consequently, by
Lemma 2, there is a set B, B,CT(R) =, m(B)=0, such that \JT\(y)
B, where the union is extended over every e.m.m.c. y under T, |R.
If z, € B, we have k(z, T\, £)=0, so ¢(T,, R)=0. Thus in this case we
may let @, consist of R alone, and we may let ¥, be the empty collection.

(4) From (3), we may assume K~¢, EF=~R. Then R—FE+#¢. R—FE
is open relative to R, and the components of R—FE are open relative to
R, and form at most a countably infinite collection. These components
will be denoted by C,C,, ---. Let D,=C,Ni(R) for each j. D, is non-
empty, open, and connected for each j.

(5) Suppose y is an e.m.m.c. under 7' |R. Then y Ci(R). Hence
either y CF or else 7Ci(R)ﬂ(R—E):leD;,.

In the first case, y separates in R, and so =—7 has more than one
component. By Lemma 2, there is a set B, B,CT(R) =, m(B,)=0,

and UT\(y) CB, where the union is extended over every e.m.m.c. y
under 7| R for which =—; has more than one component.

In the second case, since D, is a component of \JD,, there exists

J=1
4 such that v CD,. Hence 7 is an e.m.m.c. under 7'|D,. This implies
that if 2z € B,, then > k(z, T\, D)=x(z, T\, R). Since m(B,)=0, we
j=1
have 3\ 9(T,, D,)=g(T,, R). There is an integer n such that > o(7',
Jj=1 j=1

D) > o(T, R)—¢/2.
(6) For each j, j=1, ---, n, and for each k, k=1, ---, ¢, we have,
from §7, a set 7, such that either y;,,—=¢, or else r; is an e.m.m.c.

under T,|R, such that fr(D,)N\i(R) \gj 7w, for each j7,j=1, ... n.
r=1

Therefore, \J fr(D)NIR)C U U7, and T(U fr(D)Ni(R) is
J=1 )=t k=1 j=1
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a finite set. Also, U/ fr(D) () Uy ULr (@)= Uz U (7).
J=1 j=1 k=1 J=1k=1 k=1
(7) Let F=\U ¢(),). I is closed, IR, and R—F is open relative
j=1

to R. Let C,,, C,., -+-- denote the components of E—F. These
components are open relative to R, and form at most a countably in-
finite collection. For each j, let D,,,=C,.;,N\i(R). D,,; is open and
connected. (We are assuming R—Fs¢. If R—F=¢, the proof is
essentially the same and somewhat simpler.)

Also, it is easily seen that \=J1 fr (D,,;) C (Q fr(D,)\U (k\z r),
(U D)UY D) U 1 (DY U £1(D; ) =R, and
(U DYV Do) U 1 YU r)=E.

(8) Consider the transformation T,|R: z,=¢,(w), we R. Lety be an
e.m.m.c. under T,|R. Then either 7 intersects (\ fr (D) U (U fr (D;,,),
or not. - ”

In the first case, from (7), r intersects j\zfr(Dj)ﬂi(R). In (6),

we have seen that Tl(CJ fr(D;) N i(R)) is a finite set, so T.l(\n,/ fr (D))
Jj=1 Jj=1

Ni(R)) is a set of measure zero. Then U 7.(7) CT_,(\”J fr(D)) N i(R)),
i=1
where the union is extended over every e.m.m.c. y under 7,|R such

that 7N (U fr (D)UY fr (D)) 76

In the second case, rC(Cj D)\J(\J D,.;), from (7). If there exists
Jj=1 J=1

4, 1<j5j<m, such that 7N\ D;%¢, then, since 7y is connected, and
r N fr(D;)=¢, it follows that r CD;, r is an e.m.m.c. under 7.|D;.

If there is a 7 such that y N\ D, .;5~ ¢, then the same reasoning shows
that 7 is an e.m.m.c. under 7.|D,,;.

Hence, if 2,& T\ fr (D)) Ni(R)), we have
j=1

S8 Ty Dy)+ 3620, Ty Divey) =002y Toy R).
j=1

=

Since
T fr (D) Ni(R)
is a set of measure zero, we have

j;: .(](T-).’ D])'{'EQ(TJ, D,,,L+j)=g(T2’ R) .
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(In similar fashion, jz oT,, D)+ S (T, D,,,)=9(T,, R).)
=1 Jj=1

(9) Choose n’ so that
S 0Ty, D)+ 32 o(T, Do) >o(Ts, R)—e/2, for i=1, 2, 8.
Jj=1 J=1

We can determine polygonal regions R;, j=1, ---, n+n/, so that
R;CD; and no component of z—R; is contained in D; for j=1, ---, n,
and so that R,.;CD,,;, and no component of =—R,,; is contained in
D,.;, for j=1, .-, n’, and such that

fg 9T, Rj)>§]0(Ti, Dj)+.§ 9Ty, D.5)—¢l2,

for ¢=1, 2, 3.
Let m=n+n'. Then

JZ{Q(T“ Rj)>g(Tu R)_€ y /i:]_’ 2: 3v
and

ég(Tn Rj)>9'(T1, R)—c¢.

For each j, j=1, ---, n, consider the transformation T'|R;: z =t (w),
weR;. Let 57, denete the collection of m.m.c.’s under T|R;. Then

<7, is an upper semi-continuous collection of continua y’, with U 7 =R,.
e

Further, if '€ 57, there exists re 27, such that ;' Cy. In addition,
no component of x—R, is contained in D;,. From §7, no continuum of
7, separates in R;, that is no m.m.c. under 7|R; separates in R;, j=1,
e, N
In a similar fashion, we find from §7 that if, for some ¢, 1 <¢<3,
no m.m.c. under T;|R separates in R, then no m.m.c. under T;|R; sepa-
rates in R;, j=1, -+, n.

(10) Let @, be the collection consisting of the disjoint polygonal
regions R, --+, R,,, and let ¥, be the collection consisting of R,, -+, R,.
These collections satisfy the requirements of the theorem. Assertions
(a), (b), (c), and (d) of the theorem have been verified in (9).

10. We now prove the following.

THEOREM 2. Let R be a polygonal region, RC R, and give ¢ >0.
Let 4, «--,4,, 1<h<3, denote those subscripts, if any, such that no
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m.m.c. under T;|R separates in R, j=1, -+, h. Then there exists a
collection @ of class 1 in R such that 9Ty, @) > 9Ty R)—e, j=1, -, h.

Proof. We shall prove the theorem in the case where no m.m.c.
under T,|R separates in R, for i=1,2,3. Then proofs in the remaining
case are similar, and simpler.

(1) If R is simply connected, then @ may be chosen to consist of
R alone.

(2) If R is not simply connected, then let @, ---, Q,_, denote the
bounded components of 7— R, and let Q, denote the unbounded component
of =—R. Let 7, -+, 7, denote the disjoint simple closed polygons which
constitute the frontier of R in such a way that r,=fr(Q,), k=1, ---, q.

By Lemma 1, there is for ¢=1,2,3, a set K,, K,CT(R) =, such
that m(K;)=0, and such that if r is an m.m.c. under 7,|R, and if
T.(r)¢ K;, then r is an m.m.c. under 7|R. By Lemma 8, there is for
1=1,2, 3, a closed and totally disconnected set £, such that E, C(z—K,)
NT:(R), and such that

SSEzE(z“ Ti, Ryde: > SS &z, T, R)de'"’"; .

(r—=KONT(R)
Since
[ s 7o RYE=0,
K;
we have

S SE;’“(”"“ Ty Rydei> (T, B) = -

Let E,=(T,|R)"'E,, for i=1,2,3. Then E, is closed, and also, the
components of E;, are m.m.c.’s under 7T,|R. No component of E, sepa-
rates in R, and E; does not separate in R, for i=1, 2, 3, [2; p. 117].

(38) Let r, be a component of E,. Suppose 7, \E,%¢. Then there

is a component 7, of K, such that y, N\7.5%4¢. 7,and 7, are, respectively,
m.m.c.’s under 7,|R and T,|R, while T(y)¢ K, and 7.(;.)¢ K,. Con-
sequently, 7, and 7., are both m.m.c.’s under T|R, so 7,=7..

Therefore, if 7, is a component of E,, then r, (\E. is connected.
Thus E£,\UE, does not separate in R, [2; p. 120].

Let 7, be a a component of E,. As above, either ;"\ E,=¢ or else
rsN\E,=r; and either r,N\E.—=¢ or else 7;\E,=r,. Hence, r;N\(E,
\JE,) is connected, and so E,\J L.,\J E; does not separate in R, [2; p. 120].
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(4) Let E=E \JE,\JE, FE is closed, so n—F is open. Also, since
E does not separate in R, the components Q,, k=1, ---, ¢, of 7=—R are

contained in the same component of w—FE. Denote this component by
D. Since D is open and connected, there exist polygonal ares p,, k=1,

.++, q—1, so that for each %, p,\E=¢, and p,\US,\US, is connected,
where S,=Q,\Jr, k=1, ---, q.

Let G—i(R)—\) p,. Then G is open, GCR. Let D, ---, D, --
k=1
be the components of G. For each j, D, CR, and fr (D;) Cfr(G)Ca—G
=qU (. \US;\US)\US,. Then 7=—G is connected, so 7—G is contained
k=1

in a single component of #—D;. But each component of =— D, contains
just one component of fr(D,), so #—D; has only one component, that
is, D; is a simply connected domain, [2; p. 118].

(5) If, for some ¢, 1<<4<<3, y is an e.m.m.c. under T;|R, then

r Ci(R). Either 7N\ (U pp=£¢, or else 1 CG.
k=1
In the first case, T,(y) ¢ E;, for otherwise

7 (TR T(r) (T, |R) K, =E,
while
— q=1
E; N (kL__ll Dr)=¢ .
Hence y &G implies T,(y)€ E; .

If y TG, then since 7y is connected, it follows that 7 is contained
in a component D, of G, and r is an e.m.m.c. under 7}|D,.

Therefore, if z,€ E;, then each e.m.m.c. y under 7;|R, for which
T(r)=z; is also an e.m.m.c. under T,|D,;, for some j. Then

[\, e 7 Raa=2{ st 1, D)z,
i By

iz

and
ST, Dj);ZSS ez T, D,)dzi=§§ e(e Tyy R)des>g(Ty, B)—
j=1 =1 J)J)m; )27 2

for =1, 2, 3.

(6) There is an integer n for which

0T D) > (T R)=



FUNCTIONALS ASSOCIATED WITH A TRANSFORMATION 527

for i=1, 2, 3. Each domain D, is simply connected, so there is a collec-
tion R, ---, R, of class 1, such that

R,CD,CR, and (T, R)>g(T,, D,)— ;n ,
for j=1, --+, m,2=1, 2, 3. Then

S 9T, B)> (T, B)—¢,

and the collection R,, --+, R, serves as the collection @ in the statement
of Theorem 2.

11. From Theorem 1 and Theorem 2, the following theorems are
readily proved.

THEOREM 3. If R is a polygonal region, R CR, and if ¢>0, then
there is a collection @, of class 1 in R such that o(T., @) > g(T,, R)—-e.

(Similar collections @, and @, exist relative to the transformations
T, and T,.)

THEOREM 4. If R is a polygonal region, R CR,, and if ¢ >0, then
there is a collection @, of class 1 in R such that (T, @,) > g(T,, R)—e,
and o(T,, @;) > g(T., R)—e.

(Similar collections @, and @, exist relative to the transformations
T, and T,, and to the transformations 7, and T}.)

THEOREM 5. If R is a polygonal region R R, and if ¢ >0, then
there is a collection @ of class 1 in R, such that g(T;, @) >g(T;, R)—e¢,
Jor v=1, 2, 3.

12. From Theorem 5, it follows that if R is a polygonal region,
RCR,, and if ¢>0, then there is a collection of class 1 in R, such
that G(T, @) >G(T, R)—-e.

This in turn implies, of course, that if ¥ is a collection of class 2
in Ry, and if ¢>0, then there is a collection @ of class 1 in R, such
that G(T, ®)>G(T, ¥)—e. Hence a(T)=>a,T), and so each of the
functionals a,T), j=1, -+, 6, defined in §3, yields the same value.
We have shown in particular that the essential area of Reichelderfer,
a,(T) is equal to the lower area of Radd, ae(T).

This paper constitutes a portion of doctoral dissertation written at
the Ohio State University under Professor P. V. Reichelderfer.
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