A COMPOSITE NEWTON-RAPHSON GRADIENT METHOD
FOR THE SOLUTION OF SYSTEMS OF EQUATIONS

WILLIAM L. HART AND THEODORE S. MOTZKIN

1. Introduction. This article was motivated by the desire to obtain
an iterative method for solving a system of equations, linear or not,
into which all equations would enter symmetrically, and which would
be suitable for numerical application, particularly on a high speed digital
computing machine.

The general problem considered is the solution of a system of &
equations {f,(x)=0} in » unknowns (2, - -+, @,)=« where, as throughout
the paper, all variables and function values are real. Each step of our
method consists in obtaining, from one approximation « to a solution
of the system, the next approximation by adding to x the vector sum
of corrections parallel to the gradients of the % functions f,(x). The
lengths of the corrections are regulated by individual weights and by
use of a factor p%0. The component gradient correction for a single
equation f(x)=0 is of the Newton-Raphson type because the correction,
if applied to an initial approximation z®, gives a point annihilating the
usual linear approximation to f,(«) for « near a®.

After considering in §2 the well known formula for a gradient
correction to an approximate solution z® of a single equation f(x)=0,
the method of composite gradient corrections for a general system is
described in §3. In §4, we apply the method to a system of % linear
equations in # unknowns, and prove that, for an arbitrary approxima-
tion 2 to a solution of the system, we obtain a sequence {x™} which
tends with a geometric rate of convergence to a point #, nearest to
™, of the set which satisfies the system in a sense of weighted least
squares. Section 5 treats a fairly general system with an isolated solu-
tion #. The sequence {x™} of §3 is proved to converge to & if the
initial approximation x® is sufficiently near %. Section 6 considers the
implicit function xz=ux(t) defined by a related system of n equations f(x;
7)=0, where r=(7rj, +-+, ), and r=t(t), 0<¢t<<1. It is proved that,
if 0=¢,<t;<-+-<t,=1 is a fine enough partition of the ¢-interval,
then the sequence {#™} of §3 tends to «(¢;,) if #®=uwx(¢,-,). This result
yields a small arc method for computing the points x(#,) in sequence.

There is an extensive literature on the solution of Ilinear systems
{f(x)=0} by iterative processes where each iteration involves a correc-
tion related to a specified direction, in particular that of some gradient;
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see[2, p. 310]. Frequently, the correction involves preliminary minimiza-
tion of a single function g(x)=>0 built up from the f,. A general
method of this type is due to Hestenes and Stein, reference 53 in [2].
For an initial approximation x and assigned direction d, they introduce
a constant «* such that g(z+ad) attains its minimum at a=a*; the
correction to z is Sa*d, where 8 is a constant; d and £ are subject to
change at each iteration. This method could be specialized to the
situation in our Theorem 4.1, where the correction to any z is pde=
grad [%pg(x)], with g(x) in (4.12). However, for simplicity in §4, and
efficiency in its application to nonlinear systems in §§ 5 and 6, we have
based §4 directly on § 3, without using g¢g(x). For nonlinear systems,
our correction to x in general does not have the direction of the
gradient of any single function g(x).

A method of S. Kaczmarz for linear systems, reference 67 of [2],
in common with our procedure, involves the gradients of the f,(x)
separately. However, in contrast to the composite nature of our gradient
corrections, he introduces corrections taken along the gradients of the
f; in sequence, to carry out a single ecycle of the iteration. For an
arbitrary initial approximation z® to a solution, the Kaczmarz method
may yield a sequence {x™} which is not convergent and only stays
bounded [4], whereas the sequence {x™} of §4 always has a unique
limit.

There are intimate contacts between our procedure in the linear
case and a method due to L. F. Richardson, reference 98 in [2], and
later to R. von Mises and Hilda Pollaczek-Geiringer, reference 123 in
[2]. For a system® aH+b=0, in matrix form, and an initial approxima-
tion, x, to a solution, Richardson specifies the next approximation y==

—p(@H+b). With a system {f,(z)= ;nj,wia”+bj=0}, or xA+b=0, if
=1

the Richardson method is applied to a related system x. 2%’ +b.97"=0
(see §4), the approximations {z™}, m >0, starting with a given z©®,
are those of §4. Then, also, the condition (4.25) on p in § 4 becomes a
well known condition for convergence of the Richardson method (see
[2, p. 311]).

1 For fj(x)=¢j(r;j(x)), where r;(x) is the distance of = from a given linear subspace
Aj of arbitrary dimension, and ¢; an arbitrary differentiable function of one variable, we
have with dx=7>9;d;x as in (3.3) and (3.2) for ¢=wx, dx=grad >.7;¥ j(r;%), where d¥ j(r;2)/
d(r®)=—j(r;)/(2r;de;/dr;). On the other hand for example, for fi=w, foi=wl+2xs?, dx
does not have the direction of a gradient, which would (for #=3) imply D=0, where D is
the determinant |4z, 04w, [6x|. Indeed we have D= 3 9;7xDjx, Dijx=|4jx, 04z, [0x|=
Sifxw;=2| grad fj, grad fi, grad wi~2|. Now for ourj‘}‘zlc and f5, Dy =0 whereas Djy=—32
@a3 1 fows~* 0.

2 Capital script or italic letters will represent matrices. The transpose of 4 will be
denoted by A’. We shall treat x as a one-rowed matrix.



A COMPOSITE GRADIENT METHOD 693

The Kaczmarz method for the solution of linear systems has led to
the development of a corresponding sequential projection method for
nonlinear systems, introduced by Tompkins [6]. The distinction between
the method of Kaczmarz and that of §4 implies a similar difference
between the method of Tompkins and that of § 5.

In a paper by Chernoff and Crockett [1], an isolated maximum of
a function f(x) is determined, essentially, by solving the system {df/ox,
=0} by an iterative method involving the gradient of f(x), in some
metric. With their main hypothesis [1, p. 34], our Theorem 5.1 also
provides a sequence tending to Z.

Extensions of the present paper are planned to inequalities and to
equations in the complex field.

2. A fundamental gradient formula. Let f(z, ---, x,)=f(x) be a
given funection, and let 2 be any assigned point in the neighborhood
of which f(x) is continuously differentiable. Visualize z® as an ap-
proximation to a solution of f(x)=0. Then let 4a@=(4a®, «--, 42P)
be a vector correction for a® parallel to the gradient of f(z) at z©@,
with the following definition :

(2.1) Az = _SEO)(@®) , (i=1,2, -+, n)
w(x®)
where @) =" and w@)= 3 fi@),

and we assume that w(x) 70 on the range for z.
Let 2®W=2® + 42, and define

(2.2) F@)=fa®)+ 3 @ —a)f )

Then it can be verified that f(z®)=0. That is, 2 annihilates the
usual linear approximation to f(x) for points # near x®. In particular,
if f(x) is linear, then f(z)=0, and & is the orthogonal projection of
x® onto the hyperplane f(x)=0.

NoTE 2.1. Suppose that f(x) is a polynomial of degree %k in x,, ---,
x,, and let 4 be the surface f(x)=0 in z-space. The linear polar for
A corresponding to a point #® can be defined as the hyperplane

(2:3) kF@®)+ 3 f@ ), ~a)=0.

With 42® given by (2.1), let a®=a® +k4x®. Then it can be verified
that x=a® satisfies (2.3). Hence, 2@ is one kth of the way from a©®
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to the polar hyperplane for «®, along the normal from z® to this
hyperplane.

It is important to recognize that the vector 4z, obtained from
(2.1), is unaltered if f(«) is changed to ¢f(x), where ¢ is any nonzero
constant. Also, with da visualized as a geometric entity described in
terms of the gradient of f(z), 4« is seen to be unaltered by an ortho-
gonal transformation of the coordinates z,, +--, «,.

Formula (2.1) is fundamental in essentially all methods employing
the notion of a gradient correction in extremizing a function f(x), or
in solving systems of equations.

3. Description of the composite gradient method. Consider a
system, written in vector form,

3.1) fl@)=0,

where f(@)=[fi(x), f.(x), -+ -, f{x)] is continuously differentiable in some
open convex region £ in nm-space. Let f;,(x)=0f,(x)/0x,. Let z be an
assigned approximation to a solution of (8.1). Then, from (2.1), with
2@ replaced by z in the residual f(z), and with the part relating to
the gradient taken at a point ¢ in 2 not necessarily the same as z, we
write

(3.2) gz, = —f (@) f1,(6)|wi(é) ,

where it is assumed that w";(oc)=2n1 fifx)%0 in 2. In (8.2), £ is in-

troduced to permit possible simplification in applications of the method
to general systems of type (3.1). Let (y, ---, 7x) be an arbitrary set
of positive ¢ weights,”” and define 4x as the weighted sum of the vectors
4y :

(3.3) de=S7,d .
=

For a given approximation = to a solution of (8.1), the next approxima-
tion y is defined thus, where p%0 is a constant whose permissible
values will be discussed later :

(3.4) y=x+pdx .

Then (3.4) becomes the basis for a recursion formula in setting up
successive approximations to a solution of (3.1), as follows.

Let 2 be an initial approximation to a solution of (3.1). For
m >0, define ™ formally by the equation

(3.5) @ = gm=D) 4 plm=D fgrm-1)
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where
(3.6) 450 = = (@) fEm DN (D)

in which the numbers p™ =40, m >0, &™, m >0, in Q either are de-
signated in advance or are determined in sequence. This paper discusses
mainly conditions for the existence and convergence of {z™}, first for
linear systems and later for general systems.

Nore 3.1. An important special case of (38.5) and (3.6) occurs
when all 7,=1, p™ is a constant, p, for all m, and &™) =2, Then,

ijgm—l):__ __fj(x(m_n)fij(w(m—l))/wg(x<m—1) ,

k
Ax(m—l)_____z‘idjx(m—l) , and w(m)zx(m——l)_l__‘odm(m—l) .
j=

4. The linear case. In the system (not necessarily consistent)
(4'1) j‘j(m)E/;xhahj'i—bj:O . (.7::1, *cey, k)

for the unknowns z,, let A=(«,;) and b=(b,, ---, b,) and rewrite (4.1)
in matrix form,

(4.2) @A+b=0 .

Assume that éai,#O for all §, and denote the rank of 4 by 7. The
h=1

region 2 of §3 is taken as the whole of n-space. In (3.2) and (3.6),
€ and &™-Y become irrelevant.

Now let each equation in (4.1) be normalized; that is, without
altering the notation, suppose that ﬁ]a,%j=1, until otherwise specified.
h=1

For (4.1), since the equations are normalized, (3.2) becomes
(4.3) g =—( S+ bj>a,w .

With any assigned positive weights (7, «++, 7:), let 3,=b7}?, «,,=a,,;7}?,
and .~ =(«a,;). Then, from (3.3) and (4.3),

‘Bz(ﬂl’ ﬂ‘l’ ) /glﬂ)y
(4.4) dr=—(x.o/ + ). .

If p£0 is assigned, and z is a designated approximation to a solution
of (4.2), the next approximation, y, from (3.4) is y=x+pdx. Before
considering a sequence (8.5) for (4.2), it is desirable to recognize pro-
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perties of .27 which follow immediately from standard theorems, and
to investigate the set ¥ of points in x-space where dx=0.

LEMMA 4.1. For a mnormalized system (4.1), if A s of rank 7,
the symmetric matriz SZ2577 is of rank r, is positive semidefinite, and
48 positive definite if and only if r=mn. The characteristic constants of
" comnsist of n—r zeros and 1 positive constants A, ««+, A, With

r k

(4.5) S =0, where o= zaz,.=j§:v,..
=1 -

n
i=1 n=1 j=1

There exists an orthogonal matriz S=(S,n) such that S o7c7'S'=D, where
D is an n by n diagonal matriz whose main diagonal is (1, --+, 4,
0,---,0).

The vector 4z of (4.4) is invariant under an orthogonal transforma-
tion of coordinates in wx-space. Thus, to obtain the set ¥ where 4x=0,
we first use the transformation x=2zS from x-space to z-space. Then

with A=(&,,)=S4, (4.2) becomes
(4.6) 2A+b=0.

LEMMA 4.2, If the equations in (4.1) are in normal form, then the
equations abbreviated by (4.6) also are in normal form, that is, 3, a;;=1
h=1

Sor all j.
Proof. In A’A, the jth element of the main diagonal is é ai,=1.
Also
A Ad—(SAYSA=A'S'SA=ATA=A'A ,
where I is the » by % unit matrix. Hence, in A’A, the jth element of

n
the main diagonal is 1, or 3 a;,=1.
h=1

Let &,,=a, 7} and MA=(dM). Then if z is an assigned approxima-
tion to a solution of (4.6), the corresponding vector 4z of (4.4) is given
as a vector 4z, where
(4.7) de=— (2.7 +f).57" .

LEMMA 4.3. ./ =S.%7 and 7o/ =D. Also, &,,—0 if h>r.

Proof. 1. Since A=SA4,

n n n
P N 1/2y
a’hj'"- Z shmamj ’ a/zj— Z slbm(a’7nj77j/ )—‘ 21 Sh,m amj .
m=1 m=

m=1
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Hence, . =S.% and ./ =8/ /'S'=D.
2. Since /121’=D, where the Ath element of the main diagonal is

zero if 2>, we have Ek,&?U:O and hence &,,=0 if 2 >7r.
j=1

LEMMA 4.4. The solutions 2 of the n linear equations 7represented
by 4z=0, forming the set ¥, have arbitrary 2,, i >, but uniquely
determined 2, 1 1.

Proof. By Lemma 4.3 and (4.7), 42=0 is equivalent to

(4.8) 2D+ .o/ =0,
or

2t 3B, =0 G <7, 4 5£0)
(4.9) k“l

0+;ﬁjdw=0- (e>7)

Hence 2, is determined uniquely if ¢<#, and the equations in (4.9)
for ¢ > are identities 0=0 because &;,=0 for i >r.

Now let the origin in z-space be translated to any point in ¥, with
the new coordinates labeled (u,, ---, u,)=u. Then (4.6) becomes

(4.10) uA+b=0,

where b is a new one-rowed matrix of constant terms. By the method
of §3, any assigned approximation % to a solution of (4.10) yields a
next approximation » where

(4.11) v=u+pdu and Au:—(u&f+,@)&/’,

with A=@g1?, -+, bzl?). The invariance of the composite gradient
vectors dx, 4z, du under orthogonal transformations implies that du=0
if and only if u is a point of the set ¥ of Lemma 4.4. Since u=0 is
in ¥, u=0 satisfies 4u—0; thus 4 A’= in (4.11) and 4u=0 becomes
uD=0, which determines » as follows.

LEMMA 4.5. In the u-system of coordinates, we have du= —uD, and
U is the set of all points w for which u,=0 if ¢ <r and u, is arbitrary
if i >,

In connection with ¥, consider the function®

(4.12) 0@)= 57 Ko, +b) ~lod +r.

8 We shall use ||z|| for the length of a vector =, ||2||=(X}., #?)3.
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For any point @, g(x) is the sum of weighted squares of the residuals
in (4.1), with the square for the jth equation given the weight 7;.

LEMMA 4.6. The quadratic function g(x) has an absolute minimum,
which is attained if and only if « is in ¥.

Proof. The range for the function g(x) is the same as the range
for the corresponding function §(u), formed for (4.10), where

)= + Bl —usZorw + 2oy + | A

or
o0 3,204 181

sinee ﬁ%’=0. We see that §(») attains its absolute minimum, ||[§’||2, if
and only if #,=0 for ¢« <, which describes the points in #" and proves
the lemma.

On account of Lemma 4.6, ¥ may be described as the set of solu-
tions in a sense of weighted-least-squares, for the normalized system

corresponding to a system (4.1) where (a,;) is of rank » and ﬁ‘,a,i,-;éo
h=1
for all 5.

We note that 4z of (4.4) is —-%- grad g(x); du=— ; grad g(u) .

THEOREM 4.1. In a system (4.1), normalized or not, where En_‘, ar;7%0
h=1
for all j, let r be the rank of (a,;). Choose p50 and positive numbers
k
(1, =+ *, 7)) With 0=3,7,. Let

j=1

<.
Il

&=V, / (Sia)"s =0, -+, 0205 @u=a.0;

7 =(a,,), with (&, -+, &) the positive

(4.13) characteristic constants of 7;

(4.14) pi=1—pl; o,=max |g].
i=sr

For any point 2 in n-space, let ™ be defined by (3.5) when m >0,
with p™=p for all m—=>0. Let & be the point nearest ' in the set
¥ of all points x where |x.°7 + | attains its absolute minimum. Then
o necessary and sufficient condition that {x™} should converge for all
points x 4s that o,< 1. Moreover, if o,<1, then
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(4.15) a™—z and |a™ —z|< oMo —Z|.
In order that o,<1,
(4.16) it 1s mecessary that 0<p < 2r|w;
(4.17) it 15 sufficient that 0<p<2/w (0<p<2/w if r=1).

The minimum value of o, occurs, and hence the best guaranteed geometric
rate of convergence is obtained in (4.15), for a single value p=p,, where

(4.18) 2o <p,<2Ar—1]ow of r>2,
and
(4.19) po=rlo if r<2.

Proof. 1. The equations in (4.1) first may be normalized, and then
may be altered to (4.10) in an associated u-system of coordinates, where
x® becomes u®. Application of (3.5) to (4.10), with u as the initial
point, yields a sequence {#™} where u™ =u™"Y+ pdu™- m>0. The
invariance property of the composite gradient corrections under ortho-
gonal transformations justifies the statement that, in sequence, du‘™-V
is the same vector as 4a™-?, and hence u‘™ is the same point as a™,
The matrix .27 of (4.13) may be identified with .o~ in (4.4).

2. From Lemma 4.5, 4y V= —y™YD and

(4.20) w™=ym(I—-pD), or u™=uI—pD)" (m>0).

In the diagonal matrix (I—pD)™, the main diagonal is (g, ---, &,
1, ---,1), and (4.20) gives

(4.21) um =y®Ppr if 1 <r; um=u» if i>r.

Hence, if 0, <1, u™— (0, -+, 0, u®), -+, u’) as m — . In view of
Lemma 4.5, this limit point is seen to be the point # of ¥ nearest to
u®, Moreover, from (4.21).

(4.22) =il X [ < o fu® =

When (4.22) is transformed back to the a-coordinates, the result justi-
fies (4.15).

3. If 6,>1, we have |g|>1, for some ¢=~hA. Then, if u@ is
selected so that u{” == 0, (4.21) shows that {u;™} will not converge. If
o,=1, we have p,=1—pi,=1 or —1 for some i. We cannot have p,=1
since pA; 7% 0. If p,=—1 for 1=k and u® is chosen so that uf’ 40,
then u{™ is alternately +u{®, and {#™} does not converge. Thus
{u'™} does not converge for all u® if 0,>1.
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4. To establish (4.16)-(4.19), first recall that ﬁzizw and p;=1
i=1

—pd. If p<C0, then g, >1 for all 4; hence, a necessary condition for
0,<_1 is that p >0, which is assumed hereafter. Let

7’=min A,; r”"=max 4;;
i=r i=r

o' =min g,; o’=max p, .
i=r i=r

Then o,=max(|¢’|, |6”’]). The following representations on number
scales summarize certain facts for the case r7%41.

(423) e s 0 LS <0
0 .

(4.24) o <p<o <1
1

A necessary and sufficient condition for ¢,< 1 is that —1<{s’, or

(4.25) —1<1=py”, or p<2[y".

Since Zl_—w and 1,>0 we have ¢y >ow/r, and (4.25) yields (4.16).

If 7~>1 then 7" <w and p<2/w is sufficient to imply (4.25), which
establishes (4.17) if »>1. If r=1 then 7r"=w, and the sufficient
condition (4.25) becomes (4.17), as stated for »=1. Now suppose first
that y'=£y”, which implies 7 >>1. Then inspection of (4.24) leads to
the conclusion that o, attains its minimum when ¢'=—s", or

(4.26) p=2/('+1") .

If »=2, then 7"+7”"=w and (4.26) yields (4.19) for r=2. If »>2, we
get

(4.27) o>y 4+ =270
”

From (4.26) and (4.27), (4.18) is obtained. If y'=7"”, then s,=|1—po/r|,
whose minimum is 0, attained at p=r/w, which agrees with (4.18) if
r>2 and with (4.19) if »<{2. Hence, all cases of (4.16)-(4.19) have
been justified, which concludes the proof of Theorem 4.1.

COROLLARY 4.1. The geometric rate of convergence indicated in
(4.15) is the fastest rate of comvergence holding for the method in general.

Proof. Consider a system (4.1) where b,=0 and n=k=r=2, so
that =0 is the unique solution. Let p=#=7,—1. Let z® be any
point 7% 0; then Theorem 4.1 states that a™ of (4.15), or u™ or (4.20),
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converges to 0. In this case,
A+4=2 and ‘”1"‘#2:2—(21'{'22):0-

Hence we may let y,—=p >0 and p,=—p, with ¢,=p<1. Then (4.21)
gives u{™=u®p™ and uf =u®(—p)". With &4=0 in (4.22),

> =il = =ik, or ut—il=arfu®—4j.
Thus the equality sign applies in (4.15) and the corollary is proved.

NortE 4.1. Consider altering the method of Theorem 4.1 by introduc-
ing p™ as in (3.5), with 0<p™ < 2r/w. Let all pertinent notation
from Theorem 4.1 be used, with (4.14) replaced by
(4.28) pm=1—pm™2 . 5™ =max [g™|; o=supc™.

=7 all m
Then, if ¢<{1, it is found that (4.15) holds with o, replaced by o.
Also, in order that ¢<1, it is sufficient that 0<p™ <2/w if »>1
and p™ < p<2/w if r=1.

The following result will be used later.

COROLLARY 4.2, In a system (4.1), with the equations in the normal
form, suppose that A is of rank n and that (4.1) has a solution &, neces-
sarily unique. Let x be an assigned approximation to & with y as the next
approximation, where dx is given by (4.4) and y=x+pdx. Then

de=—(x—2).AV"; y—2=(@—2)B, where B,=I—p Lv";
(4.29) ly—2P=(@—-2)Bx—2) < gla—&f .
Proof. In this case, (4.2) can be written (x—%)4A=0, and (4.4)

gives do=—(x—%&). /7"; y—&=(x—&)B,. Then from (4.15) with m=1,
2@ =y, and 2@ =wx, we obtain (4.29).

5. Solution of a general system. Consider the system (3.1), or
(5.1) Sfi(@)=0 G=1,---, k).

Assume that z is a solution of (5.1) and that, for all 2 and j, f;,(x) is
continuous and w’(x)~ 0 in some open convex neighborhood 2 of z=z.
All points & will be restricted to 2. At x=2, the surface f,()=0 has

a tangent plane ia,,,j(w,l—&,b)=0, where a,,=f,,(&). Assume that the
h=1

matrix A=(a,;) has rank %, which implies that £>>n, and that the
tangent planes to the surfaces f;()=0 at =& have the unique inter-
section x=%. Then the method of § 3 will be applied to obtain & as
the limit of a sequence {#™}, defined in (3.5).
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Let ¢, ;(@)=fi(x)/wi(x); C(x)=(c,(x)); F(z)=(f,(x)). Letx be an as-
signed approximation to a solution of (5.1), and let € be any point in
Q. Then (3.2) and (3.3) give

(5.2) A= —f (@)e, (6);  du= ]2 9,d .

With p >0 and 7,>-0, the next approximation y to a solution of (5.1)
is y=x+pdz .

For given A and weights 7,, let 5, have the same meaning as in
Theorem 4.1.

LEMMA 5.1. Suppose that o, < o< 1. Then, for every 0 such that
0 <0 <1, there exists a 6 >0 such that the neighborhood @; : (Ja—&| <6)
18 in Q and, if ® is in @y, & is in O,, and y=uz+ pdwx, then

(5.3) ly—2| = 0)o—2] .
Proof. 1. For convenience, without change of notation, suppose
that both sides of f,(x)=0 have been multiplied by a proper constant

so that wi&)=1, for all j. Then C(&)=F(2)=A.
2. By the mean value theorem, since f(2)=0,

(5.4) FA@)= 3 @)+ 3 @ —)p)

where p,(x)=f,,(t;)—f.;(&) and r, is suitably located on the line seg-
ment from & to . Let

=75 T @) =0a @)1 Taf@)=C0s(@)i";
vhi(x) = Thj(w) —
A =(a,;); P@)=(mx)); V(@)=(v1s()) -

Note that 7,,(&)=a,;; p.(@)—0 and v,,(x) >0 if x—>&. From (5.2)
and (5.4), we find

dx=—(x—2)( 7~ +P@)(/ +V() .
3. Since y—&=(x—2a)+pdx, we have
(5.5) Yy—i=(@—2)B,+ (-2, &),
where B,=I—p."<"/" and
(5.6) Qz, &= —p. V()= pP@).os —pP@) V(&) -
By (5.5),
(6.7) ly—&ip=(x—&)B(x—&) +@—-)U(z, §z—2),
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where
Uz, §)=B,Q'(z, £)+Q(z, §)B,+Q(z, §)Q'(z, &),
and we let U(x, &)= (u;,(x, £)). By use of the Cauchy inequality twice!

(@@= )V, a—i)| <lo—ak] 5 iz 9]
Then (4.29) and (5.7) yield

{ AN A it n 12
(5.8) - <ta—ap{oi+ | 5w 0]}

4. In (5.8), u;(x, &) is a polynomial in the elements p,,(x) and
v,/(8), with each term of the polynomial of degree 1 at least in the
elements. Hence u,.(x, §) >0 as « >& and £—>a. Now suppose that
0, o<1, and choose & so that «<0< 1. From (5.8), if § is chosen
so that the neighborhood @;: (jx—zj<0d) is in 2, and if ¢ also is suf-
> is in @5 and € is in @5, which

proves the lemma.

THEOREM 5.1. Assume that (5.1) has the solution x==z, that F(&)
is of rank n, and wix)£0 in Q. Then, if the p™ are properly cho-
sen, with 0<p™ < 2nfw, there exists a 0 >0, with 6 <1, and a corres-
ponding 6 >0 so that, if @ and the £™ are arbitrary points in @:
(Jxe—2| <), and x™ is given by (8.5), then x™ —& as m — oo, in such
a manner that

(5.9) e —&| < 0" o -2 .

It is sufficient to use a constant p™ =p where p < 2/w if n_>1 and p <_
2/w of n=1. Moreover®, & is the unique solution of (5.1) in @;.

Proof. 1. Let 6™ =g, for p=p™. Let the p™ be chosen so that
sup 6™ =0<_1. In particular, by (4.17), the preceding condition is

all m

satisfied if all p™ =2/w if n>>1 and if p™=p<2/w if n=1. Now
choose ¢ so that o< 60 <1, and let 6 >0 be determined by Lemma
5.1. Select  and the sequence £ arbitrarily in @;. Then, from
Lemma 5.1,

lz®—2| < 0l

ER

=z L 02 —&| < 9; ete.

It follows that all ™ of (8.5) are in @; and satisfy (5.9). Hence
™ — & as m — .

+ As folléws
3 n

n
[Z zi( Z,u[jzj)]é:zLZ }_,u,, )% /f < ~’) )_ w?
i=1

4 ] 1
5 For a different condltlon assuring unlqueness see [5].
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2. Suppose that a point z£ & exists in @; where f(2)=0. If we
choose 2=z in (8.5), then =z and (5.9) gives |z—2| < 0|z—2%| <
lz—2Z]|, which is a contradiction. Hence & is the only solution of (5.1)
in @5 .

COROLLARY 5.1. There exists a best constant p™ =p, for the method
of Theorem 5.1, in the sense that this choice for p™ allows the smallest
lower bound for 0 in (5.9), with

(5.10) 2] < py<2(n—1)w 4f n>2;
(5.11) po=nlo if n<2,

Proof. With p™ =p, as specified by (4.18) and (4.19) with r=n,
the minimum value for o is obtained in the proof of Theorem 5.1.
Since s=inf 0, the corollary is established.

NoTE 5.1. The presence of {p™} and {&™} in the definition of
the sequence {a™} is designed to permit latitude in the computational
use of the method to solve a system (5.1), particularly by means of a
high speed digital computing machine. In any application, the process
would start with an approximation 2 which is hoped to be close
enough to the unknown solution. Probably it would be sensible to use
gm =g yuntil || f(™)| becomes small and changes become regular in
all variables, so that there is evidence of future success for the process.
Thereafter £™ might be changed only periodically, say at intervals of
s iterations, instead of at each step. Also, breakpoints might be intro-
duced in the coding for machine calculation to permit trial of various
values of p™, perpaps starting with the safe value p®=2/w when
n > 1. In practice it has been found that convergence to the desired
solution can be accelerated if, periodically, preceding values of a(™ are
taken as a basis for extrapolation, after the process has brought ™

close enough to a solution to create smoothly changing increments
dx™

6. Small arc computation of an implicit function. Consider the
system

(6.1) g(z; 7)=0,

or g,(x; 7)=0, j=1, --+, »n, where r=(z,, -+, z;) and (&; 7) is a solution.
Assume that all derivatives g¢,,=0g,/0x; exist and are continuous in a
closed region @: (Jz—%| <a, |r—7]| <b), and that the Jacobian J=d(g,,
cee, g0z, +++, 2,) %~ 0 in @. Then, the classical theorem on implicit
functions (for example, [3, p. 138]) states that positive numbers ¢ <a
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and y <b exist such that, if |c—7| < r, there is an unique point Z(r)
with |&(c)—2&| < e for which ¢[&(z); ©]=0. Moreover, Z(r) is a continu-
ous function of r in the neighborhood |r—7| < 4. Let an arc 4 through
7 in r-space be defined by r=z(¢), 0 <t <1, where 7(0)=7, |(8)—7||<
7, and all 7 (¢) are continuous. At each value of ¢, there is a solution
2(t)==2[z(¢t)] for (6.1) with z=z(¢) in (6.1). Assume that the solution
(z; t) is known. Then we shall consider the problem of computing a(t)
for a finite number of points on 4 extending from ¢=0 to t=1.

Transform (6.1) by substituting r=<(¢) and dividing both sides of
n 12
the jth equation by {E_] 93,[x(¢); z(t)]}1 . Then (6.1) becomes

(6.2) fi@; 1)=0, (G=1,--+,m 0t <1)

which has the unique solution x==x(¢) in the neighborhood |z—Z&| < e.
Let ¢, (x; t)=f,,(x; t)/wix; t), where f,;=0f,/ox,. Notice that wi(x; t)

= En}f,‘;’j(a:; t) is bounded from zero in the closed region @: (e—2| ZLa,
i=1

0 <t <1) because the Jacobian J%0 in @. Let
Clz; t)y=(ci(z; 1); Flz; 1)=(fi,(x; 1)) ;
A@)=Fla(t); t]=(a:,(?)),

where A(t) is nonsingular because J=40 in @. Also, each column of
A(t) is a vector with length 1 because of the normalization in (6.2).
Thus, for each value of ¢, A(t) satisfies the conditions imposed on A in
§4, with n=~Fk=r and each column of A(#) normalized. For simplicity
choose the weights 7,=1, and then let ,(¢) have the meaning, for A(?),
of o, for A in Theorem 4.1, where we now have w=n.

LEMMA 6.1. There exist values of p, in particular p=2/n of n>1
and any p<2/n if n=1, such that
max o,(t)=0,<1.

0=st=1

Proof. The characteristic constants 2,(¢) of A(¢)A’(¢) are continuous
and hence o,(t) is continuous. With the particular values specified for
p in the lemma, o,(t) <1 for 0 <#=<_1 and hence o, < 1.

Since |x(¢t)—&| < e for 0 <t=<1 and x(t) is continuous, we obtain
the following result.

LEMMA 6.2. There exists a £ >0 such that, if |a—2@)| < for
some t, then |x—2&| <e.

If Ja—2]<a, we may expand each f,(z; ) by the mean value
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theorem, as in (5.4), with respect to the variables «, at x=uwx(f); since

Sfla(t); t1=0,
(6.3) fla; )=le—a(@)IA@E)+P; 1)],

where P(x; t)=(p;(x; t)). Observe that p,(x; t) > 0 as |a—az(t)| — 0,
uniformly for 0 <t <1, because @ is a closed region.

Let v,(x; t)=c,(x; t)—e, [a(t); t], and V(a; t)=(v,(z; t)). Since
wi(x; t) is bounded from zero in (13, ¢;,(x; t) is continuous in @. Hence
v,(x; t) — 0 as |x—a(t)] — 0, uniformly for 0 <t <1. Since ¢;,[x(t); ]
=a;,(?),

Clx; t)y=A@)+V(x; t).

LEMMA 6.3. Let t be fixved, let ¢ be specified by Lemma 6.2, and
let @ be an assigned approximation to x(t), with |x—a@t)|<¢. Define
a next approximation to x(t) by

y=zx+pdx, where dx=—f(x; t)C'(x; t),

and 6, < 1. Then, for every 0 such that &,< 0 <1, there exists a 9,
0<6<¢, where 6 is independent of &, such that

(6.4) lz—a(t)|<<6 dmplies that |y—a(t)|<0|x—a(t)] .

A proof of Lemma 6.3 would duplicate details in the proof of
Lemma 5.1, with dependence on ¢ introduced, and with Z=u(¢), &é==,
and o=s,. Limits as |x—2]|— 0 in the proof of Lemma 5.1 would be
replaced by limits as |x—a(t)] — 0, and these limits exist uniformly for
0<t<1. Thus (6.4) is derived with § independent of ¢.

THEOREM 6.1. Let t,, t,, -++, t;, be such that 0=t, < t, < --<t,=1.
Let a®(t)=x(t,-,), 1 >0, choose p so that 5,<1, and define

(65) x(m)(ti)zw(m—l)(ti)_Pf[w(7n~1)(ti); tl_]C/[x(m—l)(tl); ti] .

Then, for any 0 such that 6,< 0 <1, there exists a ¢ > 0 such that, if
ti—t;-, < ¢, them x™(t;) — a(t;) as m — o, for i=1, -+, and

(6.6) () —@(t) ] < 0" |t -) — ()] -

Proof. If 6 is such that 6, <0 <1, Lemma 6.3 specifies a 6 >0
for which (6.4) is true. Since x(¢) is continuous, there exists a ¢ >0
such that |z@")—a@)| <o if |¢/—¢|<¢. Then, by Lemma 6.3, if
t,—t;-, < ¢ for all ¢ >0, it can be verified, along the lines of the proof
of Theorem 5.1, that all 2(¢,) are well defined and satisfy (6.6), which
proves Theorem 6.1.
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The normalization involved in passing from (6.1) to (6.2) has no
effect on gradient corrections, as met in (6.5). Hence the following
‘“small arc method > for computing values of the implicit function Z(t)
given by a system (6.1) emerges from Theorem 6.1.

For some r==7, suppose that the solution x=2% of (6.1) is known.
Let r=2(¢t), 0 <t <1, be a particular continuous curve through r=7=
7(0). Substitute r==1(¢) in (6.1) to obtain g(x; t)=0, with the solution
x=a(t). Choose p=2/n if n > 1, and refer to our composite gradient
method in Theorem 5.1, with p™ =2/n, &™ =g™ and »,=1 for simplici-
ty here®. Select a partition ¢, ¢, ---, £, of the interval 0 <¢ <1, with
all ¢,—¢,_, as small as necessary, where the decision as to size is based
on computing sense, supported experimentally by later details of com-
putation. Then determine «(¢,)) as the solution of g(z; ¢t)=0 by our
gradient method, with a(¢,)=2(0)=2%; determine x(¢,), 2 >0, by using
2(t,)=x(¢,-)). In the preceding sentence, ‘‘ determine’’ is interpreted
as ‘‘ obtain exactly,”” for logical application of Theorem 6.1. However,
in any numerical example, ‘‘ determine > would mean ‘‘find accurately
to the degree of precision specified by the problem, and necessary for
the remainder of the procedure.”

NoTE 6.1. Consider solving a given system of n algebraic equations
in «, with constant coefficients («,, ---, a,)=7. Suppose that the solu-
tion of the system is known when r=7. Then, the small arc method
might be used to obtain the solution x when r=a«a, by employing the
line segment r=c(t)=%+(a—7)t, 0 <t {1, or any suitable continuous
curve joining r=% and r=«.
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