ON THE TWO-ADIC DENSITY OF REPRESENTATIONS
BY QUADRATIC FORMS

IrRMA REINER

1. Introduction. The problem of determining A, S, T'), the number
of solutions of X’'SX =T (mod ¢), where S™ and 7™ are symmetric in-
tegral matrices, has been considered by C. L. Siegel [2, pp. 539-547].
He obtained explicit formulas for A,(S, T') when ¢=p® where p is a
prime not dividing 2|S||T]. We wish to determine both A,(S, T) and
A«S, T) when |S||T| is odd. Siegel has shown that the calculation of
AyS, T), for |S||T| odd, is sufficient to give results when the modulus is
replaced by a higher power of 2. Moreover, his work for composite
moduli does not exclude a power of 2 as a factor.

We shall follow the pattern of Siegel’s work, modifying it by the
use of canonical forms established by B. W. Jones [1, pp. 715-727] and
Gordon Pall for symmetric matrices in G,, the ring of 2-adic integers.
(Clearly, A,S, T) depends only on the classes of S and T in G,, the
ring of g-adic integers). We shall calculate A,(S, T') combinatorially and
A S, T) by the use of exponential sums.

2. Recursion formula. For convenience, we state here the follow-
ing theorem of Jones:

Every quadratic form with matrix in G, and with unit determinant,
D, is equivalent to one of the following:
(a) ritas+ e oo, Fbaio el
where @, b, ¢ take one of the following sets of values:
(1,1,1) or (1, 8, 3) for D=1 (mod 8) ,
(1, 1, 5) or (1, 3, 7) for D=5 (mod 8) ,
(1, 1, 3) or (3, 3, 8) for D=3 (mod 8) ,
1,1,7) or (3, 3,7) for D=7 (mod 8) ,
while if =2, b and ¢ take one of the following sets of values:
(1, 1) or (3, 3) for D==1 (mod 8) ,
(1, 5) or (3, 7) for D=5 (mod 8) ,
1, 3) for D=3 (mod 8) ,
7 for D=7 (mod 8) .
(b) A sum of binary forms of the two types: jf=2a7+2x.+ 223,
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g=2xx,. Here, we may at will choose one of types f and g and re-
quire that all but at most one of the binary forms be of that type.

When (a) applies, we will call the matrix of the form even; when
(b) applies, we will call the matrix odd.

We assume hereafter that |S||T] is odd. Then we remark imme-
diately, as in Siegel’s paper, that all representations of 7' by S modulo
2%, where a=1 or 3, are primitive. Following the line of Siegel’s proof,
we now obtain the recursion formula.

Taking T=T;;’>-;—T§"‘”, from the canonical forms above, we let g
designate the first » columns of X, where X'SX=T (mod2%). Then

(1) 'Sy=1T, (mod 27) .

As remarked above, any solution a of (1) is primitive, and so can
be completed to a unimodular matrix U,=(ad) in G,. We wish to alter
U, so that

(2) U;SUIE(Z\"; 1; ) (mod 2% ,

with N designating an m—» by 7 null matrix. To do this, we call £
the matrix obtained from U;SU, by deleting the first » columns and the
last m—» rows. Then, noting that the determinant of 7, is a Z2-adic
unit, we multiply U, by

& )

to achieve the desired form (2).

Now if there exists a C, with its first » columns congruent to a
(mod 2%), such that C’'SC=T (mod 2%), we complete C to a unimodular
matrix in G,, say U,=(CA,). Since U, and U, are both completions of
a, consideration of U;'U, shows us that

)

(3) CEUIGV g) (mod 29) ,

where C, and the 7-rowed B are in G.. Using (2) and (3) in C'SC=T
(mod 2%), we find that B is null and that C;S,C,=1T, (mod 2%). Thus, we
obtain each different solution X (mod 2) exactly once by first determin-
ing all different solutions y (mod 2%) of (1), then finding a U, as above
for each such p, and finally determining for the corresponding S, all
different solutions of X'S,X=T, (mod 2%). Thus

Aga(Sr T)=ZA24(S1, T]) .

3. Combinatorial calculation of A4.,(S, 7). We use canonical forms,
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taken modulo 2, in the following cases:

Case 1. We assume T even and S odd. Here we clearly have no
solution.

Case 2. We assume both S and T even.

2.1. For n=1, A(S, T)=2""1,

Proof. We seek solutions {x;} such that

(4) Sai=1 (mod?2).

i=1
Since a parity change in one z; changes the parity of the sum, we see
that 4,(S, T) is half of 2™.

2.2, For n=2, A(S, T)=2""1.2"* for even m.
A (S, T)=(2™*—1)-2"2, for odd m.

Proof. We use Case 2.1 with the recursion formula. We wish to
show that for every solution a of (4), except one where m is odd and
each component of a is 1, A(S, T)>0; that is, S, is even. Here we
have the additional conditions:

m

(5) 2 Yi=1  (mod2),
(6) gm;xiyi—zo (mod 2) .

But there is an obvious {y;} satisfying (5) and (6) with any solution {x;}
of (4) which has a zero element; and clearly there is no such {y,} if all
the elements of {x;,} are 1. Hence, we have our result.

2.3. For general m and n, (n>1),
A S, T)=F(m)-F(m—1)-+-F(m—n+2)-2m"
where F(m)=2™"1 for even m and F(m)=2""'—1 for odd m.

Proof. Now S, depends only on a and not on n, so that Case 2.2
tells us that S, is even except when m is odd and each element of a is
1. Then the above result follows easily from the recursion formula.

Case 3. We assume both S and 7' odd.
3.1. For n=2, A(S, T)=@2™—1).-2™,

Proof. We want solutions, {x;} and {y;}, of

(7) T+ XY+ o+ Ty Y+ Tl =1 (mod 2) .
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Now {wx;} cannot be null if (7) is to hold; also there is an obvious {y,}
satisfying (7) for each non-null {x;}. Let us fix a non-null {z;,} and call
any {y,} satisfying (7) with our fixed {w;} a “solution”, otherwise a
“non-solution”. Then, since, modulo 2, the sum of two ‘solutions” is
a “non-solution” and the sum of a “solution” with a “non-solution” is
a “solution”, we have our result.

3.2. For general m and n,
AZ(S, T)=(2m_1).2m—1(2m—2_1).27",—-3. . .(2m—n+2_1).2m—n+1 .

Proof. Equivalent matrices in G, have the same parity, which is
clearly unchanged when the matrices are taken modulo 2. Thus, from
(2), since S is odd, so is

SH o)

Hence S, is odd, and our result follows.

Case 4 We assume that S is even and 7T odd.
4.1. For n=2, A(S, T)=02™'—=1)2"2, if m s odd.

A(S, T)=(2""'—2)2", if m is even.

Proof. We want solutions {x,} and {v;}, of

;w?zo ’ Igll ?/fEO ’ Zw'[yi__—__ ’

i=

—

all taken modulo 2. Let us fix {x,} satisfying the first of these and
consider the 2™-' incongruent {y,} which satisfy the second. Of these
{v;}, we call those satisfying the final congruence with our fixed {z;}
“golutions” and those not doing so “non-solutions”. By an argument
similar to that used in Case 3.1, we see that exactly half the 2™-!
choices of {y,} are *‘solutions”, except when {x;} is the null vector or,
with m even, (1,1, ---, 1). There is no “solution” {y,} corresponding
to either of these exceptional {x;}.

4.2. For general m and n,
AZ(S’ T)=(2m—1_p)zm—Z(zm-s_p)zm—é. . ,(2m—n+l_p)2m-n ,
where p=1 for odd m and p=2 for even m.

Proof. Using (2) again, we observe that S, is even. (See Case
3.2.). Then the recursion formula implies our result.

4. Determination of AS,T). We will assume throughout the fol-
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lowing cases that S and 7 are in appropriate canonical forms as given
in § 2.

Case 1. We assume T is even.
Clearly, Aq(S, T)=0 for S odd and T even; so we will also assume
S is even.

1.1. Let n=1. Here T=(t). For v a primitive 8th root of unity,
we have

(8) 84S, T)= 3. o, Y=NMasi+:-:+a,s,—1),

%, (mod 8)

where % and the elements «,, @,, ---, a,, of the vector a run through a
complete residue system modulo 8, and where the diagonal elements of

S are the odd s, s, +++, s,. Calling
wlLa’sz[ks] ,
a (mod 8)
we get
(9) 8AS, T)= . [hs,]lhs] -+ [hs,Jo" +8" .
h=1

We observe that [As;]=42"%, for odd A; [hs;]=0, for ~=4 (mod 8);
[hs]= 41 2 w, for hs,=2 (mod 8); and [As;]=41"2 ", for hs;=6 (mod 8).
Then, let us call uzi s;—t (mod 8), and define f(x)=1 for x=0 (mod

8), f(u)=—1 for u=4 (mod 8), and f(x)=0 for =<0 (mod 4). Also define
K=(=1)G01 (= 1)& D oo (= 1)Cn D22t (mod 8) .
Then direct calculation gives from (9),

8A(S, T)=8"+47+ f(u) +2(41/ 2)™ cos IZT .

1.2. Let n=2. We will (a) ascertain when S is even and (b) show
that two even S/’s corresponding to different solutions a are equivalent
in G,. Then the result follows from the recursion formula.

(a) Let T=t1-|.—t2. Since parity is the same modulo 2 or modulo 8§,
we see from § 3, Case 2.2, that of all solutions, a, of y'Sy=¢, (mod 8),
those and only those which reduce, modulo 2, to the vector (1,1, ---, 1)

will yield odd S’s. For such an q, iaﬁsiztl (mod 8) implies ﬁ‘,siztl
i=1 =1

(mod 8). But, equally well, if S and ¢, are such that isiztl (mod 8),
i=1
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then ﬁaisiztl (mod 8) holds for arbitrary odd «,. Thus, if isiztl
=1 i=1

(mod 8), we get 4™ number of a’s, solutions of r’Sr=+¢ (mod 8), which
yield odd S,’s; otherwise, none.

(b) Now let a be such that S, is even. From [1], we see that two
even matrices of odd determinant, which are congruent modulo 8, are
in the same class in G,. Thus, using (2), we obtain:

£1S,] =S| (mod 8) and A(t,+S,)=A(S) ,

where A(S) is the class invariant defined as 1 if 45 or 45+1 of the diagonal
elements of a diagonalized form of S are congruent to 3 modulo 4 and
—1 if 45+2 or 4543 are congruent to 3 modulo 4. These two condi-
tions determine uniquely, independently of a, the class of S, in G.,.

ExampLE. Let S be of type (1, 3, 3) as given in §2, m >3, and
t,=5. Then the determinantal relation gives an even S, of type (1, 1,
5) or (1, 3, 7). But the J-condition admits only the second of the two,
so any even S, is of type (1, 3, 7).

Thus we have

8+ ALS, T)=(8"+4"f () +2(41/ 2 )" cos (Kyx/4)—8+4"h(u,))
(8™ 1+ 4™ F(u,) +2(41/ 2 )" eos (K x/4))

where u, and K, are arguments obtained from S and ¢, as above; u, and
K, are arguments similarly obtained from S, and ¢,; and A(u,) is defined
as 1 if ;=0 (mod 8) and as 0 otherwise.

1.8. Let n>2. Since the process of obtaining an S, from a given
pair, S and ¢, is the same for n=2 and for n>2, we may use 1.2
above to obtain

8nA8(S, T)___(Sm—n+1+4m—n+2f(un_1) +2(41/ 2 )m—n+1 Ccos (ﬁKn—-l/él)
X ﬁ (8J + 4j+1f(um—j) + 2(4]/5)'1 Cos (nKnL—j/él) - 8 * 4jh(um—j)) ’

j=m—-n+2
where, for each ¢, u, and K, come from S, and ¢,.,, as above.
(The process of finding successive S; and ¢;, and hence of successive
K, f(u;), and h(u;), is easy in practice, as evidenced by the example
above. Explicit but complicated formulas could be given.)

Case 2. We assume S and T are both odd. We will first take n=2.
2.1. We suppose that

N e O )
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where b=0 or 2. Then we seek solutions of:

Fx)=2(zw,+ 22,4+ + + Tp_12,) =D (mod 8)
GW)=2WY: + Yyt -+ + +Yp-1¥n)=b  (mod 8)
H(x, y)=x 4+ 4+ T+ T+ <+ + Tt + 2 Yo =1 (mod 8) .
Thus
A4S, T)= 3, @F-Dr+@=0k+@-D1

Bk
g) n

where w=¢"*; and &, k, [, and the components of the vectors g and Y
all run through complete residue systems modulo 8. Then, letting

(10) R= 3 "%,  EXP=2zxh+2yuyk+(@y.+2y),

21,29,Y7,Yy (8

we get

(11) 84S, T)= Rmi2g-t-th-vk

Rk, L (8)

We note that, for [ odd, replacement of %4 by i, of k by lk, of x; by
lx;, and of y, by ly, in EXP, the displayed exponent of (10), shows that
’;R’”’z is independent of {. A similar argument works for /=2 (mod 4).
k

For [=0 (mod 8), we have
R=24+T(h)-2£+7‘(k) s

where 7(t)=0 if t=1 (mod2), r(¢)=1 if ¢=2 (mod 4), and »(¢)=2 if
t=0 (mod 4).
For [=4 (mod 8) and % odd, we let z=ua,/+2y, (mod 8), and replace
Y, by z as a variable in EXP. Then, summing first on x;, we get
R=28+r(lc) .

For {=4 (mod 8) and ~A=2h,, we let z=x,h,+¥, (mod 8) and again
replace y, by z as a variable in EXP. Summing first on x, and 2, we
readily get

R=2°, for hik=1 (mod 2)

R=2", for hk=0 (mod4) or for 2 k=2 (mod 4) and k=1 (mod 2)

R=2", for hk=2 (mod 4) and k=0 (mod 2) .

Summing first on  in (11), we get by straightforward calculation:

A(S, T)=2m-7(2m +2m2—2) | for b=0 .
A(S, T)=2m-1(2m—3.272 1+2) , for b=2 .

2.2. We suppose that
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Ot S I A B
Then, using the same R as before and letting

V= 3 o

®,Y,%,v (8)

b

where P=2(xy+ a* + )b+ 2(uv + 1> + )k + (wy +va + 2ux + 2vy)l, we get
(12) 83A8(S, T)z 2 Rm=2[2V/¢)=1-h~bk

kL (8)

To evaluate V, we use repeatedly:
z)wwwzw:o, if d==2 (mod4) or if d==1 (mod 2)
w (8]
=—4w*+4, if d=4 (mod 8)
=40 +4, if d=0 (mod 8) .

We obtain:
(i) For ! odd, V=64.
(ii) V is the same for /=2 and /=6 (mod 8).
(ili) For [=0 (mod 8), V=g(h)g(k), where we define g(t)=64 for
t=0 (mod 4), g(¢)=16 for t==1 (mod 2), and g(t)= —382 for =2 (mod 4).
(iv) For =4 (mod 8), we have:
(a) When % is odd, V=16g(k).
(b) When %2 or =0 (mod 4), V=2",
(¢) When ~A=2 (mod 4), V=—2°, when k£ is odd, and V=—-21,
when k=2 (mod 4).
We sum first on [ in (12), using our results for R and considering
only 1=0 (mod4). We get

Ag(S, T)=21 (2_26(nz—2)_211(m—2)/2_2.‘»(m—2)) , fOI' b=0 .

AS(S’ T)=21 (2.26(m—-2)+3.211(7}1—2)/2+25(/7L—2)) , fOI‘ =2 .

For »n>>2, when S and 7 are odd, we will use our results for n=2,
along with the recursion formula. The successive canonical forms of

T, T, --- are clear; that is, 7T, is obtained from 7' by removing the
initial binary block, ete. T, is thus odd and known. From

S+ ((1’ (1)) —USU,  (mod8),

we deduce —|S,|=|S| (mod 8) and the oddness of S,. Thus S, is easily
determined classwise uniquely. The same holds true, of course, for
successive S;.

Case 3. We assume S is even and 7 is odd. Considering first
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n=2, we let s, s,, ---, s,, be the diagonal elements in the canonical form
of S, and let T be
G )
1 0/’

where b=0 or 2. Then we seek solutions of:

u=uxis, +ais,+ -+ +ais,=b (mod8)
v=yis; + 138, + * + - +9As=b,, (mod )
7'=x1?l131+wzyzsz +ee-+ x’mymsmEl (mOd 8) *

Here

83A3(S T)= Z wh(w=0)+k(p=0)+1(r=1)
, .

I, ko b g1, (8
Let w’i=w,; and call
Filly by =3, @i’
z,y (8
Then
(13) SALS, T)= 5. fifarsfo@™ ot

We calculate f,, considering the value of [ (mod 8), and note that as
before we need consider only /=0 (mod 4). We get:

h k { (mod 8) I
odd odd 0 c=16w}**
4 —c=—16w}*"
odd even 0 d=16w;** + 16w}
4 e=—16w}** + 16w}
even even 0 p=16(w}** + w} + wf + 1)
4 ¢=16(— o} * + o} + wf+1) .

Then from (13), we get

g4, =2 5 (11 a-11 ¢Jo 4 (1—(— )( = (T )oro-r)
k even

+ > (ﬁ p—T1 q)w"”"’“ ,
I,k even\i=1 i=1

where all the sum indices are taken modulo 8. Replacement of k by

k+4 in the first summand merely changes the sign of the expression,

so the first sum is zero. The second sum is easily seen to be 16™*'.

a(l—(—1)"), where a=1 if Ys,=b (mod 4) and a=0 otherwise.
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We consider particular contributions to the third sum, using wj =
2°s* and adjusting so that ~ and % run through a complete residue system
modulo 4.

(a) For 2=2 (mod 4) and all & (mod 4), we have contributed
—4a(32)™,

(b) For h=k=2 (mod 4), we get —(—32)™.

(¢) For =0 (mod 4) and k==1, 3 (mod 4), we obtain

16727 +1.4=2(2n12 cos (zB[4) —1) | where B=Y3" (i) .
j=1

(d) For 2 and k odd, with 2=k (mod 4), we get
16™(—2m+12m2 cog (nB[4) + 2™+ cos (7 B/2)) .

(e) For %4 and k£ odd, with A=—% (mod 4), we get 2(32)™.
(f) For ~=Fk=0 (mod 4), we have 16™(2"»—2m),
Thus, here

8 A4S, T)=16""a(1 —(~1)") + 32" —8a + (— 1)+ 41-*(2™* cos (zB/4) — 1))
+382™(2 cos (7B[2) — 21+ cos (zB[4) +2+27—1) .
For n>>2, where S is even and T odd, we use the recursion formula

with the results for n=2. The successive diagonal forms of T are
clear. From

(14) S, + <‘1) 3) —USU, (mod8),

we see firstly that S, is even and secondly, that its determinant is
determined modulo 8. Again, using (14) and the remarks of §4, 1.2 b,
we see from the following transformations that the number of 3’s,
modulo 4, in a diagonal form of S, is one less than the number of 3’s
modulo 4, in a diagonal form of S; hence, A(S,) is known:

ax’ +2yz — a(x +y)* + 2yz=ax’ + ay’ + 2y(ax +2) —
ax’ + ay’ + 2yz =ax’* + a(y + az)’ — az* - ax’ + oy’ —az’ ,

where a is odd, the congruence is taken modulo 8, and — indicates
2-adic equivalence. Thus S, is classwise unique and easily determined.
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