
A DETERMINANT IN CONTINUOUS RINGS

R. J. SMITH

l Introduction. In the theory, developed by Dieudonne [1], of
determinants of nonsingular square matrices over a noncommutative
field K the determinantal values are cosets modulo the commutator sub-
group of Kx, the multiplicative group of K. Since the matrix groups
Mn(K) and their commutator subgroups Cn have the property that
Mn{K)\Cn is independent of n, the latter cosets will serve just as well
for determinantal values, at least for theorems involving only the mul-
tiplication of determinants.

The rings whose principal right ideal lattices form continuous geo-
metries have many resemblances to matrix rings; in fact, the axioms
of Continuous Geometry are satisfied by finite dimensional geometries
over a field which are always equivalent to the right ideal lattice of
some matrix ring. Irrespective of questions as to the existence or
otherwise of fields in connection with a general continuous geometry
playing a similar role to that of the field of coordinate values in the
finite dimensional case we will show that multiplicative determinantal
theorems can be obtained for the more general ring; the determinants
will be cosets of the group of invertible ring elements modulo the clo-
sure of its commutator subgroup with respect to the rank-distance to-
pology in the ring.

The definition of a complete rank ring is given by von Neumann
[3, (iv)]. Essential properties of such a ring 3Ϊ and the associated lat-
tice of principal right ideals have been developed by von Neumann [3,
4] and Ehrlich [2]. We will assume throughout that 9ΐ is a complete
rank ring, of characteristic not 2; and that if the discrete case (matri-
ces over a field) applies, then the order of the matrices is at least 3.

2. Groups in a complete rank ring Using a notation similar to that
of [2], [3] we denote by © the group of invertible ring elements; that
is, we@c3ϊ if and only if the rank R(u) of u is 1.

DEFINITION 1. We denote by ^ the closure of the commutator sub-
group of @ in the rank-distance topology and by ffl the closure of the
group generated by the elements of class 2 in ©.

COROLLARY 1. $ and ffi are groups.
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Proof. Let {tn; tne&, n—lf 2, •••} be a converging sequence in
di. Then lim. R(tn-tm)=O implies

n,m-*oo

lim R{Kι-t^)= \im

and hence limt"1 exists in 31. By the continuity of multiplication
n—>o°

(limίn)(limίή1) = l so that l i m ^ e ® . The result then follows routinely
W->oo W-»oo W->oo

after , the observation that the inverse of a commutator is a commuta-
tor and the inverse of the general class 2 element 1 + r (r2 = 0) is 1 —r,
also of class 2.

LEMMA 1. Lei £eC 2 {be of class 2), se@. Then sts^eC*.

COROLLARY 2. Lei te C\ s e β . 2%ew 8t=tx8 for some txe C\

DEFINITION 2. We writh u=s for nonsingular (invertible) u, se?R
when n—ts for some teffi.

COROLLARY 3. The relation = is α^ equivalence relation.

LEMMA 2. Lei e 6e any idempotent of rank 1/2 and s be nonsingu-
lar and otherwise arbitrary in 3ΐ. Then for some tedi

Proof. The existence of idempotents of rank 1/2 is assumed in
continuous rings, that is, when the range of R is the unit interval. In
the discrete case the result has no meaning if the order of the matrices
is odd.

Now suppose the principal left ideal ((1 — e)se)ι = (g1)ι where g1 = eg1e9

9\—Qι [4, Chapter 15]. By the Pierce decomposition, s is the sum of
the quantities in the blocks of

)
es(l — e)

(e-g1)sg1 (e-g1)s(e-g1)

_ (l-e)sg1 (l-e)s(e-g1) (l-e)s(l-e)

where a matrix notation is used for clarity and to permit the compari-
son of later processes with standard matrix ones; we will simply equate
such a partitioned array to the sum of its members. We have

&=2/i(l - e)se=yλ(l - e)segx = y,(l - e)sgλ
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for some yιedi so that

{1+0i(0i—0iS0i)2/i(l — e)} s

(e—0i)s0i (e—gλ)s(e—gλ) (e—^)s(l — e)

(l — e)sg1 0 (1 — e)s(l — e)

for some 8*8 91 since

0iS0i+(0i—gιsg λ)y ι{l — e)sgx—g1sg1+gγ—gιsgλ=g1

and
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Multiplying on the left by (l~-(l — e)sgι)(l — (e—g1)sg1) and on the right

by (l-0is(β-0i))(l-0i8*(l-β)) gives

0i 0 0

0 (1 — ejs^e—gλ) (1 — 0)^(1 — e)

for some sλ e di and some tλ e ffi by Corollary 2.
Define gn+lt sn+u tn+1 for n=l, 2, as follows.
Let ((1 — e)sn(e—gλ gn))ι = (gn+i)ι where gl+1=gn+1 and (e—gλ —

• *"-"0n)0n+i(β—0i— • •—0n) = 0w+i We have, similarly to the above, the
existence of a tn+1effi and an sw+1 e 3ΐ such that

Γϊi. 0

0

(β-0ι 0/1+

Now,

2 "

so lim.R((l — e)sί(e--gι— — gri)) = O and in turn
i
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( 1 )

More strongly,
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lim (l — e)si(e—g1 #0 =

lim R(gn+1+ +gn+p)= lim {R(gn+1) +R(gn+P)} = 0 .

Hence, by [3, (iv), Section 3] l i m ^ H \-gn) — 9, say, exists in 3ί;

also, by the continuity of multiplication, g—ege and g is idempotent,
being the limit of a sequence of idempotents.

In order to prove that lim tn exists in 9ΐ and so belongs to ffi we
TO->oo

note that

n+1(gn+1 - gn+iSn9n+i)Vn+i(ί - e))tns

-(l-gn+1sn(e-g1 ^»+i))(l-0«+isί(l-β)) = ίn+iS

where s* 6 9ί and yn+1 is defined by the condition gn+1=yn+1(l — e)sne
The last two factors on the left side of (2) may be transferred after a
similarity transformation to the left of tns, by Corollary 2, giving

(l + Φ(gn+1))tns=tn+ιs

where Φ(gn+1) is an expression involving no more than 25—1 = 31 terms,
each containing gn+1 as a factor and so of rank <̂  R(gn+1). Hence tn+1

-tn=Φ(gn+ι)tn and

R(gn+i) -> 0 as n, p «• oo .

[3, (iv), Equation 3, (Hi)]

We conclude that

lim (1-& ^ K ( l
Π~*oo

exists in 3ΐ. It equals (1—
. ^ - ^ = 0 by (1). Then

gr) for some ίe3ΐ . Moreover, (1—e)

g 0 0

0 (e-g)t(e-g) (e-g)t(l~e)

0 0 (l-β)ί(l-β) J
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where R((e~g)t(e—g))<^l[2 and (e-g)t(e-g) has an inverse in the
subring ?fi(e—g).

By the proof of [4, Lemma 3.6], if (l — e)h(l—e) = h is an idempo-
tent of rank equal to R(e—g), then e~ g, h define quantities x, yeίli
such that

x, hy=y(e — g)=y, xy=e — g, yx—h.

We have that 1+x, 1+yeG* since x*=xh(e — g)x=0f yλ—y{e—
and so (1+#)(! — y)(l+x) = l — (e—g)~h+x—ye S1" whence

for some t* e 3Ϊ.

g

0

_ 0

0 0

0 (e~g)t*(l-e)

-Hfi-g)t(β-g) (l-β)ί*(l-β)

Since

R(-h(e-g)t(e-g))=R(e-g),

then

and by a similar argument to one above we have, for some t' e 9t,

0 0 0

0 e—g 0

0 0 (l

This useful lemma permits us to obtain an analogue in continuous
rings for a diagonalization theorem of Dieudonne [1, p. 30].

THEOREM 1. In a continuous ring 3Ϊ, let eλ — e, R(e)<l and s be
nonsingular. Then, for some t e 91,

Proof. If jβ(e)<l/2, a similar proof to that of Lemma 2 yields the
result.

We may suppose then, that

p - 1

i = l

2>

ί = l
for p>l

Let eι — eeιe be an idempotent of rank 1/2. Then, by Lemma 2, ̂ 8 = ̂
+ (1 — eijsxίl — βi) for some ^ e f i 1 and SiG^R. If p > 2 , we let e2=(β—βx)
βa(β—βt) be an idempotent of rank 1/4; then e2 has normalized rank 1/2

in the continuous ring 91(1— e j and (1 — e^s^l — eλ) is nonsingular in this
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ring. Hence, there exists t2 in the group £ f of 3t(l —β^ such that

where s2 6 ^ ( 1 - ^ ) c9t. Then

moreover, ^ + ^ 6 ^ as can be verified simply.
Proceeding in a similar fashion, we have eventually, for some sp-ι

and independent idempotents βt = ββiβ (i = l, •••, p—1) with i?(e4) = 2-*

Application of the first statement of the proof to the idempotent e — eι

ep-x in the subring SR(1 — βL ep-L) gives

ίpίl-β! βp-Oβp-iίl —βi βp-0

= e — βi βp-i + ( l — φ P ( l — e)

where

tpe9l(l-eL ev.λ), 6,+ --.+ep-1 + tpe ffi and 8,6 91.

The result follows.

THEOREM 2. /% α continuous ring $ — S1".

Proof. The equation utu~ι—ϊι is satisfied by any teC2, for some
w G @ depending on ί [2, Theorem 2.12]. Hence the arbitrary teC2

satisfies

( 3 ) t=utu-H-1

and fttgjϊ.
By Lemma 2, if alf α 2 e© and β is an idempotent such that R(e)

= 1/2, then α ^ M i , a2=b2d2 where 6^ 6 3 6 ^ and

The commutator c^Oaαί"1^1 has the form bd^d^d^1 with 6 e S1" by Corol-
lary 2. It is sufficient to show that d^d^d^1 e ffi and we need only
show that dβ^b^d-Ab^ where b^\ b&eSV. Write (l-e)d1(l-e) = λ9

Now e, 1 — e define a matrix basis stJ with 8n = β, s 2 2 = l — e, su—esu

=8 l a(l — e), s21 = (l — e)s21=s21e [4, Chapter 3]. Then
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and

V ^ 2 1 I ^ 1 2 ) — ^ 1 1 ^ 2 2 — •*•

belong to SV.
Noticing that λ has an inverse in 31(1 — e) we obtain without dif-

ficulty

( 4 )
e

0

0

λμ_

β

_0

Svzf

λμ _

e s12μ

-λs21 0

0 Snμ

o

and on left multiplying the last member of (4) by — (—s21+s12)

zλs21 0

0 μ\

0 s12λ

0

Retracting the steps of (4) we obtain the result.

REMARK 1. When 91 is a matrix ring over a field (discrete ring),
^, ffi are respectively the commutator group, and the group generated
by the elements of class 2. Provided the order of the matrices exceeds
two, as we assume, (3) holds and again ®tgS; also S1" contains the
group generated by the transvections which is shown by Dieudonne [1,
p. 31] to itself contain $. Hence Theorem 2 holds for rings of matri-
ces of order greater than two.

3. Determinants in a complete rank ring.

DEFINITION 3. Let $i be a continuous or discrete ring. We define
the determinant Δ(a) (a e ©) as the coset Sα.

We now proceed to obtain generalizations of some well-known re-
sults in determinants; the restrictions on characteristic and order apply
and the determinants, we note, are defined only for nonsingular ring
elements. Theorem 2, Remark 1 and the commutativity of the cosets
are used freely without additional reference.

( i ) A theorem on minors of the inverse.

THEOREM 3. Let c be nonsingular and e any idempotent in 3ΐ.

Then

Proof. ec-\l--e)){l~-e+ec-ιe)}A{c)

= Δ((l~e)c+e)
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(ii) The Laplace development. (Compare [1, p. 37].)

THEOREM 4. Let ez=e, xeΰϊ. If R{exe)=R(e), then

where eye is the inverse of exe in

Proof. A{x) — A {(1 — (1—e)xe eye)x]

• (1 — eye ex( 1 — e))}

— Δ{exe-\-(l—e)x(l — e) — (1 — e)xe eye ex(X — e))

= J(exe+(l-e))-J(e+(l-e)x(l-e)

(iii) Cramer's rule.

THEOREM 5. Let ax~b be satisfied by a, b, xe$ϊ. Then

for any idempotent e.

Proof, ax—b implies axe—be and so

= A(a)A(xe+(l-e))

= J(a)J{(exe+(l-e)xe+(l-e))(l-(l-e)xe)}

REMARK 2. The fact that Theorem 5 includes Cramer's rule can
be seen as follows.

The matrix equation Ax—b with A=(ai5) an nxn matrix and x
= {xi, ••-, xn}> b={bίf •••,&„}, the components being in a field K, can
be expressed
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Xn Xnl \bn bnl

where each vector is replaced by a ring element with identical columns.
Taking β = ̂  = diag (0, 0, , 1, •) with 1 in the ith place, Theorem

5 gives

= Δ(A)Δ{dmg(l,

If C is the commutator subgroup of K*, the isomorphism of M£(K)[Cn

and MX/C implies the preceding equation holds when we interpret Δ as
the Dieudonne determinant (K noncommutative) or as the ordinary de-
terminant (K commutative).
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