OSCILLATION CRITERIA FOR LINEAR DIFFERENTIAL
SYSTEMS WITH COMPLEX COEFFICIENTS

WiLniamM T. REID

1. Introduction. The basic oscillation and comparison theorems of
the Sturmian theory for a self-adjoint second order linear differential
equation with real coefficients have been extended to self-adjoint differ-
ential systems with real coefficients through the work of various authors.
In this connection the reader is referred to the works of Morse [4],
Birkhoff and Hestenes [1] and Reid [5], [6; Part II] listed in the
bibliography at the end of this paper, and also to references to other
literature on the subject cited by these authors.

The results of the present paper center around oscillation criteria
for a self-adjoint linear differential system with complex-valued coeffi-
cients as developed in §§ 2 and 3. As a self-adjoint system with com-
plex coefficients involving complex-valued dependent functions u,(zx), - - -,
u,(x) is equivalent to a self-adjoint system with real coefficients involving
real-valued dependent functions y.(z), - - -, #..(x), one might feel that all
worthwhile criteria for a system with complex coefficients would be
immediate consequences of known criteria for systems with real coeffi-
cients. Such is not the case, however, as appears in the treatment of
§8§ 2 and 3. For those portions of the theory of systems with complex
coefficients that parallel closely the theory of systems with real coeffi-
cients the treatment is limited to a concise statement of results. Here
no attempt is made to discuss for self-adjoint systems with complex
coefficients the analogues of the general comparison and separation
theorems obtained by Morse [4; Chapter IV] for self-adjoint systems
with real coefficients. Also, no attention is given to systems with
complex coefficients that are direct generalizations of the accessory
equations for a variational problem of Bolza type, although many of
our results have direct extensions to such systems. Certain aspects of
these topics will appear in a subsequent paper on a problem related to
that herein discussed.

Section 4 of this paper is devoted to specific criteria of oscillation
and non-oscillation for self-adjoint systems. There are given certain
criteria that are direct generalizations of results of Wintner [12] for a
single equation of the second order, and there is stated without proof
a theorem on a necessary and sufficient condition for non-oscillation
near infinity that extends a result of Sternberg [7]. There is establi-
shed also a sufficient condition for oscillation near infinity that extends
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a result of Wintner [1i], even in the case of a single equation of the
second order. Finally, there is proved a sufficient condition for non-
oscillation on a compact interval that is the analogue of a result of
Liapounoff for a second order differential equation.

Section 5 is concerned with the application of the results of the
earlier sections on self-adjoint systems to the derivation of sufficient
conditions for non-oscillation in the case of a general second order
linear homogeneous vector differential equation.

For the sake of generality the assumptions on the coefficients of
the system are of weak character so that a “solution” of a linear
vector differential system is a vector with a.c. (absolutely continuous)
components such that the given equation holds a.e. (almost everywhere)
on the interval of consideration.

Matrix notation is used throughout; in particular, matrices of one
column are termed vectors, and for a vector 7=(7,), (¢=1, -+, n), the
norm |y| is given by (|7 [P+ --- +7,)"*. The transpose of a matrix M
is indicated by M*, and the conjugate transpose by M™*; the symbol
0 is used indiscriminately for the zero matrix of any dimensions. The
notation M_>N (M- N) is used to mean that M and N are hermitian
matrices of the same dimensions and M—N is a nonnegative (positive)
hermitian matrix. If the elements of a matrix M(x) are a.c. on an
interval ab then M'(x) signifies the matrix of derivatives at values x
for which these derivatives exist, and the zero matrix elsewhere. Cor-

respondingly, if the elements of M(x) are integrable on ab then SHM(x)dx

denotes the matrix of integrals of respective elements of M(z). If
matrices M(x) and N(x) are equal a.e. on their domain of definition we
write M(x)~N(x). In the totality of finite dimensional rectangular
matrices with elements defined on a given interval ab we denote by %
the set of all matrices whose elements are (Lebesgue) integrable on
ab, by &, the set of all matrices M(x) whose elements M, ,(x) are mea-
surable and |M,s(x)Fe®, and by ¥. the set of all matrices with ele-
ments measurable and essentially bounded on ab. For brevity, a matrix
is termed a.c., ete. when each element of the matrix possesses the
specified property.

2. A self-adjoint system with complex coefficients. For z on the
compact interval ab: a<Cx<b let w(x, 7, ) denote the hermitian form
2.1) (@, 7, 7) =7 R(@)m + 7 Q@)y + 7*Q* @)z + 7 P()y)

in the 2n variables 7, 7=(7,, *++, 7y 7, *++, 7,), Where R(z), Q(x), P(x)
are n xn matrices with complex elements satisfying on ab the following
hypotheses : (H,) P(z), Q) and R(x) belong to L and R(x), P(x) are



OSCILLATION CRITERIA 735

hermitian ; (H,) there is an hermitian matric R-'(z)e ¥ such that
R@)R Y (x)>=1; (H,) the matrices A=—R7'Q, B=R', C=P—Q*R-'Q
belong to ¥. The symbol I'(w) will denote the totality of a.c. m-dimen-
sional vectors 7(x) such that the (Lebesgue) integral

(2.2) Iy]= S:a)(x, 9, 7)dw

exists and is finite; clearly /'(w) contains all n-dimensional vectors with
Lipschitzian components on ab. In particular, if (H,) and (H,) hold and
Qx)e?,, R(x)el., R'(x)e .., then (H;) holds also and ['(w) includes
all a.c. vectors p(x) with 7/(z)e ¥, .

The symbol ¥(w) will denote the totality of a.c. m-rowed matrices
U(x) for which there is a corresponding a.c. matrix V(z) of the same
dimensions as U(x) and such that

(2.3) Viz) >~ R(x)U'(x)+ Qx)U(x) .

If U(x)e¥(w) then U'(x)=~ A(x)U(x)+ B(x)V(z), Q@)U (x)+P(@)U(x)=~
C@)U(x)— A*(x)V(z), and L[U]=V'(x)—Clx)U(x)+ A*(x)V(x)e ¥; occa-
sionally we shall write [RU + QU] —[Q*U +PU] for L[U] instead of
the more precise expression in terms of U and V. For (2.2) the vector
Euler equation is

(2.4) Llu]=>=0,

which may be written in terms of the canonical variables u(z), v(x)=~
R(x)u'(x)+ Q@)u(x) as

(2.5) w ~ A(x)u+ By , v > Clz)u—A*(z) .

As the coefficient matrices of (2.5) belong to ¥ by (H,), if a<x,<b
and 7, ¢, are given n-dimensional vectors then by well-known existence
theorems there is a unique pair of vectors a.c. on ab, and satisfying
(2.5) with the initial conditions u(xz,)=7, v(@,)=¢. By a solution u(x)
of (2.4) will be understood an a.c. vector u(x) that belongs to an a.c.
pair w(z), v(x) satisfying (2.5).

If u(x)e Y w) then for arbitrary a.c. 7(x) the integral

109, )= [/ (R + Qu) + 7@+ P0) Y
exists and is equal to

7"

b b
—S p*L{u]dx ,

a

from which it follows that if u(x)e ¥(w) then u(x) is a solution of (2.4)
if and only if I[y, u]=0 for arbitrary a.c. 7(x) satisfying 7(a)=0=7%(b).
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In particular, if u(x) is a solution of (2.4) and u(x,)=0=u(w,), a <z, <
x,<b, then

1w ; a, xz]zgxzw(x, u, u)dr=0 .
®]

In the following discussion if w(x), U(x), U(x), etc. are matrices
in ¥(w) then without further comment the corresponding symbol v(z),
V(x), Vi(x), etec. will be employed for the associated a.c. matrix which
satisfies (2.3). Moreover, if U, and U, are matrices of ¥(w) of dimen-
sions nxr and nxs, respectively, then {U,, U,} will signify the rxs
a.c. matrix

(2.6) {U, U}=UV.-ViU..

Clearly {U,, U,}*=—{U,, U}, {UM, UM, =MF{U, U,} M, for constant
matrices M, and M, of » and s rows, respectively, and {U,, U,+U,} =
{U,, U,} +{U,, U3} if U, and U, are both nxs matrices.

Let s =| 7, (1, v=1,---,2n), be the real skew symmetric
matrix with 7e=0= /. 0nsp Furap=0w=—_Fanwp (@ =1, -,
n). For a given nxr matrix U(z)=||U,,(x)!, (a=1, -+, n;j=1, -+, 1),
the corresponding boldface German letter U(x) will denote the 2nxr
matrix |B,,(2)] with §,,(2)=U,,(x), U.., (2)=V,,(x). The relation (2.6)
may then be written as

(2.6) U, U}=-uf_su,.

The following preliminary results are immediate ; in particular, the
second relation of (2.7) embodies the self-adjoint character of (2.4).

LEMMA 2.1. If U,x)e (), (=1, 2), then
(2.7) UFLIU,)~[UFV.] -[ViBV,+UfCU,]J,
UrLIU,—-(UL[U )"~ {U,, U }';

in particular, +f L[U,1=>~0, (r=1, 2), then {U,, U,} s constant on ab.

COROLLARY. If U(x) is an nxr matriz of (w) for which (U, U;
is constant on ab, then the rxr matrix U*L[U] is hermitian on this
wnterval.

LemMMA. 2.2, If U(z) is an nxr matriz of Y (w), and &) is an
a.c. r-dimensional vector, then 7(x)=U(x)é(x) is a.c. and

(2.8) wo(z, 9, 1) =Y U*RUE +(7* Vey —*{U, U} ¢’ —*U*L[U]E .
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Relation (2.8) is in essence the well-known Clebsch transformation
of the second variation of a non-parametric simple integral variational
problem, (see, for example, Bliss [2, Secs. 23, 39]). In particular, for
7(x) and &(z) related as in Lemma 2.2 it follows that n(z) e I'(w) if and
only if the integral on ab of the function &¥U*RUE& exists and is
finite.

If u, and u, are vectors of ¥(w) satisfying (2.4) on ab, then {u,, u,} =
—uf_Zu, is a constant by Lemma 2.1; if the value of this constant is
zero these two solutions of (2.4) are said to be (mutually) conjoined.
In case the elements of the coefficient matrices of (2.1) are real-valued
two solutions %, and u, of (2.4) with real components are conjoined if
and only if they are conjugate in the sense introduced originally by
von Escherich. In view of the discussion in the following section of a
self-adjoint system with real coefficients that is equivalent to (2.4),
however, it appears advisable to introduce a terminology distinet from
“conjugate” to characterize solutions u,;, u, of (2.4) satisfying {u,, u,} =0,
and we have chosen to employ the synonym “conjoined.” If the column
vectors of an nxs matrix U(x) are linearly independent solutions of
(2.4) which are mutually conjoined, that is {U, U} =0, these solutions
are termed a conjoined family of solutions of dimension r. For such
families of solutions one has the results of the following Lemma 2.3.
It is to be commented that the proof of this lemma is far from trivial,

although the proof of its counterpart for conjugate solutions is im-
mediate.

LEMMA 2.3. The maximal dimmension of a conjoined family of solu-
tions of (2.4) is n; moreover, a given conjoined family of solutions of
dimension r<n is contained in a conjoined family of dimension n.

If U(x) is an nxr matrix of ¥(w) such that L[U]~0, then the
condition that the column vectors of U(x) be a conjoined family of
solutions of (2.4) implies that the 7 x2r matrix B*(x) is of rank #, and
the condition B* #U=0 implies that »<2n—r, so that »<n and the
first part of the lemma is proved. To establish the second part it
clearly suffices to show that a given conjoined family of solutions of
dimension r<n is contained in a conjoined family of dimension 7+1.
Suppose that U(x) is an nxr matrix whose columns form a conjoined
family of solutions of (2.4) of dimension », and denote by U,(x) an
nx (2n—2r) matrix of 2(w) such that the columns of the nx(2n—17)
matrix |U(x)s£U,(x)| are linearly independent solutions of (2.4), and
{U, U} =0; these conditions are clearly attainable by suitable choice of
initial values U,(a), Vi(a). For ¢ and d arbitrary constant vectors of
dimensions r and 2nr—2r, respectively, w(x)=U(z)c+U(x)d defines a
(2rn—r)-dimensional linear space S of solutions of (2.4) with correspond-
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ing canonical variables v(x)=V(x)e+ Vi(x)d. If S, is the subspace of S
on which u(a)+v(a)=0, then S, is of dimension at least »—r and for
each u£0 of S, we have 7{u, u} =2u™(a)u(a)>0. Correspondingly, if S,
is the subspace of S on which du(a)—v(a)=0, then S, is of dimension
at least n—r» and i{u, u} =—2u*(a)u(a)< 0 for arbitrary u==0 of S..
Now for a solution u(x)=U(z)c+ Ulx)d of S the conditions {U, U} =0,
{U, U} =0 imply that {u, u}=d*{U,, U,}d. Therefore, if u/(x)=U(x)c,
+U,(x)d, is a non-identically vanishing solution in S,, (=1, 2), then
idi {U,, U}d, >0 and d}{U,, U}d,< 0. In particular, the two (2rn—2r)-
dimensional vectors d, d, are linearly independent and for a suitable
value of ¢ on 0<60<zn/2 the solution u(x)=U(x) [d,cosl+d,sinf] is a
non-identically vanishing solution of S such that {u, u} =0, {U, u}=0,
and the r+1 solutions of (2.4) consisting of » and the column vectors
of U(x) form a conjoined family of dimension #+1.

A point 2, is said to be conmjugate to w»,, (with respect to the differ-
entizl equation (2.4)), if there exists a non-trivial solution u(x) of this
equation such that u(x,)=0=u(x,). The equation (2.4) is termed non-
oscillatory on a given interval 4 if no two distinet points of 4 are
mutually conjugate. For this concept Wintner [12] has used the termino-
logy “disconjugate on 4” in the case of a single equation of the second
order.

Let /I'(w) denote the set of vectors 7(z) of I'(w) satisfying 7(a)=0

=z(b). For brevity, H, and H, are used to signify the following
hypotheses:

H.. I[7] is positive definite on I'y(w), that is, I[7]>>0 for ye I'(w)
and the equality sign holds only if 7==0.

Hz;. R(x)>0 a.e. on ab.

The following theorem is the basic result of this section, and will
be used in §4 for the derivation of specific criteria for oscillation and
non-oscillation.

THEOREM 2.1. A necessary and sufficient condition for H, is that
H; hold, together with one of the following conditions:
i. The equation (2.4) is non-oscillatory on ab.
ii. If U(x) is an nxn matriz of Lw) satisfying L{U,]=0, with
U(a)=0 and V(a) non-singular, then U(x) is non-singular on o<_x=>b.
iii. If Uyx) is an nxn matriz of ¥(w) satisfying L{U,]=0, with
U,(0)=0 and V,(b) non-singular, then U,(x) is non-singular on a=a<_b.
iv. There exists an nxn non-singular matriz U(x) of ¥w) whose
column vectors form a conjoined family of solutions of (2.4) of dimen-
sion n.
v. There exists an nxn non-singular matriz U(x) of ¥w) such
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that {U, U} =0 on ab, and the hermitian matriz U*L[U] is non-positive
on this interval.

This theorem will be established by proving the following sequence
of statements: (a) iv—v; (b) v, He—>H,; (¢) H, =i, Hy; (d) i—ii; (e)
ii, Hy—iii; (f) iii, Hy—1iv.

Statement (a) is evident since a matrix U(x) which satisfies iv
clearly satisfies v. To establish (b), if U(x) satisfies v and »(z) e ["y(w),
define &(x) by 7(z)=U(x)é(x) on ab. Then &(x) is a.c. on ab, &(a)=0

=£(b), and as a consequence of Lemma 2.2 we have I[7]> Sbs*’U*RUé’dw;

in view of Hj it then follows that I[7]>0, with I[»]=0 only if U&'~0,
in which case £é=0 and »=0 on ab.

For the proof of (c) it is to be noted first that from the discussion
following equation (2.5) it follows that condition i is a consequence of
H,.. The fact that H, implies H, is essentially the usual Legendre
condition for non-parametric simple integral variational problems. In-
deed, if ¢(z)=1—|z| on |z|< 1, ¢(x)==0 elsewhere, and for a<z,< b,
7, a given n-dimensional constant vector, and 0<e<min (,—a, b—x,),
we set 7.@)=eng((@—u)/e), then p(w)e I'w) and |n(a)|<elzl. Since

for , a.e. on a<"z,<"b we have (25)'18000”m’,*R(x)r]deepg‘R(xo)% as e —0

for arbitrary vectors 7, the condition HO+ implies that 77R(x,)7,=>0 for
x, a.e. on ab and arbitrary vectors 7, As R(x) has a reciprocal a.e.
on ab by (H,), it then follows that R(x) >0 a.e. on this interval.

The truth of (d) is immediate, since ii is equivalent to the condition
that there is no point on a<x<{b conjugate to x=a. For the proof
of (e), it is to be noted that for U(x), U,x) as in ii and iii, respec-
tively, the matrix {U,, U,} is constant and {U, U,}=Ufb)V,(0)
=—V#@)Ufa). In particular, ii implies that U,(b) is non-singular, and
consequently that U,(a) is non-singular also. Now for a<x,< b the
matrix U,(x) is non-singular on b, and {U,, U,}=0 since U,(a)=0.
Therefore the matrix U=U,(z) satisfies the condition v for the interval
z,b, and the previously established statements (a), (b), (¢) applied to x.b
result in the conclusion that under conditions ii and H, the equation
(2.4) is non-oscillatory on each interval a;b with a<2,<(b. Therefore
x=ux, is not conjugate to a=>b, and U,(x,) is non-singular for a<Cx,< D,
thus completing the proof of (e).

Finally, in order to establish (f), it is to be noted that by an argu-
ment similar to that for statement (e) it follows that conditions iii and
H: imply ii. Consequently, if U, and U, are as in ii and iii, respec-
tively, we have {U,, U;}=0={U,, U,} while {U,, U,} is the non-singular
constant matrix M=Uf(®)V,(b). As iii remains true for U,(x) replaced
by —Ujx)M-', it follows that without loss of generality the matrices
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U, U, of ii and iii may be so chosen that {U,, U}=—1. With such
a choice the matrix U(x)=U (x)+ U,(x) satisfies L[U]~~0 and {U, U} =0.
Moreover, as U(a)=U,a) and U(b)=Ub), if U(x) is singular at a point
x; of ab then a<lw,<b. Now if a<ax,<b and U(z;)é=0, set 7(x)
=U(x)¢ on awx, and 7(x)=-—U,z)é on xp. Then 7(@)e (v) and the
application of Lemma 2.2 to the separate intervals ax, and ;b yields
I[7]=¢&"Us (@) Vi(w,)s — £* U (2,) Vi(@,)&; moreover, as Ui V,=ViU, and U,¢
=—U)¢ at x=x,, it follows that I[7]|=&*{U,, U,} é=—£*¢<0. On the
other hand, if &(x)=¢ on ax,, and &)= —Ur!(x)U(x)¢ on xb, then &(x)
is a.c. and 7(x)=U(x)é(x) on ab. Since 7(x)e I'(w) and {U,, U} =0,

L[U]~0, it follows from Lemma 2.2 that I[>7]=Sb eYUFRU . Edx, and

hence I[7]>0, in view of H;. Consequently 0 g[[pf:—é*&g 0, so that
=0 and U(w;) is non-singular for a< x,< b, thus completing the proof
of (f). The above method of proof of statement (f) is the same as
that introduced initially by Hestenes in establishing a corresponding
result for the second variation of a Bolza type variational problem with
separated end-conditions, (see, for example, Bliss [2; Secs. 86, 87]). In
this connection it is to be commented that the same method of proof
establishes for hermitian functionals results of the same order of gene-
rality as the original result of Hestenes (Lemma 87.2 of Bliss [2]) for
real symmetric functionals; apropos of this remark the reader is refer-
red to the treatment of Part II of Reid [6].

It is to be noted that in view of criteria i and iv of Theorem 2.1
we have immediately the following results in the nature of separation
and comparison criteria.

COROLLARY 1. If U(w) is an mxn matriz whose columns form a
conjoined system of solutions of (2.4) of dimension n, and x,, ,, (v,<x,),
are points of ab which are mutually conjugate, then U(x) is singular for
at least one value on xx, in case hypothesis Hy is satisfied.

COROLLARY 2. Suppose that Llu]l~0 and L[u]~0 are the Euler
equations for corresponding functionals I[7] and I[7] of the type (2.2),
with respective integrand forms o and o, whose coefficient matrices
satisfy hypotheses (H,), (H,), (Hy) and Hy on ab. If [fw,) L (w) and
Liy1—-I[7]1=0 for arbitrary nel'(w,) then whenever Llu]~0 is non-
oscillatory on ab the equation LJu]~0 4s also non-oscillatory on this
interval.

If U(x) is a non-singular nxn matrix of €(w) then W(x)=V(x)U ()
is a.c. on ab, and it is readily verified that, (see, for example, Reid

(D),
(2.9) {0, Uy=U*(W-WwHU , U*LIU|~=U*K[W]U ,
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where K[W] is the corresponding Riccati matrix differential operator
(2.10) KW=W+WA+A*W+WBW-C.

Conversely, if W(x) is an nxn matrix that is a.c. on ab, and U(x) is
a non-singular a.c. matrix satisfying U'~(A+BW)U, then U € ¥(w) and
V=WU. Consequently, conditions iv and v of Theorem 2.1 are equi-
valent to the following conditions, respectively:

ive. There exists an nxmn hermitian a.c. matric W(z) satisfying
K[W]~0 on abd.

vz. There exists an nxn hermitian a.c. matric W(x) such that a.e.
on ab the hermitian matriz K[ W] is non-positive.

The following results will be of use in the following sections.

THEOREM 2.2. If condition H, is satisfied, and wu(x) is a solution
of (2.4), then I[y]1=I[u] for arbitrary y(x)< ['(w) satisfying 7(a)=u(a),
7(b)=u(b), and I[y]=I[u] only if n(x)=u(x) on ab.

As 7,=7—u is a.c. and 7,(a)=0=7x,(b), the fact that u(x) is a solu-
tion of (2.4) implies I[», u]=0, and upon suitable expansion of the
integrand of (2.2) we have I[y]=I[u]+Iu, »]+ L[, w]+ I[p]=1[u]+1I[7].
In particular, #(x)e I'(w) and the stated result is a consequence of H,.

For convenience we set wy(z, 7, 7)=n*R(x)r, and denote by ['(w,)
the class of a.c. vectors 7(x) such that

(2.11) 171 = 7" Riay dz

exists and is finite; correspondingly, ["(w,) is the subclass of ['(w,)
satisfying 7(a)=0=7(b).

THEOREM 2.3. If R(x) satisfies Hy then for arbitrary 7(x)e I"y(w,),
(2.12) =47 [ R0 | e a<e<b;
moreover, the inequality holds in (2.12) 4f 7(x)==0 and for each x, on
a<x,<b with |p(x,)|£0 there is a corresponding neighborhood (a,)s:
2y— 0 << xy+0 on which there is defined a continuous vector C(x) such
that C(x) = R(z)y' (x) on (2)s.

Clearly Hj implies that I,[7] is positive definite of I'y(w,), and that
(2.13) Ul(w)=SxR'1(t)dt , U._,(x)=SbR‘1(t)dt=U1(b)—U](x)

are nxn matrices which satisfy conditions ii and iii of Theorem 2.1
for the Euler equation Lj[u]=(R(x)u’) =0 of the function I[7]. For
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a given 7(z)e I'(w,) and a<c<b, let u(x)=U(x)U,"(c)7(c), and u,(x)
=U,(x)Us(c)p(c). Then LjJu,]>=0, (r=1,2), and u,(a)=0=7x(a), ulc)
=7(c)=u,(c), u,(b)=0=7(b), so that the application of Theorem 2.2 to
I[7] on the individual intervals ac and ¢b yields

(2.13) I[7; a, c]=1[u; a, c]=7*(c)Ur'(c)y(c) ,
(2.13") L[7; e, b] = Lluy; ¢, b]=7"(9LU,(b)—U\(c)]'7(c) ,

and the inequality in (2.13") or (2.18”) holds only if »==u, or »=u, on
the respective interval. Relations (2.13’), (2.13”) imply

(2.14) L9 =7"(e)Ur(e) + [U(b) = U\(e)])75(e)

and (2.12) follows from the fact that if A, B are hermitian matrices
such that 4 and B—A are positive then the hermitian matrix A~
+[B—A]7*—4B"" is nonnegative. Clearly this stated result for hermi-
tian matrices A4, B is equivalent to this result for the special case when
B=1I, and if A and I—A are positive hermitian matrices the desired
result follows from the identity A-'+[[—A]'—4I=(I—24)A'I—-A)"
and the fact that (I—24)*, A~' and (/—A)! are individually nonnegative
hermitian matrices that are mutually commutative under multiplication.

In order to establish the final statement of the lemma, it is to be
noted first that if |7(c)|=0 then the inequality holds in (2.12) for non-
identically vanishing z(z)e ['|(®,). On the other hand, if |7(c)|>0 and
there is a neighborhood (c)s on which there is a continuous vector &(x)
such that £(z) ~R(x)y’(z) on (c)s;, then the relations R(zx)u; () =U7'(c)y(c)
and R(z)u(x) ~—U;'(c)y(c), together with the positiveness of U;'(c)
+U;'(c), implies that not both 7(z)=wu(x) on ac and 7(x)=u,(r) on
cb are valid. Consequently, in either (2.13') or (2.18'’) the inequality
sign holds, and hence the inequality sign holds in (2.12).

3. An equivalent real differential system. If M=M'+iM*=|M,;
+aMz|, (=1, ---, n; j=1, -+, 7), is an nx7 matrix with complex ele-
ments the corresponding bold-face letter M will be used to denote the
2n x r matrix | Mg,|, (3=1, «++, 2n;j=1, - - -, ), of real elements M, ;=M,,,
M,.,=M,,. If M=M"'+iM* is an nxn matrix the corresponding script
letter .7 will designate the 2n x 2n matrix of real elements.

(3.1) //E"% ‘%THEHMNH, where N—ill .

In particular, for I the nxn identity matrix the matrix % is the
2nx2n identity matrix, while for J=il the corresponding s is the
matrix already introduced in §2. If y=(yL+172), (a=1,---,n), is an
n-dimensional vector of /'(w) then n=(7,), (3=1, 2, ---, 2n), with 7,=7;,
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Pura=7s, 18 & 2n-dimensional vector with real components, and the inte-
gral I[y] of (2.2) becomes

(3.2 117 = (e, 2, )i,

where o(z, 7, 7)=r*F (2)r +r* & (x)n+* C*(v)r+7* 7 (x)y is a real
quadratic form in the 4n real variables (7, 7z). For (3.2) the class
I’'(w) consists of all a.c. 2n-dimensional vectors y(«) such that I[y] ex-
ists and is finite; if the components of y(x) are real-valued then clearly
y(x)e I'(w) if and only if y(z)=»(x), where 7(x)e ['(v).

Corresponding to the notation of the preceding section, ¥(®) denotes
the set of a.c. 2n-rowed matrices Y(x) for which there is a corresponding
a.c. Z(x) of the same dimensions as Y(x) such that Z(x)~ % (x)Y'(x)
+ & (x)Y(x). If Y(x)elw), then Y'(xr)~ 7 (2)Y(x)+ .7 (x)Z(x),
*x)Y (2)+ 7 (@)Y ()~ (@)Y (x)—. 7 *(x)Z(z), and . L[Y]=2Z'(x)
— G (@)Y (x)+ 7 *(x)Z(x)e &. By a solution of the Euler equation of
(8.2) will be understood a vector y(x)e ¥(@) such that

(3.3) Iy ~0 .

In particular, a solution y(x) of (3.3) with real components is of the
form y(x)=u(x), where u(x) is a solution of (2.4). Indeed, if U(x)e ¥(w)
and V(x) is an a.c. matrix such that V~RU'+QU then U(x)e %w),
Ve~ AU+« U, and < |[U]|~M, where M=L[U]; moreover, in case
U(x) is an nxn matrix then V" ~% '+ &7 and L[|~
where M=L[U]. It is to be noted also that if U(x)e ¥(») then /U
=U, where U,=iU, and <[ 7 Ul=_gL[U]; in particular, if y(z) is
a solution of (3.3) then ~#y(x) is also a solution of this equation.

If y(x), (r=1, 2), are solutions of (3.3), and z,(x) are corresponding
a.c. 2n-dimensional vectors such that z,(x)~ Zy,+ <’y,, then <y, ¥.)
=y,*2,—2z,*y, is constant on ab. According to the terminology due to
von Escherich (see, for example, Bliss [2, p. 233], or Morse [4; p. 46]),
y, and y, are termed (mutually) conjugate if {y,, y,>=0. In the case of
real-valued solutions of (3.3) clearly the concept of conjugate solutions
is equivalent to that of conjoined solutions as defined in the preceding
section. In general, if u,(x), (r=1, 2), are solutions of (2.4), then y, ()
=u/(x) are real solutions of (38.3), and

{u, w} =<w, up+i{_su, u,) .

From the above relation is seen that if #, and u, are conjoined solu-
tions of (2.4), then u, and u, are conjugate solutions of (3.3); on the
other hand, if w, and u, are conjugate solutions of (3.3) it does not
follow that u, and u, are conjoined solutions of (2.4) but merely that
Re {u,, u,} =0.
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In view of the above remarks it is clear that the result of Theorem
2.1 is true with the conditions i-v of that theorem replaced by corres-
ponding conditions i'-v’ for the real system (3.3); moreover, from the
details of proof of Theorem 2.1 it is evident that in the statements of
conditions i’-v’ attention may be restricted to matrices with real-valued
elements. As the wording of conditions i’—v’ should be obvious to the
reader, they will not be stated explicitly here. Clearly conditions i and
i’ are equivalent. Moreover, if a <<wx,<<b and U(x) is an nxn matrix
whose column vectors are solutions of (2.4) with U(a,)=0 and V(a,)
non-singular, it follows readily that the most general 2nx2n matrix
Y(x) with column vectors solutions of (3.3) and Y(a,)=0 is of the form
Y(x)= Z(x#)D, with D a 2nx2n constant matrix. Consequently, con-
ditions 1i’ and iii’ are equivalent to the respective conditions ii and
ili. Finally, the conditions iv’ and v’ for (3.3) corresponding to iv and
v for (2.4), and involving 2n x2n matrices Y(x) of real elements cor-
responding to the % xn matrices U(x) of iv and v, may be expressed
as follows in terms of nxn matrices with complex coefficients :

iv’. There ewist nxn matrices U(x), U x) of ¥w) such that on ab
the 2nx 2n real matrixz |U, U,| is non-singular, while L{U,]=0, (r=1, 2),
and Re{U,, U} =0, (r, p=1, 2), on this interval.

v'. There exist nxn matrices Uf(z), Uylx) of Uw) such that on ab
the 2nx2n real matricz |U, U, is mnon-singular, and Re{U,, U,}=0,
(r, =1, 2), while the (necessarily symmetric) real part of the 2n x 2n matric
VOSLIUN, (, =1, 2), is non-positive on this interval.

If a matrix U(x) satisfies iv or v then clearly U(x)=U(x), U,(z)
=1U(x) satisfies the corresponding condition iv’ or v/, and |U, U,|= 7.

For Y(x) a non-singular matrix of %(w) and Z(z) an a.c. matrix
such that Z(x)~ Z(2)Y'(z)+ & ()Y (x) the matrix T(x)=Z(x)Y '(x) is
a.c. on ab, and corresponding to (2.11) we have

B.4) (Y, VD=YNT-Ta)Y, Y L[Y]=Y~F[T]Y,

where Y, Y>=Y*Z-Z*Y and . 27[T] is the corresponding Riccati
matrix differential operator

(8.5) FNTM=T"+ T + AT+ THBT— <.

The following conditions iv; and vy are then equivalent to the above
conditions iv’ and v’, respectively:

iviz. There exists on ab an a.c. real symmetric 2nx 2n matriz T(x)
such that 27 [T]~0.

Vz. There exists an a.c. real symmetric 2nx2n matriz T[x] such
that the real symmetric matrix 27 [T] is non-negative a.e. on ab.

For an arbitrary a.c. mxmn matrix W(x) it is seen readily that
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N =+, where M=K[W], so that the validity of ivp or v for
a matrix W(x) implies that the corresponding condition ivy or vz holds
with T'= 77", If T(x) is an a.c. 2rnx2n matrix we have #Z*57[T] 7
=§f”[j‘T/], and the corresponding matrices 7T,=3}(T+ ST )
and T.,=3(T—_s*T /') satisfy the relation

(3.6) AT =47 T+3_ 722 [T 7 ~ToF T, .

Moreover, if T'(x) has real elements and Uy x), U x) are nxn matrices
such that T'=|U, U,|, then T\= %" where W=}(U,—:U,), and if T
is symmetric then T, and T, are symmetric and W is hermitian. Con-
sequently, from (3.6) it follows that if condition v holds for a matrix
T(x), and hypothesis Hj is satisfied, then for W the hermitian matrix
such that T,= 77" the condition v holds for T'= %/, and condition v,
holds for this matrix W.

From the result of §8§ 2 and 3 we have the following result on the
character of solutions of (2.4).

THEOREM 3.1. Under hypotheses (H)), (H,), (H;) and (Hp) each of
the conditions (H.), ii, iii, iv, v, ivg, vs, iv/, V', iV} and vy s @ neces-
sary and sufficient condition for (2.4) to be mon-oscillatory on ab.

In regard to these various criteria, all but v, vz v’ and v} are of
the general type of condition that has been frequently used in the
calculus of variations, and particularly in the extension of the Sturmian
theory to self-adjoint systems with real coefficients. A systematic
use of conditions of the remaining type is much more recent. For a
single differential equation with real coefficients see Wintner [12] and
Taam [8] for the use of a Riccati inequality condition. For self-adjoint
systems with real coefficients, and of the generality of the accessory
equations for a variational problem of Lagrange type, Sternberg [7]
has presented criteria of the forms v’ and v.

4. Specific criteria for oscillation and non-oscillation. For (2.4)
one may derive various specific criteria for oscillation and non-oscillation
that are extensions of known criteria for a scalar second order differ-
ential equation. Attention here will be confined to the presentation of
a few such criteria that appear of particular interest, either because
of their range of application or for the type of proof involved.

Let G(x) be a non-singular nxn a.c. matrix such that R(x)G’(x)
+ Q(z)G(x) =0, that is, G'(x)~A(x)G(x). Under the substitution 7(x)
=G(x)7,(x) the integral (2.2) becomes

(@1 1=l o (@, 7., s,
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where o\(z,7, 7) =z*R (x)r +7*P(x)7, and P,.=G*[P—-Q*R'Q]G, R,.=G*RG
are matrices satisfying the conditions specified for P and R in (H,) and
(H,). Clearly 7(x) € ¥(w) if and only if 7,(x)e ¥(»,), and the Euler ex-
pression L[7] for (4.1) satisfies G*L[n]~L[7,]. In view of these re-
marks, for the consideration of specific criteria attention will be limited
to an equation (2.4) with @==0; moreover, we shall choose to replace
P(x) by —F{(x), so that for the specific problem under consideration
(2.2) becomes

(4.2) 1071=\ [ Ry =7*F (0y)da

where the coefficient matrices satisfy the following hypothesis: (H)R(x)
and F(x) are hermitian, of class &, and there exists an hermitian matric
R (x)e® such that R(x)R'(x)~I1 on ab. With the conventions pre-
sceribed in §2, for (4.2) the Euler equation and corresponding Riccati
differential operator are, respectively,

(4.3) Lu]l=(R(x)u') + F(x)u~=0,
(4.4) KIW]l=W +WR'(2)W+F(x) .

If 4 is a given interval on the wx-axis then H{4} will denote the
condition that R(z), Fl(x) satisfy (H) on arbitrary compact subintervals
ab of 4; correspondingly, ¥{4} signifies the class of matrices in ¢ for
each such subinterval, and a.c. {4} is the property of absolute con-
tinuity on each such subinterval. As a first instance of specific criteria
for non-oscillation the following result is presented.

1°. If R(z), F(x) satisfy H{4} and R(x)>0 a.e. on 4, then each
of the following conditions is sufficient for (4.8) to be mon-oscillatory on
4:

(a) there exists an hermitian matrix F(x)e {4}, and an hermitian
matric M(x) that is a.c. {4} and such that M (x)~F(x)+F(x), F(x)
= M@)R(x)M(x) a.e. on 4;

(b) 4 1is a subinterval of 0<ax< oo, and there exists & constant
k>0 and an hermitian matricz M(x) which is a.c. {4} and such that
M'(x) =~ —aF(x), R(x)>=Fkl, and EI—4M*(x)=0 a.e. on 4.

The sufficiency of (a) results from the fact that W(x)= — M(x) satis-
fies condition v, of §2 for the equation (4.3). As special cases of (a)
one has the following criteria which for n=1 reduce to results given
by Wintner [12]:

(a’) 4: 0<Za<1, R(x)=I, M(x)= S:F(s)ds satisfies F(x)=>4Mj(x)

a.e. on 4;
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@”) 4: 0<<a<o, R(x)==I, rF(s)ds=lim SmF(S)ds exists and 18

Jinite, and the matriz M (x) ESNF(S)dS satisfies either (i) F(x)

=>4Mi(z) a.e. on 4, or (i) —3I<4xM,(x)<I a.e. on 4.
Indeed (a’) implies (a) with F.(x)=F(x), M(x)=2Myx); similarly, (i) of
(a’’) implies (a) with Fy(x)=F(z), M(z)=—2M(z), and (ii) of (a’’) im-
plies (a) with Fy(x)=(4a*)"1, M(x)=— M ,(z)— (42)~'1.

The sufficiency of (b) is established by noting that kR-'(a)<I, and
consequently W(x)=2x) [2M(x)+kI] satisfies K[W]<(4ka®)'[4M*(x)
—kI]<0 a.e. on 4. The result of (b) corresponds to that of Theorem
5.8 of Sternberg [7] for systems that have real coefficients, but which
may be more general than those considered here in the involvement of
auxiliary differential equations as restraints.

If 4 is of the form a<w< o then (4.3) will be said to be non-
oscillatory for large x on 4 if there is a subinterval 4,: a,<x< o on
which (4.3) is non-oscillatory. For (4.3) one has the following result,
which may be established by the same type of argument as used by
Sternberg [7] to prove a similar theorem for systems of equations with
real coefficients; these results for systems are extensions of a result
of Hille [3] for a single linear differential equation of the second order.

2°. Suppose that R(x), F(x) satisfy H{4} and R(x) >0 a.e. on 4:
a<x< o, and ¢(x) is a positive function of L{d} such that Sw<p(s)ds 8
divergent, while 1> ¢(x)R(x) and F(x)=>0 a.e. on 4. Then (4.3) is non-
oscillatory for large x if and only if SMF(s)ds=1imeF(s)ds exists, and
there is a subinterval 4,: a,<ax< oo onawkz’ch tl;;;e a@'s defined an her-

mitian matric W(x) suck that W(x)=0, SNW(S)R'I(S)W(S)dS exists, and

W(x)=S: W (s)R-(s) W (s)ds + S:F(s)ds :

Moreover, if (4.8) is non-oscillatory for large x then for each such W(x)
and arbitrary constant vectors 7 satisfying |pl=1,

lirrwl%s;up(S}(s)ds)(’?*W(w)r/);’_l .

If 4: 0<x<c and ¢(x) is a function belonging to £{4}, then the
integral Smsb(t)dt is said to be summable (C, k), (k==0), to the value 2 if
0

ple; k|¢]ES:(1—t/w)’“¢(t)dt—>x as x— oo .
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As !P‘(x)zrgb(t)dt satisfies the relation p|x; kl¢]=kx"‘Sx(x—t)k"qu(t)dt on
0 0
0<x< e for k>0, one has immediately that if ¥y (z)=¥(x), 7 ;.(x)
=S$!Ifj(t)dt, (=1, 2, ---), then pu; k|¢]=(k)z*¥ (x) on >0 for k=1,
0

2,---. The result of the following theorem for k=1 applied to a
second order differential equation '’ +f(x)u=0 provides a criterion for
oscillation that extends a result of Wintner [11].

THEOREM 4.1. If 4: 0w < oo, the matrices R(z), F(x) satisfy H {4},
and R(x)>0 a.e. on 4, then (4.3) is oscillatory on every subinterval
a<x<c of 4 if there is a nonzero constant vector = and a constant
k=1 such that

4.5) linlr} sup (p[b; 2k|n*Fr]—b=%k*p[b; 2k —2|7*Ra])= .

In particular, (4.5) holds if rn*F(t)ndt 18 summable (C, 2k) to oo, and
0

m*R(x)m=0(x) as x— oo.

For arbitrary 0<a<c<b set p(x)=zn(x—a)/(c—a) on ac and 7(x)
=m(b—2a)*/(b—c)* on cb. Since £k=>1 we have that 7(x) belongs to the
class I'\{w,} for (4.2) on the interval ab, and a direct computation
yields

I[y; a, b]=I'+ ( -bi >2k(b‘2k2,u[b; 2k —2|7* R] — pb; 2kl Fx])

—c
where I’ is a function of a, ¢, b, k and = such that for fixed values of
@, ¢, k and = we have I' > (c—a)I[(x—a)x; a, C]-{—Scrr*F(S)n'dS as b— .

Consequently, condition (4.5) implies that as a function of b the inte-
gral I[7»; a, b] has limit inferior equal to — oo as b— o, and hence for
b chosen so that I[7;a, b]<0 it follows from Theorem 2.1 that the
interval a <o <{b contains a point conjugate to x=a. The last state-
ment of the theorem is an immediate consequence of the fact that if
*R(x)r=0(x) as x— oo then p[b; 2k—2|7*Rr]=0(b*) as b— oo.

It is to be commented that if one has the additional condition that
R(z)e 2., on arbitrary compact subintervals ab of 4, then for £>1/2 it
is assured that the above defined vector 7(x) belongs to I'y{w,} on ab,
and the above proof establishes the validity of the result obtained upon
replacing “k>1" by “k>1/2.”

The following criterion for non-oscillation on a compact interval ab
is a generalization of a result of Liapounoff for a second order differ-
ential equation of the form u'’'+ f(x)u=0, (see, for example, Wintner
[12]). The proof here presented is based on the variational result of
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Theorem 2.3, and for the case of a single equation of the second order
differs from earlier proofs of the criterion.

THEOREM 4.2. Suppose that R(x), F(x) satis/y (H) and R(x) >0 a.e.
on a compact interval ab, and that 6(x) is a non-negative function of
class € such that O(x)[=F(x) a.e. on ab. If the constant hermitian
matric

D=4BZR-I(x)dx]'l—(SZO(x)dx)I

18 nonnegative, then (4.3) s non-oscillatory on ab.

Suppose that ab contains points z,, x,, (x,<@,), which are mutually
conjugate with respect to (4.3), and let u(x) be a non-identically vani-
shing solution of this equation satisfying u(x,)=0=u(z,). For y(x)=u(x)
on x:%,, 7(x)=0 elsewhere on ab, let x=c be a value at which |y(z)|
assumes its maximum value on ab. Then a,<c¢<w,, 7(x) is a solution
of (4.3) in a neighborhood of z=¢, and by Theorem 2.3 relation (2.12)
holds as a strict inequality. As

[T @F@n@ < @i < o

it then follows that I[7]>7*(c)Dy(c)==0. On the other hand, since
7=0 outside zx, and 7(z)=0=7(z,), L[y]=~0 on aw, it follows that
I[7]=0, thus presenting a contradiction under the assumption that the
hypotheses of the theorem hold and (4.3) is oscillatory on ab.

5. Conditions of non-oscillation for more general equations. In
this section we shall consider a vector equation of the form

(5.1) Elul=A(x)u’ + A,(x)u’ + Af(x)u~=0,

under the assumption that on a certain interval 4 of the x-axis the
matrices Ay(x), A,(w) belong to ¥{4}, while A,(x) is a.c. {4} and non-
singular. By a solution of (5.1) is understood a vector u(x) which is of
class C’ on 4, with w/(x) a.c. {4}, and such that (5.1) is valid on 4.
Now if u(x) is a solution of (5.1) for which u(x,)=0=u(x,), then

62  0—— Szzu*E[u]dx= rz(u*’Azu’ WA — AT —u* A)da .
171 E]

For the right-hand integral in (5.2) we shall introduce the notation

I[u; @, @], and set Ry(x)=3[Ax)+ A5 (@)], R.(x)=4i[A4@)—A(@)], Pu@)

= —3[A@) + 45 (@)], Px)=—3i[A5(x)—Ay@)], Quz)=3[4]"—AT(@)], Q@)
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=iQy(x). It follows readily that I[u; x,, w,]=I1[u; x\, x.]+el[u; @, ],
where

Ii[u; @, 9:2]=Sx2w3(x, u, u')dx (=0, 1)
1

and wy(w,7,7) is the hermitian form a*Ry(x)7+7*Qu(x)y+7* Q4 (w)=

+7*Pg(x)y. Moreover, for A, 4, real and R(z; 2)=4,Ry(x)+ AR (), Q(x; 2)

=1Qu) + 4,Q\(x), Plx; )=2WPyx)+ 1 P(x), and o(x,7,7;1)=2olz,7, 7)

+ (2, 7, 7) we have

(5.3) 0=I{u; @z, x,; 4 ngzw(x, u, w'; Adx .
Ty
In particular, from Theorem 2.1 we have that (5.1) is non-oscillatory
on 4 if for each compact subinterval ab of 4 there are real constants
Aoy Ay such that R(x; 2)>0 on ab, and the self-adjoint equation

(5.4) Llu; =Rz, Yu’'+ Q(z, Au) —(Q*(x, )u’+ Pz, Hu) =0

18 non-oscillatory on this subinterval. Of special interest is the case in
which the above conditions are satisfied by a choice of A, 4, that is
independent of the subinterval ab.

It is to be commented that for the consideration of (5.1) one may
assume without loss of generality that A,(x) is positive hermitian on 4,
as this property holds for B(x)E[u]=0, where B(x) is a.c. {4} and such
that B(x)A,(x) is positive hermitian; in particular, these conditions
hold for B(z)=A;'(x) and B(x)=A(x). If A,(«) is positive hermitian then
R(xz, )=2,A,(x), and in the application of the above criterion for non-
oscillation one may assume without loss of generality that 2,=1.

It is to be remarked that all the general criteria for non-oscillation
of a single second-order differential equation considered by Taam ([9]
and [10]) are of the type discussed above, and for most cases in which
specific criteria of non-oscillation occur in his treatment these criteria
are of the sort for which 1° of §4 provides a generalization to the
case of systems herein considered.
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