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l Introduction- Let G be a separable Lie group and let V be a
complete, metrizable, topological vector space. The underlying space of
G is a separable real analytic manifold so that we can define, by the
methods of L. Schwartz (see [7], [12], [13]), the spaces £?(V) of in-
definitely differentiate maps of G into V, and &(V) which consists of
those maps in &(V) which are of compact carrier. Their duals are
S)'\V), the space of distributions on G with values in V (the dual of
V), and S?/(F) which is the space of distributions of compact carrier
with values in V'.

By using the group structure in G, we can define the convolution
S*fe έf(C) for any Se&'(V), fe^(V), where C is the complex
plane. The main result of this paper is: Let Se £&'{V) have the pro-
perty that S*fe^(C) whenever fefβ(V); then Se C£\V). Moreover,
the topology of %"(V) is that obtained by considering each Se t?\V)
as defining the continuous linear transformation f->S*f of ^(V)->
£z?(C) and then giving this set of transformations the compact-open
topology (see [6]). This generalizes the result of [6] in case G is a
vector group and V=C.

This result is generalized to double coset spaces L\G/K where L
and K are compact subgroups of G. In this form, the result will be
used by the author and F. I. Mautner to generalize the Paley-Wiener
theorem and the theory of mean-periodic functions of Schwartz (see

[8]).
The author wishes to express his thanks to Professor F. I. Mautner

for helpful discussions.

2. Distributions on G, Instead of using the usual method of de-
fining distributions on G, as for example in de Rham and Kodaira [12],
we shall follow another approach which is more akin to the author's
thesis [5]. We shall show that the two methods are equivalent.

By " function " we shall mean " complex-valued function" unless
the contrary is specifically stated. " Linear" will mean "linear over
the complex numbers " always. By 1 we denote the identity in G, and
by g we denote the Lie algebra of G. For any Y£g>, we denote by
t -> exp (tY) the unique one parameter subgroup in G whose direction
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at 1 is Y. Let V be a complete metrizable locally convex topological
vector space.

The map / of G into V is said to be differentiate in the direction

Γeq at xeG if \(-i)[(exptY)x]\ exists; if this is the case, we set
(Λα£/ J ί = o

x\

If / is a continuous map of G into V, we say that / is in the domain
of Dγ if, for any xeG, f is continuously differentiate in the direction
Y at x. Dγf is then defined as the (continuous) map#-> (Dγf)(x).

By if0 we denote the space of continuous maps of G into V with
the topology of uniform convergence in V on the compact sets of G.
By the carrier of an / 6 g?° we mean the closure of the set of points
where fφO. An operator on G is a linear mapping of a subspace of
if0 into £?°. The operator D is said to be closed if the conditions: {/*}

in the domain of D, fΛ ->/ and DfΛ —• h in if0, imply / is in the domain
of D and Df=H.

PROPOSITION 1. For any Y in g, Z>F is α closed operator.

Proof. It is clear that Dγ is an operator.
It remains to show that Dγ is closed. Let {/J be a sequence of

functions in the domain of Dγ such that {/J and {JDr/*} are Cauchy
sequences in if0; call / = l i m / o /^limZV/ί, the limits being taken in
if0. Let Γ, X2, X3, , Xn be a basis for g and iV an open neighbor-

hood of 1 in G in which exp (tλY) exp (ί2X2) exp (tnXn) form a coordinate
system. It is clearly sufficient to prove that / is in the domain of Dγ at
1 and that (Dγf)(x)=h(x) for any xeN.

Now, θ: (tl912, , tn) -> (exp (txY), exp (t2X2), , exp (tnXn)) maps
a circular neighborhood M of 0 in real Euclidean %-space homeomorphi-
cally onto N. It is immediate from the definitions that a continuous map
p of G into y is differentiate in the direction Y at 1 if and only if pθ
has a continuous partial derivative in the direction tτ at 0, and then

for all x in a suitable neighborhood of 1. From this and the known
closure of 3/8^ on Euclidean space, our assertion follows.

Now, let Yl9 Y2, , Yn be a basis for g. We set
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and we call ® the family (D19 D2, , Dn) so ® is a family of closed
operators. By means of D we can now define, by the methods of [5],
the complete, locally convex, Hausdorff, topological vector spaces &ί
(or 3ί(V)) of indefinitely differentiable maps of compact carrier of G
into V, and if (or if (V)) of all indefinitely differentiable maps of G
into V. if is a metrizable space; a sequence {/J converges to zero
in if if and only if for any operator D*=DhDh - - DJr, A m

e ® > Df
-> 0 uniformly in V on every compact set of G. The topology of £&
may be described as follows: For each compact set K, let &κ be the
subspace of £& consisting of those maps of 2$ which have their car-
riers in K; the topology of &κ is that induced by if. Then of all
possible locally convex topologies which induce on each &κ the topology
of &κ that may be given to the set of functions of &, 3ί is given
the strongest (see [4]).

PROPOSITION 2. The spaces 2$ and έf are the same as those we
would have obtained by considering G as an indefinitely differentiable
manifold.1

Proof. Let N be a neighborhood of 1 in G in which
exp t.zY2 exp tnYn) form a coordinate system. Then it is clearly suf-
ficient to prove the theorem for the restrictions of the functions of if
and & to N. The result now follows by the method of the proof of
Proposition 1.

PROPOSITION 3. & and if are reflexive topological spaces.2

Proof. We prove the theorem first for if. Since ^ is metriza-
ble, it is sufficient to prove that g7 is a Montel space, that is, that the
bounded sets of g7 are relatively compact (of compact closure). Let
then B be a bounded set in if. Let N be a compact neighborhood of
1 in G in which (exp tλYλ exp ί2Y2 exp tnYn) form a coordinate system.
Since G is separable, we can find a sequence of points ateG such that
G=yj (interior Nat).

It is easily seen that it is sufficient to show that, for any i, and
for any integers ru r2, •••, rm9 if we set D*=DriDr2 Drm, then the
set {D*f}fβB is equicontinuous on atN. It follows immediately as in
the proof of Proposition 1 that the restrictions of the maps £)*/ have
the property that (if we identify them with maps on a circular neighbor-
hood of zero in Euclidean %-space) their partial derivatives in all direc-

1 That is, by applying the method of de Rham and Kodaira [12].
2 See [3].
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tions are uniformly bounded for f eB. As is well-known, this implies
the equicontinuity of {D*f} fβB on atN; hence Proposition 3 is establish-
ed as regards the space g\

If L is a bounded set in £&, then all the maps of L have their
carriers in a fixed compact set K oί G, that is, L C &κ Since the
topology induced by ^ on 3)κ is also the topology induced by S? on
3fκ> L is bounded in if. Thus, L is relatively compact in if, hence
in &κ> hence also in & which concludes the proof of Proposition 3.

A sequence of open, relatively compact (that is, of compact closure)
sets KiCG will be called a scattered resolution of G (see [5]) if \jK%

=G and if, given any compact set KC.G, only a finite number of the
Kt meet K. Given any scattered resolution {Kt} of G, there exists a
partition of unity {ht} relative to it; by this is meant that the indefinite-
ly differentiate functions ht have the properties that :

1. For each i, carrier ht(Z Kt.

2. For any x e G, Σ hi(x) = l.

(This sum has meaning because all but a finite number of terms are
zero.) To establish the existence of the partition of unity {ht}9 we
have only to note that the scattered resolution {ifj can be " refined "
to a scattered resolution {Lt} by coordinate neighborhoods (that is, each
Kt is contained in a union of a finite number of L7). The existence of
a partition of unity relative to {LJ is readily verified and, in turn,
implies immediately the existence of a partition of unity relative to

By £&' (or &'(V) we denote the dual of & with the topology of
uniform convergence on the bounded (compact) sets of £^. It can be
shown (see [7]) that, £&' can also be described as the space of con-
tinuous linear maps of &(C) -> V, this space of maps being given the
compact-open topology. For this reason, £%' is usually called the space
of distributions on G with values in V. In this paper, we shall call
the elements of 2$' distributions.

For any distribution S, and any open set O in G, we say that S
vanishes on O if S f=0 for any f e & whose carrier is contained in
O. Because of the existence of partitions of unity, we can easily show
that if S vanishes on OΛ where OΛ are open sets, then S vanishes also
on \JOa. Thus there is a largest open set on which S vanishes. The
carrier of S is defined as the complement of this set.

g?' (or έf'(F)) is the dual of gf. It can be shown, as in [13], that
g"r consists of all distributions of compact carrier.

For any Se &', by S~is meant the distribution /->S / for f e &,
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where f(x)=f(x) for any xeG.
By GxG we denote the direct product of G with itself; GxG is

again a Lie group whose underlying manifold is the Cartesian product
of the underlying manifold of G with itself. By 2J3?, 2if, 2&'', 2ξff we
denote the spaces on GxG corresponding to 3ί, έf, &' if' re-
spectively.

Let k be a continuous map on GxG and xeG. Then by kXi=x we
mean the map on G: y->k(x, y). Suppose that, for all xeG, kXi==x is
in a space U of mappings on G. Then by kλ we mean the mapping
x -> kXι=x of G ~+U. Let L be a map defined on U; then we say that
k is in the domain of L, and we denote by L2k the map

x -> LkXι=x

for α eG. If the range of L is again a space of mappings on G, then
we say also that k is in the domain of L2/ and we shall denote by L2lk
the mapping on GxG:

{x, y) -> LkΣι==x{y) .

L2, is called the lift of L to GxG. We define fcχ2^, &2, L2, Li;

similarly.
We can now define, as in [5], two products involving distributions

and functions :
For any Se&\ i ; e 3 S , then we have two inner products: SJc and

S2k which are both in &.
For any S, Ue 3$' we define the direct products S1x U2 and S2xU1

e,S" by

Sτ x U2-k=S- UJc, Sz x U1-k=S- UJc

for any ke22$.
The direct products define continuous bilinear maps which are com-

mutative, while the inner products are only separately continuous bili-
near maps. (If y, Wj X are topological vector spaces and t: Vx W—>
X is a bilinear map, then t is called separately continuous (see [4], [5])
if, for 5, & any bounded sets in V, W respectively, the maps

w -> t(b, w), v -> t(v, b)

are, for beB, VeB', equicontinuous linear maps of W-+X and V-+X
respectively.)

By {Qi} we shall denote an enumeration of the operators DrΌrsι

DTm with Qi=identity.
For / a continuous map defined on G, / is the map x —• f(x~τ).
We shall denote by η the function on G defined by dxg=η(g)dx,

where dx is a left invariant Haar measure. It is known that Ve £?(C)
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and, moreover, η is a homomorphism on G. By ω we denote the func-
tion on G defined by dx~1=ω(x)dx. Again, ωe %f(C) and ω is a
homomorphism on G. It is readily verified that ^(y)^^-1) for any

yeG. For any Se 3ί\ we write S f=S-ωf for any fe&.

3 Convolution on G. For any continuous map / of G into V
and any x e G we define the translations

for any yeG.

PROPOSITION 4. (x, /)->£(#)/ αrcd (a?, /)->5R(a?)/ are continuous
maps of Gx £2'-> ϋ^ and afeo of Gx έf-> if.

Proof. We shall establish the theorem for the map (#, /)->£(#)/
of G x ^ - ^ ^ ; the other parts of the proposition may be established
by similar methods. By the results of Dieudonne and Schwartz (see
[4], [5]) it is sufficient to prove that this is a continuous map of Gx&κ

~> 2$ for any compact set K of G. Since the map is linear in / and
a homomorphism in x, it is sufficient to prove continuity at / = 0 and
x=l. Let if be a given compact set in G and choose Kf a compact set
in G so large that Kr contains the carriers of all 2(x)f for xe&κ.
Let M be a neighborhood of zero in £&κ,. Then we can find operators
On Qii -",Qr, and continuous semi-norms ft. ft> >/°* on V, and a
positive number a so that M contains the set of h e ^ ^ which satisfy

max p%[(Qjh){y)]<^a
yeG, ί

for i = l , 2, •••, r.
For any p e £&, any &, and a?, z e C ,

Now, write ^-1Yr

λ^=27cAZ(2:)yz where (ckl) is the matrix of the adjoint
representation of G on g. Then we have
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We also have

Dz-ιYzp=Σ ckj(z)Djp .

The functions ckj are continuous and even indefinitely differentiate on
G. Hence, we can find an A > 0 so that

max \ch3{z)\<LA
β ch3

ZβK

for all k, j .
It follows immediately from this that we can be assured that, for

q 6 &K, ze K,

max Pi[(DK2(z)q)(x)]
x€G, i

will be small by making

max pl(D3q)(x)\
x€G, j , i

sufficiently small. Proposition 4 now follows by iteration, since each Qz

is of the form ΌrΌr^ Drm.
For any continuous map / o n G, 8/ is the map on GxG: (x, y)->

f(x~τy) 8*/ is the map on GxG: (x, y) -> f{xy). By the method of
proof of Proposition 1, we can establish

PROPOSITION 5. / -> 8/ and f —• 8*/ are continuous linear maps
of gf->2gr.

We are now in a position to define the convolution product involv-
ing distributions and functions. The definition differs slightly from that
of Schwartz [13]: For any Se&', / e S , xeG, we set

(1) (S*fKx)=S 2{x)f

This formula can also be considered valid if Se S" and fe if.

PROPOSITION 6. (S, f) -> S * f is a separately continuous map of

(a) ίf'x ίf-*gf(C)

(b) if'x^-*^(C)

which is antilinear in S and linear in f.
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Proof, (a) Let j be fixed and write A=Dj. We find from the de-
finitions that, for Se £f', fe ξf, S*fe ίf(C) and, moreover,

(2) [ACS * / ) ] ( » ) = ^

Prom this it follows by iteration that, for any Q=QS, we have

( 3 ) ^

Part (a) results immediately from (3) together with Proposition 5.
(b) By a result of Dieudonne and Schwartz (see [4]) it is sufficient

to prove that, for K a compact set in G, (S, f)->S*f is a separately
continuous map of if' x SJ κ -*£$. Now, it is obvious that

( 4 ) (carrier S * f)CZ{carrier S){carrier f) .

Our assertion now follows from (a) above and the fact that &κ has
the topology induced by if.

(c) This is proven by essentially the same reasoning as that em-
ployed in the proof of (a) above.

4* ? as a space of linear transformations* In this section we
shall prove our main result.

THEOREM 1. Let Se &' have the property that S * fe ^(C)ιvhen-
ever f e £& then Se S?'.

Proof. Let us suppose that S satisfies the hypotheses of Theorem
1, and let K be a fixed compact set in G. We shall show first that
there exists a compact set K CZG such that S * &κ C &K' Assume
this is not the case, and let {ίΓJ be a compact exhaustion of G. (That
is, each Kt is a compact set which is the closure of a nonempty open
set. Moreover, KidKί+1 and \JKt=G.) We shall produce a sequence
{gt} with the following properties:

1. Each gt e 3)κ .
2. Σ gt converges in 3$κ .
3. There is a sequence of positive numbers ml with fyγιi^λ~πιι^\

for all i such that

carrier (S * gt) C Kmt

carrier (S * gt+ι) ς£ Km. .

4. There is a sequence of points at e G such that aL is a point of
Km. — Kmi_i (where KmQ is the empty set) for which (S *&)(<&*) =^0 and
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for all k > 0 .
Suppose that the sequences {#J, {w&J, {αj can be found. Then

for any i > 1,

Since the set {αj is clearly not contained in any compact set of G, we
conclude that S * Σ gό is not of compact carrier, which contradicts our
hypothesis.

It remains to define the sequences {&}, {mj, and {αj. Let
#! 6 ϋ ĵj- be chosen so that S * g1^£0. Let αx be any point in G for
which (S * ^)(αi) T2^ 0̂  a n d choose m1 > 0 so that

carrier (S * &) C i^Wl .

Assume that glf •••, ^λ., αx, •••, akf m19 •••, mfc have been defined
with the required properties; we shall now define gk+19 ak+19 mk+1.
Now, by our assumption, there is an / e &κ such that

carrier (S *f)ς£Kmjb+1.

Let mk+1 be chosen so that carrier (S */) C^m f c + 1 > and let α fc+i be some
point in JBΓTOfc+i —ϋΓmfc such that (S */)(α*+i) 7^ 0. Define

m a x ( l , max |/(#) |3 f c + 1 ) max (1, max j[(Q*/)(a?)], [\(S *
s6<? j,i^k xβG

The sequences {gr.J, {mj, {α.J are thus defined. It is clear that
conditions 1, 3, 4 are satisfied. Further, each gt e S#κ and, for R any
semi-norm on Dκ of the kind used to define the topology of that space,
it is clear that

Thus Σ gL converges in
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To complete the proof of Theorem 1, let us assume that S is not
of compact carrier, and let K be a given compact symmetric neighbor-
hood of 1 in G. It is clear that we can choose an open set U in G
such that S does not vanish on U and such that U f\ Kr is empty,

where Kf is a compact symmetric set such that S * 2)'κ C &κ,. It
follows easily that we can find a g e G, and an / e D such that carrier
fCKgCZU, S-f^O.

On the other hand, by definition,

But, carrier f C Kg implies carrier %(g)f C K because K is symmetric.
Also, gφKr because 1 e K and Kf f\ U is empty. Since Kf is symmetric,

also g-ι$K'. Thus, S / = ( S * ^(g)f)(g-1)=-0; this contradiction com-
pletes the proof of Theorem 1.

The set of distributions of g7' forms a vector space of continuous
linear mappings of 3ί ^3? under convolution; we give this space the
compact-open topology (see [6]) and obtain a topological vector space J.
A fundamental system of neighborhoods of zero in J consists of all
sets N for which we can find a compact set K in 3ί and a neighbor-
hood of zero M in 3r so that N consists of those Se g*' with S * h
eM for all heK. By Proposition 1 of § 5 of [6], we would have ob-

tained the same topologies if we had considered the distributions of cS>t

as defining, under convolution, continuous linear maps of 3$' -> 2$'.

THEOREM 2. The natural map u: i?' -> J is a topological isomorphism
onto.

Proof, u is clearly one-to-one, linear, and onto. Moreover, J is
given the weakest topology to make the maps

of J -> Sf equicontinuous for / in any compact set of 3! by Proposi-
tion 6 this implies that u is continuous.

Since w1 is linear, we need verify continuity only at zero. Let T
be a neighborhood of zero in if'; there is a bounded set β C £? so
that T contains the set of Se ifr which satisfy |S δ | < : i for all of
beβ .

Let K be an open symmetric neighborhood of 1 in G whose closure
is compact. Then it is clear that we can find a sequence of points α,
e G such that {aiK} is a scattered resolution of G (see § 2). We can
also insure that, if a is one of the al9 so is a~\ Let {h} be a parti-
tion of unity relative to this scattered resolution (see § 2). It is readi-
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ly verified by the method of proof of Proposition 1 of § 3 that, for
each i, the set Bt of functions S(aO(^/) for feβ is bounded in &.
For each j there is a double sequence Sj=MJik of positive numbers so
that Bj is contained in the bounded (in £&) set L5 of all geD whose
carriers are contained in K and which satisfy

max pλ(Qι9){x)\ ^
xEG

Ljik

for all i. From the denumerable number of double sequences Sj we
construct a double sequence s= {Mtk} of positive numbers such that,
for each j, Mjίk <ΞI Mifc for all but a finite number of i, k. Hence, for
each j, we can find an e, > 0 so that ejMJik<LMik for all i, &; we can
clearly make 0, = ̂  if aJ=ar1<

Let A be the set of / e ϋ? for which

1. carrier f CZ K

2. max PfcKQi/Xα)] ^ ΛfiJfc for all i, k,

so A is bounded in ^ . Let Λf be the neighborhood of zero in 2$ con-
sisting of those h e 3ί with

max pkh(x) <1 ^ ^
6 J S Γα, J

for all j, where &3 are positive numbers which satisfy Σ d3 = l. Call N
the set of SeJ with S*feM for all / e A , so iV is a neighborhood
of zero in J; we claim that u~\N) C T7.

Let us assume this is not the case; then we can find an SeN with
u-τS$T, that is, SeN but

for some feβ. Now, u^S is of compact carrier; thus we can find an
r such that

for any xe carrier (u^S). Hence

( 5 ) lu-'S-fl ^ \u-'S.hJ\ + la-W-AJΊ + + lu-'S-hrfl .

It is clear from the definitions that, for each i,

Thus,
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for some geA, which gives, for i = l , 2, •••, r,

where α,=αf\ because geA and u^SeN. Now, since ^ = e 7 , we have

Applying this to equation (5) we obtain

(where we set α^^αy 1). This contradiction proves the theorem.

5* Extension of the main result. We assumed in §§ 2, 3, 4 that V
is metrizable. In case V is not metrizable, then the spaces Sf and 3ί
can be defined as before, but E is no longer metrizable, and 2$ is not
an Sk?^" space in the sence of Dieueonne and Schwartz [4]. However,
there is no difficulty in extending the definition and continuity proper-
ties of the convolution product to this case. Theorem 1 can be extend-
ed to this case, but the proof of Theorem 2 does not extend to the
case of V not metrizable. All that can be proven (and the proof is
much simpler than the proof of Theorem 2 above) is that u is con-
tinuous and that ιrι is sequentially continuous and takes bounded sets
into bounded sets. The continuity of u~ι is an open question.

We assume in the following that V is a complete, locally convex,
Hausdorff, topological vector space. By V* we denote the space of
continuous linear maps of V into V with the compact-open topology, so
F * is again a complete, locally convex, Hausdorff, topological vector
space.

Let K and L denote compact subgroups of G. By a representation
of K on V we mean a continuous homomorphism U of K into V*. Let
U and W be representations of V of K and L respectively. By uw3ί
we denote the space of those fe £&(V*) for which

( 6 )

for any keK> leL. We give VW2$ the topology induced by
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is defined similarly.

For any Te&'(V*), geG, we define 2(g)T and 5R(̂ )T as the dis-
tributions

for any f e £lr(V*). (η was defined in §2.) Let us denote by uw&'
the space of all Se &'(V*) which satisfy

( 8 ) Z(kMl)S-f=S.U(k-i)fW(l)

for any fe&(V*)f keK, leL.3 We shall write U(k)SW(l-τ)'f for
the right side of (8). We give uw&' the topology induced by ^ ' ( F * ) .
JJW^' is defined similarly.

We can easily show

PROPOSITION 7.

/ _> puwf = f U(k)2(hMl)f V-\l)dkdl
JKxL

(where dk and dl are the respective Haar measures on K and L so

normalized that I dk=\ dl=l) defines continuous open projections of

&(V*) onto πw£ί and rtf(V*) onto UW

CS\ Also

S -• PπwS= [
JKXL

defines continuous open projections of &'(V*) onto uw&' and έf'(F*)
onto uw&''.

COROLLARY. UW&' is the dual of OW£i and vw^1 is the dual of

Proof. This is an immediate consequence of Proposition 6 and the
fact that, for Se S)\ fe 3> (or for Se if', fe if), we have PuwS-f
= b PjjWf.

Suppose that K=L; then we see easily that the convolution defined
in § 3 defines a separately continuous bilinear map of uwS>rxwz&-+
τjzr£{C) (where U, W, Z are representations of K on V). The method
of proof of Theorems 1 and 2 can be used to show.

THEOREM 3. uwίf
f consists of all Seπw£β' such that S* feuw&

for a,ny f ewwS$. The topolagy of uw^
r is sequentially the same as

that obtained by considering the elements of uwif
/ as defining (by con-

volution) continuous linear maps of WWS>-^UW^ and giving this set the

3 Note that since L is compact, the restriction of Ύ] to L is 1.
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compact-open topology τ. Moreover, the bounded sets of uw^
r are the

same as those of τ.

REMARK 1. We do not know whether the topologies τ and that of
JJW^' are the same. The difficulty is that, for / e w ^ , geG, 8>(g)f
is no longer in ww£2>.

REMARK 2. In case that K=L, V is finite dimensional, and U, W9

Xf Z are irreducible unitary representations of K on V, then it follows
easily from the Schur orthogonality relations that S * / = 0 for any Se
jjw^' f £ xz& if W is not equivalent to X.

REMARK 3. The conclusion of Theorem 3 does not necessarily hold
if the space WWS> in the hypothesis of the theorem is replaced by WZ2$
where Z is different from Wy even if V is finite dimensional and U,
W, Z are irreducible unitary representations of K. An example will be
given in a forthcoming paper of the author and F. I. Mautner. (G can
be taken as the complex unimodular group.)

6 General remarks. We have assumed that G is a separable Lie
group. In the general case, the spaces if and 3> can be defined as
before, but if will not be metrizable and 2# will not be an =£2^ space
in the sense of Dieudonne and Schwartz [4] because & will be the
inductive limit of a non-denumerable number of spaces, For this reason,
the topology of 2$ is best defined as follows : Let {ftj} =ίj be a fami-
ly of continuous functions on G such that

(a) For each ί, only a finite number of j appear.
(b) Only a finite number of fu are different from zero on any

compact set of G,
Then we define Nσ as the set of h e & for which

for all i, j , where the Qj are as in § 2, and {pj} denotes an enumera-
tion of semi-norms which are sufficient to define the topology of V. The
sets Nσ are seen to form a fundamental system of neighborhoods of
zero of a locally convex topological vector space which we shall call
^ . In case & is separable it is easily verified that the two definitions

agree.
The advantage of the above definition is that it implies immediate-

ly the completeness of £&. For, the completion of &>' obviously consists
of indefinitely differentiate maps. Moreover, if h is any map in the
completion of £&, then, for any continuous function / on G1 and any
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k, it is easily seen that p^ifh) is a bounded function. This implies
immediately that h is of compact carrier, hence h e 2$.

The properties of convolution can be extended to the nonseparable
case and there is no difficulty in extending part of our main results.
We can, as in § 5, prove only that the topology of £?' is sequentially,
and in regard to bounded sets, the same as the compact-open topology
of the space of linear transformations of &-* £$ (under convolution).

The results of § 5 on double coset spaces K\G\L can also be extend-
ed to functions invariant under a compact group of automorphisms of
G (the group of automorphisms of G is given the compact-open topology).

In addition, the main results of this paper can be extended to
locally compact groups. There S? is replaced by the space of con-
tinuous functions, 3ί the space of continuous functions of compact car-
rier, &' the space of measures and cS't the space of measures of com-
pact carrier.
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