
REGULAR REGIONS FOR THE HEAT EQUATION

W. FULKS

l Introduction* Let R be a region (open connected set) in the
plane or in space (x=[xu x^i or x=[xu x2, xd~\). We will say that R is a
regular region for Laplace's equation

(1) M=0

if the Dirichlet problem for R always has a solution for continuous
data. By this we mean: given a function ψ(ζ)eC (that is, continuous)
for ξ e B, the boundary of R, there is a unique function u(x) e C for

xeR=R\JB, for which

Jw=0 xeR,

We will further say that R is regular for the heat equation

(2) Δu=ut

if the "Dirichlet problem" for the heat equation has a solution for
continuous data, that is, if for each

Φ(x) eC xeR

and

ψ{ξ, t)eC ξeB, t^O

where

there is a unique function u(x, t)eC, for xeR, £ i> 0 for which

Δu=ut xeR, t^>0

u(x, 0)=φ(x) xeR

u(ξ, t)=φ(ξ, t) ξeB, ί^O.

Tychonoff [4] has shown that if R is bounded and regular for
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Laplace's equation, then it is regular for the heat equation and con-
versely. We give here a new proof that regularity for Laplace's equa-
tion implies regularity for the heat equation.

2 The work of Tychonoff* In the first half of the memoir cited
above, Tychonoff proves the following three theorems.

A. Each bounded region which is a regular region for the heat
equation is also regular for Laplace's equation.

B. Each bounded regular region for the equation Δu=λu for a certain

λ^>0 is also regular for the equation Δu^λu for arbitrary Λi>0.
C. Each bounded region which is regular for all the equations Δu

= λu for Λ2>Λ0 is also regular for the heat equation.
This cycle of theorems shows the equivalence of regular regions

for the equations Δu=0, Δu=λu (Λl>0), and Δu=ut.
In the proof of B Tychonoff observes that the solution of the

boundary value problems

Δu — λu=0 xeR

u(ξ)=ψ(ξ) ξeB

is equivalent to the solution of the integral equations

u=(λ—Ί)\ G(x, y)u(y)dy-hw(x)
JR

where G is Green's function for the region R for the equation Δu=λu,
and w(x) is the solution to the problem

Δw — λw=0 xeR

The existence of both w and G are guaranteed by the assumption that
R is regular for Δu=λu. He then deduces, via the Hilbert-Schmidt
theory, that the desired solutions of the integral equations exist and
hence these solve the boundary value problems.

However, in establishing C, he forsakes his integral equation
methods and bases his argument on a refinement of a differential-dif-
ference method due to Rothe [2].

We may note that to complete the cycle of theorems it is sufficient
to prove that if R is regular for Δu=0 it is regular for Δu=ut, and
we give here a proof of this result using a modification of the integral
equation argument mentioned above.

In our argument we will use the following theorem which was indi-
cated in a footnote in the paper by Tychonoff. For the sake of com-
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pleteness we present the proof.
D. Let R be a regular region for Δu=0, and let ψ{ξ, t) be defined

on B and be k times differentiable with respect to t, 0 <I £ < T <; OD , and
let ψ and each of its k derivatives respect to t be continuous for ξ e B,
0 <i t < T. Further, let u(x, t) be the solution to the problem

Δu(x, t)=0 xeR

u(ξ, t)=ψ{ξ, t), ξeB, 0^t<T.

Then u(x, t) has k continuous derivatives with respect to t and

dJu

solves the problem

y t)=0 xe R

Proof, Choose tQf 0 ̂  tQ < T. By the maximum and minimum princi-
ples for harmonic functions

\u(x, t)~u(x, ίo)|^max|^(f, t)-ψ{ξ, U)\ .

But by the uniform continuity of φ(ξ, t) for ξ eB, and έ in a (suffici-
ently small) closed t interval about tQ, this maximum tends to zero as t
tends toward tQ. So that u(x, t) is continuous in t.

Since R is a regular region for Δu==0 there is a solution to the problem

Δv(x, £)=0 xeR

v(ξ, £)= φ{ξ, t), ξeB,

Then

u(x, t) — uyjOy LQ) / ,\

t-ta

by the same argument used above. But

t-t0

t)-Φ{ξ, to)_dφ( f ί .>
i~^ dt

{ξ't{ξ))'

where t(ξ) lies between t and t0. Again by the uniform continuity of
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-~-(ξ,,t) this maximum vanishes as t tends toward t0. Hence u(x, t) is

differentiate with respect to t and this derivative attains the continu-

ous boundary data -̂ -(f, t). Hence by the first part of the proof
Ob

u(x, t) is continuous in t. By iterating this argument k times the
dt
proof is completed.

We will need the following, also taken from Tychonoff.
E. Let R be bounded and regular for Au=0, and let G(x, y) be the

Green's function for this equation and this region:

(llog^--g(x,y) n=~2
2π rxy

G(χ, y)=
1 1

—g(χ, y) n^s
^4ττ rxy

where g(x, y) is the solution to the problem

•(x,y)=0 xeR, yeR

ξeB, yeR, n=2
zπ r^y

r, y)=
I 1 1

ξeB, yeR, n=S .

Then G(x, y)=G(yy x), xeR, yeR.

Proof Let R3 be a sequence of regions, R3 Ci2 j+1C-R, which tend
to R with the property that the corresponding boundaries Bό are sur-
faces having continuous curvature and such that the distance from each
point on Bό to B is not greater than dό where the sequence d5 -> 0 as
j -+ oo. For such a construction see Kellog [1].

Let Gj(x, y) be the Green's function for R3. Under the hypotheses
on Rj it is well known that Gj(x, y) is symmetric (see Tamarkin and
Feller [3]). It is therefore sufficient to prove that

lim Gj{x, y)=G{xy y) .
j

To this end we note that G^>0: since it vanishes on B and is
large and positive near the pole y it must be nonnegative by the mini-
mum principle.

Let e > 0 be given, then if j is sufficiently large we have 0 <LG(x, y)

<:ε for each point xeH — Rjy and in particular on Bό. Hence
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0<±G(x, y)-Gj(x, y)=g(x, y)~gj(x, y)<ε

everywhere in Rό since that inequality is true on Bj. This completes
the argument.

3 Reduction of the data* We return now to the problem

Ju—Ut xeR, t^>Q

u(x, 0)=φ(x) xeR

u(ξ, t)=ψ{ξ, ί) ξ eB, £>0

under the assumption that R is regular for Δu=0. We show that φ(x)

may be assumed to be zero. Let Rf be a sphere (or circle) containing

R in its interior, and let φ'(%) be a continuous bounded extension of φ{x)

into R'. Define

uλ(x, t)=\ k(x-y, t)φ'(y)dy ,

dy being the element of area or volume, and k(x, t) being the funda-
mental solution

where

n

If u(x, t) be the solution to our problem, the function

v(x, t)=u(x, fy — u^x, t)

solves the problem

Δ'Ό ===Vf/ x e -tc, v ̂ s* \J

φf 0)=0 xeR

v(ξ, t)=ψ(ξ9 t)-ux{ξ, t), ξeB, t^O

and

4. The integral equations* We study now the problem

Ju=ut xeR, £>0

u(x,0)=0 xeR
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with

ψ(ξ, 0)=0, ξeB.

Since R is assumed regular for Au=0, let U(χ, t) be the solution to
the problem

M(x,t)=0 xeR

me, t)=ψ(e, t), xeR

Also since R is regular for Ju=0, the Green's function G(x, y) ex-
ists and is symmetric function by E, and if f(x) is differentiate the
function

g(x)=-\ G(x, y)f(y)dy

solves the problem

g(ξ)=O ξeB.

(See Tamarkin and Feller [3]). Hence if u(x, t) be the solution to our
problem it must also satisfy the integral equation

( 3 ) u(x, t)=π{χ, t)~\RG(x, y)~u(y, t)dy .

Conversely any solution of our integral equation which is differentiable
in x (and which attains the proper initial values) must also solve our
problem.

We apply the Laplace transform: let

£f {u(x, t)} ^w(x, β), Sf {U(x, t)} =v(x, β),

so that (3) becomes

( 4 ) w(x, s)=v(x, s)—s\ G(x, y)w(y, s)ds

which is a Fredholm integral equation with a symmetrical kernel
-G(x, y).

5 Restricted solution of the problem. To facilitate the solution
of our integral equations (3) and (4) we make additional restrictions
which will be removed later. We assume

(i) there exists T > 0 such that ψ(ξ, t)=0 for Ϊ>T.
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(ii) ψ(ξ, t) in addition to being continuous with respect to (f, t),

has four derivatives with respect to t which are also continuous with
respect to (ξ, t) and

&(£, O)=ψtt(ξ, O)=φttt(ξ, OHO, ξeB.

From Z) it follows that ΰ(x, t) has four continuous derivatives with
respect to t; and

ut(x, 0)=utt(x, O)=Uttt(x, 0)=0

for ίcGjR, by the maximum principle. From (i) it follows that

u{x, 0=0, for

Since — G(x, y) is symmetric in (x, y) it follows that the eigenvalues
of our problem are all real and in fact it is well known that they are
all negative. (See for example, Tamarkin and Feller [3]).

The solution of (4) is

( 5 ) w(x, s)=v{x, ^ ^

where φn(x) are the eigenfunctions for the kernel —G(x, y) and where

= 1

We must now invert the Laplace transform and show that
£f-ι{w(x, s)} is the solution to our restricted problem. To this end we
examine some of the properties of w(x, s). We begin with an examina-
tion of v(x, s).

By its definition we have

v(x, s)=\ e~stu{x, t)dt,
Jo

the integral being uniformly and absolutely convergent for xeR, and
^ s i S θ . In fact any of the x derivatives of v can be computed under
the integral sign, since the resulting integral is uniformly and absolute-
ly convergent for & s^>Q and x in any closed sub-domain of R. So
that, in particular,

Av{x, s)=[°e~stM(x, t)dt=O .
Jo

Furthermore v(x, s) is analytic for & s > 0, and bounded for
^ $ 2 > 0 , and by integrating by parts, under of course the restrictions
(i) and (ii) we get
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1 f
v(x, s) = - τ l utttt(x, t)e~stdt .

S4Jo

From this we see that

\v(x, 8)|^ΛΓi/|s*|,

which is of interest only for large |s| since v(x, s) is bounded.
Since

w(x, s)=v(x, s) — ̂  >̂ ' •?"--•

we get

Now Λn<I0 so that |(s/ΛTO) —1|I>1, and hence

But I G2(x, y)dy is bounded since G is continuous except for a

singularity at x like log||x—?/|| or l/|jατ—y\\, as the case may be. Hence

I v>(x, 8)| ̂  ^ + fl ^ f^ for \s\ ̂  1
|s|4 |s|3 |s|3

uniformly for xeR, &s^>:0, and

since v{x, s) is bounded there.

Hence w(x, s) is also bounded for all xeR, &s^0, and for large

1*1,

uniformly for xeR.
The inverse transform

(6) u(x, t)= 1

exists, and since est is bounded and w(x, s)=O(lj\s\s) converges uniform-
ly. Also
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du 1 fCΓ+ico

— (x, t) = — . 1 sw(x, s) etsds ,
dt 2πiJ° ~ί™

since the integral converges uniformly.
Since w(x, s) satisfies (4), by applying the inverse transform to

each side we are led back to (3), the integration under the integral
sign being permissible by the uniform convergence of the integrals in-
volved. Hence u(x, t) as given by (6) where w(x, s) is given by (5) is
the solution to the integral equation (3), and as such is a solution to
the heat equation in R and attains the proper boundary conditions. Let
us examine the initial values of u(x, t):

-J j σ + ίoo

u(x, 0)=—I w(x, s)ds , <7>0, xeR
2πi Jo -ίoc

dτ = KΛ_

which tends to zero as σ becomes infinite. Hence u{x, 0)=0, xeR.
This completes the solution in the restricted case.

6 Removal of the restrictions. We first remove the restrictions
(ii).

Let φ{ξ, t) be continuous, ξeB, £l>0, with ψ(ξ, 0)=0, ξeB, and
ψ(ξ, t) = 0, t^>T. By the Weierstrass approximation theorem there is a
polynomial p,£ξ, t) such that

\ψ{ξ, t) -pn{ξ, t)\ < l/4w , f 6 By 0 ̂  ί ^ Γ.

By the uniformity of the continuity of ψ(ξ, t) there exists tn, t'n
such that

{
, t)\<ll4n, for

U ^ ^ Γ ξeB

and without loss of generality we may, assume tn<Clj2n and T—t'n<^

l/2n.
Let qjt) eC 5 0 ̂  t, increase from 0 to 1 as t increases from 0 to

tn and be identically 1 for tn<Lt<Lt'n and decrease to zero again at
t=T, and have four vanishing derivatives at t==0 and at t=T.

Now let ψn(ξ, t) = qn(t)pn(ξ, t). This function is an admissible
boundary function under the restricted proof, which we have already
completed, Hence for each n there is a solution un{x, t) of the heat
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equation assuming these boundary values and of course zero initial
values. To show that this sequence converges to the solution to our
present problem we consider first

, t)-pn(ξ, t)\<j
An

for tn<Ct<Ct'n. For 0 <: t <I tn and t'n

\Ψ(ξ, t)-φn(ξ, t)\^\φ(ξ, t)\ + \φn(ξ, t)\

4̂ - An

but

w ' ^ " ^ An

so that

M£, t)~Φn(ξ, t)\<— ,

2n

and consequently

\Φn(e, t) - ^m(f, ί)i ̂  — , - / — - - , o ̂ « ^ r.
mm(m, n)

For xeR, O^

un(x, t) — ujx, t)

is a solution of Δu=ut in R and continuous for x e R, 0<Lt<LT. Hence
by the maximum and minimum principles for the heat equation this
function attains its maximum and its minimum on the bottom or lateral

parts of the space time cylinder defined by xeRy 0<Lt<LT
It follows that

\un(x, t)-ujx, t)\ <: max \φn(ξ, t)-φm(ξ, t)\
mm(m, n)

from which the uniform convergence of the sequence un(x9 t) in the
cylinder is clear. The limit function, u(x, t), clearly attains the proper
initial values, since each of the approximating functions does. And for

u(ξ, ί )= Umun(ξ, ί )= limφniξ, t)=φ(ξ, t),
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so that u{x, t) is the solution to our problem under the restriction (i).
Consider now any ψ{ξ, t), continuous for ξeB, £l>0, which vanishes

for £=0. Then let

0<t<n

0

and this time let

Ψn{ξ, t)=ψ(ξ, t)rn{t).

If un(x, t) be the solution to the problem with data ψn we will again

show convergence. For let (#, t) be any point, xeR, £l>0, and let n
and m each be greater than, say 2t. Then

\un(x, t)-ujx, ί)|<I max \ψn(ξ, τ)-ψm(ξ, τ)\

where the maximum is computed over all ξ€B, 0<Lτ<L2t. But this
maximum vanishes, hence un(x, t)=um{x, t) for n, m sufficiently large.
So that lim un{x, t) exists and is a solution of the heat equation and

takes on the prescribed initial and boundary values.
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