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1. Introduction. A birth and death process is a stationary Markoff
process whose state space is the non-negative integers and whose transi-
tion probability matrix

(L.1) P, (t)=Pr{z(t)=7|«(0)=1}
satisfies the conditions (as £—0)

At +o(t) if j=2+1,
(1.2) D)= | pt+o(t) if j=i—1,
1_(25+Fz)t+0(t) if j=1,

where 2,>0 for ¢=0, p#,>0 for ¢=1, and #,>0. The process is called
a queueing process if #,=0 and 2,=2 for all 7. The state of the system
is then interpreted as the length of a queue for which the inter-arrival
times have a negative exponential distribution with parameter 2, and
for which the service times have a negative exponential distribution
whose parameter p, depends on the length of the line. The classical
case of a single server queue corresponds to g,=pg, n=1, and has been
discussed by Reuter and Lederman [9] and Bailey [1].

The so-called telephone trunking problem (Feller [3]) arises from
a queueing process with infinitely many servers, each of whose service
time distribution has the same parameter p, so that g,=ng, n=1. Be-
sides these two special cases, we discuss a queue with n servers, each
of whose service time has a negative exponential distribution with the
same parameter p, so that g,=kp for 1<k<n, p,=npg for k=n. Our
methods can also be used to study queueing processes with several
servers whose service times have negative exponential distributions not
all with the same parameter.

A sample of the type of problems treated is as follows:

(1) to obtain a usable formula for the transition probability P, (t);

(2) to compute the distribution of the length of a busy period ;

(8) to compute the distribution of the number of customers served
during a busy period ;

(4) to compute the distribution of the maximum length of the
queue during a busy period ; and similar questions.
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At this point it would be of some interest to tie the investigations
of this paper together with the other work in this field. It is impor-
tant to emphasize that we are concerned primarily with the analysis of
non-stationary problems associated with the » server queuing process.
The equilibrium distribution of length of line for the case of exponential
service time and Poisson input is trivial to determine. The equilibrium
situation for the general input process with exponential service time and
n servers was completely resolved by Kendall [7] who, in addition,
evaluated explicitly the distribution of waiting time for a randomly ar-
riving customer. A non-constructive existence theorem for the stationary
distribution of a general input process and a general service time distri-
bution was given in [8]. In contrast, a considerable amount of insight
regarding transient behavior has been attained in the case of the one
server queue. For an elegant treatment of this case the reader is re-
ferred to the work of Takacs [10].

Part of the significance in resolving the problems related to the n
server queue even subject to the special assumptions of exponential
service time and Poisson input, in addition to its independent interest,
rests on the following two observations :

(1) the general queueing process with the corresponding appropriate
parameters behaves on an average like the exponential case, and

(2) the solution for the exponential case may be suggestive as to
the nature of the answers in the general case.

Our detailed analysis regarding queueing processes with exponential
service time, Poisson input, and many servers derives from our know-
ledge of the refined structure of birth and death processes developed in
[4] and [5]. We rely primarily on the theory of recurrence and absorp-
tion for a birth and death process as spelled out in [5].

In this connection, although the parameter p, is zero for a queue-
ing process it is convenient to consider, along with a queueing process,
related birth and death processes for which g, is positive. Such a pro-
cess has an ignored absorbing state at -1, a state in which the system
remains forever once it arrives there. When the system is in the zero
state and a transition occurs, the system moves to state 1 with pro-
bability A,/(4,+ ) and is absorbed with probability /4,4 #.

The infinitesimal matrix of the general birth and death process is
of the form

—(A+m) Ao 0
(1.3) A— M — (A +m) A
0 M2 — (A ) J

This matrix determines a system of polynomials by means of the re-
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cursion relations
Qo(x) = 1 ’
(1.4) —2Qy(@) = — (A + ) Q@) + 4 Q.(2) ,
—2Q(@) = 1@ -1(T) — (2 + 1) (@) + 2, Q1 1(2) -

It is shown in [4] that there is a positive regular measure ¢ on 0<w<
for which the orthogonality relations

(1.5) [[a@a@dg@="0 ij=0,1, -
J
where 7,=1, nn=_~"£l@‘i, are valid. In the case of a queueing
My =00 My

process, the measure ¢ is unique [4], and moreover the transition pro-
bability matrix P(¢)=(P,,(t)) of the process is uniquely determined by A.
It has the representation

(16) Pyt =m,[ e Q)@ ) 9@

This is an extremely useful form of expression for the transition pro-
bability function, and our first task will be to compute the polynomials
{@.(x)} and the spectral measure ¢ belonging to the various queueing
processes.

This is acecomplished in the following section based on a formula
which connects the Stieltjes transform of the spectral measure of the
process and the Stieltjes transform of the spectral measure of the
associated process. Once the Stieltjes transform of the spectral measure
is known, then recourse to the classical inversion formulas of Stieltjes
transforms enables us to determine the spectral measure itself. This is
done in § 4. Previous to that in §3 a discussion of the infinite server
queueing process is made. Here we recognize the corresponding poly-
nomials as the classical Poisson-Charlier polynomials which are known
to be orthogonal with respect to an appropriate Poisson distribution.
Some remarks are appended describing the nature of first passage dis-
tributions of the states of the system in this case.

In the following section the spectral measure and the polynomials
of the » server queueing process are explicitly determined. The poly-
nomials are found to be expressible as combinations of the familiar
Chebycheff polynomials of the first and second kind and Poisson-Charlier
polynomials.

In §5 the previous theory is specialized to the one and two server
process. Further detailed information regarding these processes is
collected.
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§6 is devoted to a complete study of various probability dis-
tributions associated with queueing problems of one and two servers.
The transition probabilities of the Markov process describing the wait-
ing line are explicitly determined. The distribution to the length of
the busy period, the distribution of the number of customers served
during a busy period, and other such distributions are exhibited. In
the following section the corresponding results for the n server queue
are written out. The proofs of these assertions for the general case,
exceedingly more complicated in detail, are carried out in the discussion
of Appendix A. In § 8 we derive the distribution of the maximum length
of line during a busy period. The second appendix summarizes the
properties of a new system of polynomials related to the Poisson-Charlier
polynomials.

2. The related processes. From a given birth and death process
with infinitesimal matrix (1.3) a new process is obtained by stopping
the given process whenever the state 0 is reached. For this new pro-
cess the state 0 is an absorbing state, and if we ignore this state the
process is a birth and death process for which the parameter g, is posi-
tive. The waiting time in any state ¢=1 has the same distribution for
both the original and the new process, and moreover both processes have
the same post exit distributions for each state 4=1. Consequently the
infinitesimal matrix of the new process (with the state 0 ignored) is

—(+pm) A 0 0
(2.1) I —(A+p) A, 0

’

which is obtained from (1.3) by removing the zero row and zero column.
The polynomials defined by

I Q"(«)=0, Q" (2)= _71‘ ’

0

(2.2)
1 —2Q(x) = 1, Q21 () — (A, 1£,) Q5 (@) + 1,Q0 (), n=1

are called the associated polynomials of the system {Q,(x)}. It is seen

that, except for the constant factor —}17 , they are the polynomials be-
0
longing to the new birth and death process. Consequently the transi-

tion probability matrix (Pu(t)), 2,7=1, of the new process is given by

(2.3) Pyy(t)= ~§iﬂj5:6””[ — AR (@)][— 4Q5" (@) [de(w)
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where « is the spectral measure of the new process. In [5, §8] it is
shown that the Stieltjes transforms of the spectral measures ¢ and «
of the two processes,

> da

0 Xr—s

T

(2.4) B(s)= rﬁé_A , C(s)= S

v x—8
are related by the identity

1

@5) Bee) Aot to—s— At Cl(s)

This identity is the basic tool used in calculating the spectral measure
of the = server queueing process. Once the function B(s) has been
found the measure can be computed by means of known formulas for
inverting the Stieltjes transform. See [5] for a discussion of this in-
version relative to the identity (2.5), and [12], [11] for the general in-
version problem.

By iterating (2.5) a relation will be obtained between the spectral
measure of the original process and the spectral measure of the process
obtained from the original one by stopping it whenever the state = is
reached. Denote the spectral measure of the original process by ¢,
and the spectral measure of the process obtained from the original one
by stopping it whenever the nth state is reached, by ¢,.,. Then if

(26) Byg)={ S
(2.5) gives
1
A
(2.7) B@s)=— — "
o -:#n s — Mns1Baii(8)

It is clear that

_ &, Bu(s)+f,
®9 B= Ba(s) o,

where «,, 8., 7z, 6, are (not uniquely determined) functions of s. Per-
missible choices for n=0, 1 are «,=1, f,=7,=0, 6,=1 and «,=0, £,=1/2,
71=—t, 0,=(A+1—s8)/A,=Q\(s). Substituting (2.7) into (2.8) it is found
that the coefficient functions can be determined by the relations

Upe1= _ﬂn+lﬂn ’
lnﬂnﬂ:an"['(]n'{"ﬂn_s)ﬂn ’
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Tn+1= _/1n+16n ’
znb‘nd-l:‘rn'i_(zn +)un—‘s)6n ]

and hence

2.9 ()= — HnQi2(8)Bo(s) —@u7(s)
& B PnQn-1(8)Bn(8) — Qa(5)

3. The queue with infinitely many servers. The polynomials be-
longing to this process will be denoted by p.(z)=p.(x, 4, ). They satify

f po(x)=1,
(3.1) —apy(®)=— Apo(x) 4 Api(),
l — 2P, () =0ty 1(€) — (A1) () + APpir (),  m=1.

They can be identified in terms of the Poisson-Charlier polynomials
e, a), [2, Vol. 2, p. 226], which satisfy

ez, a)=1,
3.2) { —zex, @)= —acy(z, a)+ac(x, a),
—xc,(x, a)=mnc,_(x, @) —(r-+a)c,(x, a)+ac,.(z, a), n=1.

Thus

(3.3) pulz, 4, p)=cn(f-§, ;) :

The measure with respect to which the Poisson-Charlier polynomials are
orthogonal consists of masses

j@)y=e? at £=0,1,2, --- .
xz!
Hence the spectral measure ¢ of the infinite server queue consists of

masses

e a”
n!

at z,=npy, n=0,1, ---

(3.4) dé(x)=

where a——i. From well-known properties of the Poisson-Charlier poly-
/1

nomials [2] it is found that

(3.5) Palkp)=pi(npr)
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(3.6) S pn(/zw)r—'zfi:e’(l— z) a="* .
n=0 n! o Y2

The representation of the transition probability matrix is

3.7) Pu(®)=n.| e @p@)dy @)
= Zi, % e M p(re)plre)et
In particular
(3.9) Pu()=e* 3 p,0u) @ "
=g @) (1 —g )",
and
(3:9) éu P(t)2=e" 2 pA(np) (“er_? A é‘a pk(rﬂ)%zf?i

—ga(l-2) (1-e—#5)[1 _ (1 _z)e—p.t]n .

The last two formulas are well-known and can be found by generating
funection techniques [3, p. 396].
Now consider the spectral measure « of the process obtained by

stopping the infinitely many server process when the zero state is reached.
Writing (2.5) in the form

- da(z) _ 1
(3.10) Cls)= SO oo S W(x)

and noting that

(3.11) Bls)= S @) a0

o x—8 i0 n l(np—s)

we see that C(s) is a metomorphic function whose poles are simple poles
at the zeros of B(s). Thus « is a discrete distribution whose masses
are located at the zeros of B(s). The zeros s,<s, <s,<--- of B(s) are

all simple, np<s,<(n+1)g, and the mass «, of the dlstrlbutlon a which
is located at s, is

(3.12) =11
ApB'(s,)
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(See [5] for a more complete discussion. The function here denoted by
B(s) is there denoted by B(—s)). For many purposes it is sufficient to
know s, and «, for only the first few values of n. For example the
first passage time distribution

Fy(t)=Pr{X()=0 for some 7, 0<r<¢t|X(0)=1}

of the original process is

(" 1—e=
(3.13) Fut)=p) 1= da(a)
e I
n=0 Sn

and for large ¢ only the first few terms are important.
For purposes of numerical computation the following facts, stated
for the case p#=1, are useful :

(i) for all a>0, ¢3"<0, and
da

(i) s, <spsi—1.
To prove (i) it is noted that

oo . ak EO , 0 ,
; [ ""Sn(a’)] a>
and hence
- ka*-! S a* dsy
(3.14) Eja k '[k sn(a)] T ;0 k 1[}6 Sn(az)]z ( >

Consequently it is sufficient to show that

a/k n-1 a}c
. LA N
i=n k W(k—s,) Z‘o kW (k—s,)

and

& (B—n)a”

o k n oo
Ig;J k '(k Sn) "glg‘ ’(7 _Sn) —|—’” el ko '(k 8n)

To prove (ii) it is observed that
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Bls, a)=

o @)= 2 '(k —s)
satisfies the functional equation
(3.15) 0B(s, @) _ _p(s, a)y—B(s—1, a)] .

oa

Because of (i) and (3.14) — 0B(s, a) >0 which, together with (3.15),
oa $=35p

gives B(s,—1, a)>B(s,, ¢)=0. Now B(s, a)=B(s) is monotone increasing

in each interval n<s<n-+1, n=0,1,2, ---. Consequently

Sp-1<8,—1.

The following table gives s, and B'(s,) for n=0,1, 2 and several values
of a.

~~~~~~ 7 Sl» - o B"i( 1)7‘~77 o - N o

a : First root At first root Second root B (8) S3 B/(s9)
\, .5 : . 65116 6. 54006 1.88388 10.21023 2.97092 25‘00957
\‘ 1.0 i .45027 8.47902 1.72376 8.90911 2.88131 12.91379
‘ 1.5 l .31745 13.63762 1.58297 11.60410 2.77136 13.41379
! 2.0 I .22517 23.92535 1.46574 17.38949 2. 66252 17 55924

4. The spectral measure and the polynomials of the n server queue.
For the n server process

=2,
4.1) [ ke, k=mn,
a { ny,  kzn
Hence
(4.2) Qi@)=pu(®, 2, p), k=n,

where p, is given by (3.83). The polynomials for £=n will be determined
presently. As in § 2 we denote the spectral measure of the process by
¢, and the spectral measure of the process obtained if the given process
is stopped whenever the state & (k=0) is reached by ¢.,. If

4.3) Bk(s)zg“§¢k(x).

o x—s
then from (2.9)

. By(s)= nFQ(")l(S) Bn(s) Q(O)(S)
(4.4) (s)= o (B —0.)



96 S. KARLIN AND J. McGREGOR

Because of (4.1), B,(s)=2B,..(s) and hence (2.7) gives

(4.5) By(s)="1TM ==V (-t np—s)~dnip
2nip

where, in accordance with (4.3), the square root is taken positive for
$<0. Substituting (4.5) into (4.4) and rationalizing we obtain, with

the use of the identity 2,_,7,[@,Q%: — QP Q,,_.]=1, where Xnn'n*—l(fz,)n , 1‘ ,
¢t/ n!

(4.6) Blo=— 2%

where

(4.7)  Ly(s)=42Q.(s)Q(s) +4n2pQ,_,(s)Q:>:(s)
—2(A+np—8)[Qu(8)Q2\(5) + Q3 ()@ -(5)]

+2(rn—1) 1( > V(A4+np—sy—4dnip ,
(4.8) K,(s)=42[Q5(8) — Qu-1(8)Qn+1(5)]
=4np Q% _(s)— Qn(s)Qn A(8)]—422Q()Q)-1(8) —Qn-o(s)]-
L.(s)= 4/{2I:Qn(S)Q?1(S) HQ1(8)Qu+1(8) + Qn- 1(S)QSP£1(S)}:’

+2(n—1) !( x )"—11/(21}'@";5)3;2@;;.

It is seen that K,(s) is a polynomial in s of exact degree 2n—1, with
a root at =0, and that the polynomial part of L,(s)is of degree 2n—2.
The Stieltjes inversion formula

(®9) o= "1im | 3 Be-+inas

gives ¢, at all of its points of continuity. The above formulas show
that § B(ax-+iy) converges uniformly to zero as 7—0+* if « is in any
closed interval containing no zeros of K,(x) and disjoint from the interval
|A+np—a|<1/4nip . Consequently over the interval

(4.10) [+ np—2| <1/ dnip

the measure ¢, has a continuous density ¢'(x) given by

(4.11) o (@)=""= 1)’<2>“V4my Qtnp—a)

2 (@) — Quer(@)Qun(®)
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In addition ¢, may have discrete masses at some or all of the zeros of
K,(x). This possibility is discussed in §7, and treated in detail in the
appendix.

To determine the polynomials Q.(z) for k=n, let Ry(x)=Q.:+(2),
k=—1. Then

(4.12) B(x)=@Q.(x),  R-(2)=0Q,-1()
and
(413) —(Z?Rk(il?) = n/sz _1(113) —(2 —{—n,u)R,c(w) + sz+1(x) , k=0,

which is a recurrence formula in which the coefficients are independent
of k. The {R,(x)} can be expressed in terms of the Chebycheff poly-
nomials {7%(x)}, {U(x)} which satisfy

(4.14) mP,c(w)=—;«Pk_1(a:)+ ; Pon@), k=1,
and
(4.15) Tox)=1, T (x)=z, Ufx)=1, U-(x)=0.

In fact, since

and

mo=() o)

are solutions of (4.13) for which

Vx)=1, V_(v)= Atnp—w , Wix)=1, W_(2)=0,
2np

we have
(4.16) Rk(x>=xﬂ”—~Q,,-l(x) V(@)
+np—x
_ 2np
He@—, M @ ]|

=Q.(x) Wk(x)—%Qnﬂ(x)Wk_l(x) , k=0,

Hence for £=0

(4.17) Qn+k<w)=(%’i)’°“[Qn(x)Uk(*—ljZZ—g)
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Y am@ue( )]

where U_,(§)=¢ and

Uk(s)z_SiPéfglﬁ , E=cosl, k=0.

The system of polynomials {Q(x)} is completely determined by (4.2) and
(4.17).

A similar argument shows that the associated polynomials {Q{(x)}
satisfy

(4.18) Dulw)= ( ey [Q%‘”(‘”)U (2_:/%’ )

]/TL/‘QU»I( YU, 1( 1‘1“/"5_»? ﬂ

for £=0.

5. The spectral measure of the one server and two server processes.
For the case of one server

G.1)  Qx)=1, l(m)__,,“ Qz(x):,i_t';f;x_ . !_%?__ :;'
(5.2) WE)=0, Q@=—7, W@=—ITL=2.

Using these values in (4.7), (4.8) gives

(5.3) By(s)= _‘_2(/‘_'1‘1‘8)4"214//1(;-%/&—3)2—42# '

The only possible pole of By(s) is at s=0, and

lim —sBys)=— [(— )+ p— 1]
$—0 2/1
0 if p=<2

177— if p>2.

Thus the spectral measure ¢ has the continuous density

(5.4) ¢ (@)= 21# Vi _(af“”‘ —2)

on the interval |A+p—x|<1V/4ix and has in addition a mass of amount
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;17;—2/17 located at x=0 if x#>2, but has no extra mass if #<A. The

polynomials are given by

69 awo-() ()

- E( ) e

The associated polynomials are given by

(5.6) Q\(w) = —ll(f;)'““ u(*HT), kzo,

and using (4.5) the function Bi(s) is

(5.7) Bl(s):ii_/:&%égﬁ;t@ .

Hence the spectral measure ¢, of the associated process consists simply
of the continuous density

(5.8) (@)= 5;12;1/42/1— (tp—a), [tp—z|<V &

We now turn to the two server case. The polynomials @,, Q are
again given by (5.1) and (5.2) for k=0, 1,2 and a straightforward com-
putation gives

_ A—s\ , ¢ 1—s p:l
K,(s)=4 ATy 4 LT L 2
(=t (A0 ) 4 A0y

= 4% [ =@ s+ 20+ 2001

L) =2 [(a—e)(2pr——29) 42/ 2+ 2p—sF —8gd]

and hence

5.9) By(s)= — A=9)@u—21=29)+ 2V (A+2u—s\—8ip
2s[s*— (244 p)s + A(A+2p)]

Consequently the spectral measure ¢ of the two server queue has the
density

10 )= A VBt 2y
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on the interval |A+2z—x|<1/81x, and in addition may have jumps at
one or more of the zeros of the denominator of (5.9). Considering first
the zero at s=0, we find that

(@p=0+V(2u—=2)
22p+2)

2u—24 .
EETASE 2u>a,
=[2,u+/2 1 "

0 if 2p=Z2.

lim —sBy(s)=

Hence ¢ has a jump of magnitude g"l% at =0 if 2¢>2, but no jump
M

at =0 if 2¢<1. The other zeros of the denominator are

_24p 1 Ay
8 5 5 p(p—42) ,

g,= 2Atp | 1y pw(p—42) .
2 2

These two roots are non-real if p£<42. Since Bys) has no non-real poles

we assume p=>42. If p=42 the denominator has a double zero at s=34.

A simple computation shows that in this case the numerator also has

a double zero at s=34, and hence no jump of ¢ is involved. If p>42

the residue at s, is easily computed. In fact

(1 2118, — 82 = " [L0p— 6721/ 1 —42) 36111

:[ﬁ:?‘L;‘_(BD-T ,

and hence

(A—8,)(2p—21—28,)+ AV (A+2p—s,)' — 8y

( 0 if =3V p(p—42)

2BV mpr—42) —p] if BV p(p—40) >pe .

The condition 8V u(z—42) >p is equivalent to l;' > gf. Consequently ¢

has a jump at x=s, of magnitude

ABV p(p—44) —p

V p(p—42) [204- p 4V (e —42) |
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) 9 . o 19
it Y>> , but no jump there if # <?.
172 Jump R

A similar calculation shows
that ¢ never has a jump at x=s,. If g>421 then

8, <A+2p—V'8ip

except that equality holds when ‘;:g - The polynomials are given by
_(2r "”[(H/t—x)(l—w) <2+2ﬂ—x)

5.11 o _<» - RO

G1)  Qu@)=() RE A G5

m‘/?EJ;QU (,H2ﬂ—ﬂe)]
2 PR Ve 5P
for £=0.

6. Probability distributions of various random quantities Associated
with the one and two server processes.

In this section we compute the distributions of some interesting
random variables connected with the one and two server processes.
The transition probability function of the one server process is

6.1)  Pyt)= Y( g‘)(i )j( ,/f,,; %)

AV e VA G ra) g,
p/ Inep—visu 2 px

where Y(z) is 0 if z<1, 1 if 2z>1, and the polynomials are given by
(5.5). The explicit expression for the distribution of waiting time,
W(t, £), of a customer arriving at time ¢ in the case of the one server
queue may be readily derived from the integral representation (6.1).
This is accomplished as follows: If at time ¢ the length of line (state
of the process) consists of » people with n>1 then the density of the
waiting time of a person arriving at the moment ¢ is the gamma density
of order n» whose scale parameter is p. The probability that at time
t the length of line is #» where initially the state of the process was ¢
is given by P,(t). Consequently, for £>0

6.2) 4Wit, &)= S Put) 5 g
=1 (n—1)!

Inserting the detailed formula (6.1) into the summation of (6.2) and
performing the calculation, we obtain the formula

(6.3) dW.(t, 5):3,(,1__2)6—(/4—)\)%5_‘_
©
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_|_e—ué R

11 Suwmm o7
y7% S

Q@ (e 2 5 e

A+p—-vViAn

where cos 0:11—;2 ;x_ and ¥ stands for the imaginary part. We have
/1

tacitly assumed that §->1 which of course is the interesting and prac-

tical case.
The evaluation of the sum is direct once it is realized that @Q,.(x)
can 'be expressed according to (5.5) in terms of Chebycheff polynomials.

Q@=(£)

and

n—

O o )

1 T o (k+1)8
Ud(e)= sin (k+1)0 _ . 7 (e )

. . where cos 0=z .
sin 0 sin 0

Of course P,(t) evaluates the probability that a person arriving at time
t doesn’t have to wait for his service to begin.

For computational purposes it might be remarked that the integrals
of (6.1) and (6.3) may be expressed in terms of combinations of Bessel
functions with imaginary arguments. This follows from the familiar

functions [9]. This indeed is true of the majority of formulas connected
with queueing. However, from the point of view of an understanding
of the theory, and also for many practical purposes, we prefer the answer
in the form of the integral representation.

The integral representation also enables us to determine directly the
rate of approach to equilibrium in the ergodic case. The conclusion is
immediate from relation (6.1) which implies the inequality

Py~ (=) V< atecensinn.
H ©/

The asymptotic behavior of P;,(¢) for large ¢ is easily obtained from
formula (6.1). For example, for the case when 1=p

2N A
Py(t)= 2;” SO e"”]/;uw T da ,

and when ¢ is large the main contribution to this integral is from the
immediate neighborhood of x=0. In fact

1 Sle"“ 1 S” et dE
P t)~———7 -\ = - = — -
wlt) A dove T m e v
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and hence
1
Py(t)~—~--—— as t .
w(t) 'I/n',u ‘ —> 0
The cases when A>p or A<pu can be dealt with in a similar way.
Now consider the distribution of the length of a busy period, or
what is the same thing, the distribution of the first passage time from

state 1 to state 0, or what is the same again, the distribution of the
time of absorption into the zero state for the related process (§2), given

that the related process starts in state 1. If P,(f) is the transition
probability function of the related process, and ¢, is its spectral mea-
sure, then the probability F,(¢) that absorption occurs before time ¢ is

t~ ®1—g-7t
)= Pote) de=p| 1= apu(o)
0 0 X
The Stieltjes transform of ¢, is given by (4.5) with n=1, and hence ¢,
consists of the density

@)= g V= (1 = a)
2mAp
on the interval |14p—a|<1V/44¢. Consequently

VNG -z
(6-4) I’.’w(t): 1 S* 1~ AL 1'_6

13 R
L—e (A — )
P s Vddp— A+ p—2x) de
is the probability that the length of a busy period for the one server
queue is <t. In a similar way the probability F,(t) that the queue
will become idle before time ¢ when there are k customers at time zero
can be computed. Using the fact that the associated polynomials are
given by

1/ p\" A p—w
s =1 (2) v (EEr),
(6-5) @) A\ V4
one obtains

+ 1+ VANH -z
66)  Fap= L [

2mA Jx+p—vikp x

k—1
: -’-f)TU_<LJC/iT—f£) Lip— (At p—a) d .
(2 k-1 ]/43# Vv r—A+p )

It is also possible to compute the distribution of the number N of cus-
tomers arriving during a busy period, or more generally the number N,
of customers arriving before the queue becomes idle given that initially
there were k& customers in the queue. For this purpose we consider the
random walk whose possible states are the integers 1,2,3,.-- and an
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ignored absorbing state at 0. The one step transition probabilities of
the random walk are

p;, if j=¢+1,
P,=q, if j=i—1,
LO if j=ior |j—i|>1,

where
eru_ A R A

p= "=t =
R RV A htp Atp

These quantities are independent of ¢ and we denote then by », q.
When the particle executing the random walk is in state 1 and a
transition occurs, the particle goes to state 2 with probability » and is
absorbed into the zero state with probability g.

Each sample function of the associated queueing process generates
in an obvious way a sample function of the random walk process, and
it is clear that the random variable NN, which is the number of customers
arriving before the queue becomes idle, is the same as the total number
of steps to the right made by the random walk before absorption at
zero occurs. The total number of transitions of the random walk pro-
cess which occur before absorption is a random variable M, related to
N, and the initial state % in such a way that

(6.7) M,=k-+2N, .

If P}, denotes the n step transition probability of the random walk, then

(6.8) Pr{M,=m}=qPy:"

and hence

(6.9) Pr{N,=n}=Pr{M,=k-+2n}
=qPyrtt .

Thus the distribution of N, is known if P} is known.

An integral representation for P}, is obtained as follows. The
random walk determines a system of polynomials by means of the
recursion relations

{Rl(x):l . R(x)=0

6.10
(6.10) aR(x)=qR,_(x)+ DR, (), n=1.

It is seen that R,(x) is a polynomial in = of exact degree n. It can be
shown that the polynomials R,(x) are orthogonal on —1<x<1 with
respect to a uniquely determined measure «a of total mass 1. A proof
of this fact which covers not merely the queueing case, but also the
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random walk arising in a similar way from a general birth and death
process, is outlined in [5]. It is rather obvious that when a"R,(x) is
written as a linear combination of the polynomials {R.(x)} the coefficient

of R (x) is Pj. Since it can be shown from the recurrence formulas
that

Sl_lRi(x) da(x)= -;* , n=1,

n

where n,’f:(py—l, it follows that
q

6.11) P{”j:nj(Sl_lx’”Ri(x)Rj(w) da(z) ,

which is the desired representation of Py. Combining (6.9) and (6.11)
we get an expression for the probability distribution of N, in terms of
the measure «. In particular the distribution of N=N,, the number of
customers arriving during a busy period, is

(6.12) Pr{N=mn} :qgl_lxm da(z) .

The polynomials which satisfy the recurrence relation (6.10) are easily
found to be

(Y g (Gtme
(6.13) Rn(x)—(l) U,. ( 2 )
from which it follows that the measure « consists of the density
/ 2 24p ' ( Aty

14 1—
6.19) (@)= T 1/4/1;1 ]/ 1/42;1 ao)
on the interval |z|<-= ‘/411 . Consequently

2 app (A e

15 _n 2 2t S“*‘ e/ 1—( AT 2) q

(6.15) Pr{N=n}= A-{-,u < Vi o ]/ (1/41# ) x

= (VY _%S e/ T8 de .
Atp Atp mJ-1

We now turn to the two server queue. The transition probability
function is

6.16) Pyo=Y(%")- 3&3;; L2 (_2*; J
o0\ A3V p(p—42) —p] coi( A Yesio s
+ Y( ) V p(pe—42) [22 4 p+V p(pr—42) ] (2#) e Q(8,)Qy(s.) +
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i A+2p+ VBN _ 1/81/1 (2_,_2/1_37)
* (2,;) o Yo v ) o et 10270

(unless 7=0 in which case 2(; )j is to be replaced by 1), where Y(z)

/1
is 1if 2>1, 0 if 2<1, and

(6.17) 32:2?;/{+ ;1//1(;;—41) ,

and where the polynomials Q,(x) are given by (5.11). Once again the
asymptotic behavior of P,(t) for large ¢ is clearly exhibited by (6.16).
In fact the first term on the right is either zero or else the largest
term, and the second term, if not zero, is the second largest term.
Finally the asymptotic behavior of the third term is a simple matter to
investigate. For example if 2=2p¢ it is found that

1
4Vt

By arguments entirely analogous to those used in the derivation
of (6.3), we may obtain the form of the distribution of waiting time
for a customer arriving at time ¢ in the two server queue. In fact, if
Wi(t, §) represents the cumulative distribution of waiting time for a
person arriving at time ¢ where at time zero the state of the process
was 7, then

Pau(t)""

AWt €)= S Pualt) (2('”)71 zi erde, £>0,
with P, ,(t) given by (6.16). We restrict attention only to the ergodic
case when 21>1. Use of (6.16) in conjunction with (5.11) establishes
the ultimate formula

%% 2/‘ 2 —(2m—N)E
6.18) dW, ,E dé= . D A

+y( 2p >2zs Qi(s))e="V/8lp e
p V pp— A2+ p+V m(p—40) ]

{[ ()+/t—9zz(l s,)e* 2/1( 2 )]QNM 0 }

4___5)\+‘2;1.+ %5m e"”Q(x)
i

I
L 1/8)
T g M e v ala— @A et 20+ 28]

[(;+y x)(/l @) ‘/2/1(2190)} EVER o }dx
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A+2p—s, _A2p—x
where cos 0*=""27""2 and cosf="1° ",
¢ V'8 V8

A Dbusy period of the two server queue can now mean either a time
interval during which both servers are busy, or else a time interval
during which at least one server is busy.

Considering first the busy period for both servers, suppose the pro-
cess is initially in state 2, and let T be the time at which the process
first reaches state 1. Then Pr{T<t} is the probability of absorption
before time ¢ for the second associated process. Now the second asso-
ciated process is similar to the first associated process of a one server
queue in which the parameter g has been replaced by 2¢. Hence using
(6.4),

+2+ VBAR 1 __ -2
(6.19) r{T<t}= L*SA e "V 8ap— (it 2p—ay de
2 x

N+2u~ VBAR

The distribution of the time before state 1 is reached when the initial
state is k& (£=2) can be obtained from (6.6) in a similar way. By another
argument of this kind it is seen that the distribution of the number N
of customers arriving during the busy period 7' is obtained by replacing
¢ with 2¢ in (6.15). Thus

6. Pr{N=nj— 2I (V8 g m/T—8 dt .
(6.20) riN=nj= H (V) e

Next let us study the time during which at least one server is busy.
Thus we suppose the initial state of the process is 1 and we denote by
T* the time when the zero state is first reached. If ¢, is the spectral
measure of the associated process, then by our previous argument

1= 4y (a) .

(6.21) Pr{T*<t} = ,lg

Now the Stieltjes transforms B(s) and B,s) of the spectral measures
of the first and second associated processes are related by

1
6.22 Bs)=
(6-22) &= 2B

and from (4.5)

(6.23) By(s)= ’z+2/‘—3”‘1/(;x+2#~s)2—82/1
‘U

Hence
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(6.24) B(s)= L . Ams=V(@+2p—sy—8i
2p s—(px—2)

It follows that ¢ (x) has the continuous density

a1 VBlp—(A+2p—a)
¢i@)= 2 o (i)

on the interval |A42x¢—x|<1v/81¢, and in addition has a jump of
. -2 . . .

magnitude p=24 at x=p—2 if #>22, but has no jump if £<21. Thus

(6.21) becomes

e~ t(—A)

6.25) Pr{T"<t}=Y JL) gyl
6.25)  Pr(T-<t=Y( [ Jp—201=0"
1 S" Tl VBIp—(t2p—a) o
27 Invau—van @ x—(p—2) ’
where, as usual, Y(z)=1 if z>1, 0 if z<1.

It is natural to next ask for the distribution of the number N* of
customers arriving during the busy period 7*. This again leads to the
study of a random walk on the integers 1,2, -.-- with an ignored
absorbing state at 0. The polynomials of the random walk satisfy the
recursion relations

IRl(ac):l , Ryx)=0

(6.26) wR, () =p.By(x)
lan(w)=an_l(w)+pRn+l(x) , n=2,
where
=1 -2 __ A
2’ A4-2p At p

To compute the spectral measure « of this random walk we consider
also the associated random walk obtained if the given one is stopped
whenever state 1 is reached. Denoting the spectral measure of the
associated random walk by # we look for a relation between the Stieltjes
transforms

[ dae) [ i)

-1 r—=z2 -1 r—=z2

analogous to the relation (2.5) for the spectral measures of a birth and
death process and its associated process. Such a relation, applicable to
a general random walk and its associated process, is proved in [6] and
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may be stated as follows. If the state space of the random walk is
0,1,2, --- and the one step transition probabilities are

¢ if j=i-1,
.
(6.27) py="t D
lpl if j=i41,
0 if [j—i|>1,

where p,>0, ¢,>0, 7,=0, then the spectral measure « of the process
and the spectral measure 8 of the associated process are connected by
the identity

(6.28) Sl da(2) :_,,,,,4,,_,1/?’10 L
-1 x—s  1Ty—S _qS dp(x)
P 1 a—s
Now let «, denote the spectral measure of the random walk determined
by the polynomials (6.26); let «, denote the spectral measure of the

associated process and «, the spectral measure of the second associated
process. First applying (6.28) with a=«,, f=«a,, we get

o day() _ —1

- —_ 1 -
Las s+p1(1§_1%%%)

(6.29) S

Then applying (6.28) with a=«a,, f=a,, we get

(6.30) S do() _ —1
-1 r—s8 S+pqg »@gd,(x)
-1 x—8§

But clearly a,=a, so from (6.30)

(6.31) S day(@) _ —s+V/s'—4pq
' -1 g—3§ 2pq

where the radical must be determined by analytic continuation from
positive values for s>1. Now (6.31) and (6.29) give

wx—s  {1-(G—1p}s'—4pg

(6.32) S‘ day@) _, (r—1)s—V'$—4dpg_

where r=2p[p,=2+p)/(A+2¢) and y—1=2/(242p¢) is positive and less
than one. The Stieltjes inversion formula giving «, at all of its points
of continuity is

(6.33) (@)=L lim S SD _ da(y) } d

T -0+ J-1-¢ —1y—§—1:77
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and of course a has a jump at a point z, if and only if its Stieltjes
transform has a pole there. A simple computation shows that the right
side of (6.32) has no poles if 1<y<2, which is the case in our problem.
Thus «, consists of the continuous density

(6.34) az)y=T V=o'

m 4pg—{1—(r—1)}a’

on the interval |x|<V'4pg, with y=2p/p,. It is easy to express the
probability distribution of N* in terms of «, the result being

Yapg
% gl — M 2n ]
6.35)  Pr(N*=n) Hpg_@x (@)
ZE_#_(L/_SJa)“ S gn_ V18 4.
7 A2p\24-2p -1 1_4/1(24—;:)_62
(A+2p)

7. Results concerning the n server queue. The method used in § 5
to compute the spectral measures for the one and two server queues
can be used in the same way to compute the spectral measure of a
queue with three or more servers. Although the description of the
spectral measure ¢ in terms of the parameters 2, #, and the number »
of servers becomes more and more complicated as 7 increases, it is
nevertheless possible to deduce certain general features of ¢. These
general features are stated without proof in the next paragraph, and
the proofs are supplied in the appendix.

The spectral measure ¢ of the n server queue consists of a continu-
ous density ¢’(x) on the interval

Atnp—1V dndp <x<A+np-+V dnip

and in addition there may be a finite number of isolated jumps. The
number of such isolated jumps is one of the integers 0,1,2, ---, 7 and
these jumps all lie in the half-open interval

0<z<i+np—V 4dniy .

If np>2 there is a jump at =0 of magnitude p given by

T OO

but if np<21 there is no jump at x=0. We form the polynomial

(7.2) F(V' )= QuA(V'1nb—1)) V' nb Q,(2(V/nb—1))
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which is of degree 27 in /b . It has a zero of order » at 1 b =0
and n simple zeros V'b,,1 b, +-+, Vb, with 1=b<b,< -+ -<b,. The
spectral measure of the » server queueing process has exactly £ jumps
to the left of x=A+npg—1 4nly if and only if

bk<agi < bywy

where we take b,=0 and b,.,= 4.

For the case n=3 the three critical values b, occur at b=1/3 and
the two roots of 126°—112b+147=0.

In discussing the busy period distributions for an n server queue,
one has to distinguish #» different cases. In the simplest case, one
observes the time interval 7' during which all » servers are busy—that
is, at time zero the process is in state n and T is the first time at which
the process is in state m-1. The distribution of T is of course obtained
from (6.4) by replacing # with ng, so that

1
78) Pr{T<t}=_-_
(7.3) r {T<t} ol

A+np+Ninan 1 — p- 2t R

S ’ . g 1veﬂ*l/471/1,11—(/1+n,u—ac)2d.');
A+nu—14mAn €

is the distribution of a busy period for all » servers. Similarly, the
distribution of the number N of customers arriving during a busy period
for all n servers is obtained from (6.15):

= (VAnip \*2 Sl e
(7.4) Pr{N=Fk} l+n,u(7¥3{p"> 2[' e1-g e

In the next simplest case one observes the time interval 7* during
which at least n—1 servers are busy—that is, at time zero the process
is in state n—1 and T is the first time at which the process is in state
n—2. After a computation similar to that in (6.21)—(6.25) we find

1—g-t@m-D E=1)

(7.5) Pr{T*<t} :y(;flR ,)(,l—nz) L~

(n—1)(z—2)
L1 SJ“ 1= Vianp—Q+np—a) g,
2m Ja+npu- Yimag X x"_(n_l)(/‘l_z)

where Y(z) has its usual significance. If now N* is the number of cus-
tomers arriving during a busy period for (r—1) of the servers, then
from (6.34) with

,g=_" g ht(n—1)
A+np A+np A+np

we obtain
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g = 2 =DV Andp (' e V1-¢

o sg = 2 (n=Dp(V/ dnap A de .

(1.6) Pr (N*=h} =2 HW( iy ) S_f A, ¢
(A+np)*

Using the same kind of techniques it is possible to find the distri-
bution of the length of a busy period for m of the nm servers, and the
distribution of the number of customers arriving during such a busy
period.

8. Maximum length of the queue during a busy period.

Consider for the moment a general birth and death process with
parameter A,, ¢, and with #,>0. Suppose the initial state is ¢ and let
g>. It was shown in [5] that the probability that absorption at zero
occurs without the state 5 ever being visited is

(8.1) A= ,uc,S: Q=) @i%,@l

where ¢ is the spectral measure of the process on the states 0,1, 2,
«..,7—1 which is obtained from the original process by stopping it
whenever the j state is reached.

We first use this result to compute the probability ¢, , that during
a busy period for all servers in an n-server queue the maximum length
of the queue is always less than n-+j. This of course is just the pro-
bability that when the nth associated process starts out in its zero state,
absorption occurs before it ever visits the jth state, and hence (8.1)
gives

A similar application of (8.1) to the (»—1) st associated process gives
the probability ¢7 ; that for the n server queue during a busy period
for at least n—1 of the servers the length of the queue is always less
than n—14j. The result is
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(n—1)p (ﬂf")j_l
Ao e g
$ = . e\ .
1 (n—1)p (/f) -1
()

Appendix A. The nature of the spectral measure for the n server queue.

In this section we present the proofs of the statements made con-
cerning the structure of the spectral measure for the n server queue.

Let ¢, be the spectral measure of the n server queue, ¢, be the
spectral measure of the kth associated process, and let B,(s) be the Stielt-
jes transform defined by (4.8). The relation between B, and B,., is

(&.1) Bk(s)—7+kp—s—(k+1)zp3,;:’;fs)

and B,(s) is given by (4.5). In the interval s,=A1-+np—1 4nip <s<2
+np+1 4ndp =s, the imaginary part of B,(s+1ir) converges to a positive
limit as r—0*. Consequently ¢,(z), and by induction each ¢, (x), 0<k<n,
has a continuous spectrum in this interval. From (A.1l) it is seen that
¢. has a jump at each point x=s where the denominator i1+ku—s
—(k+1)iuBy..(s) has a simple zero. These jumps cannot occur in the
interior of the interval of the continuous spectrum because there the
imaginary part of the denominator is negative, and they cannot occur
at the ends of the interval because there B,(s), and by induction each
B,(s), has singularities which are not poles. From (4.5) it is found that
¢, has no jumps; in fact B,(s) increases steadily from zero at s=—oo
to the value (nip)~'? at s=s, and increases steadily from the value
—(nAp)~'? at s=s, to zero at s=+oo.

To locate the jumps, if any, of ¢,_,, consider the places where the
graph of the straight line y=14(rn—1)z—az intersects the graph of
y=nlpB,(x). No intersection occurs for x>s, because

A (m—1)p—s,—nipB,(s)= —p—V nip<0 .
Moreover, since
A+(n—1)p—s,—nipB,(s) = —p+1 nipy

and in view of the monotonicity of the two graphs, there is one inter-
section to the left of x=s, if —p+1nip <0, or equivalently if p>na,
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and no intersection if #<nl. Thus ¢, , never has a jump to the right
of the continuous spectrum and has one jump to the left of the conti-
nuous spectrum if g>nl, no jump if p<na. The jump, if p>ni, is
easily found to be at a=(n—1)(z—2).

It will be shown that none of the measures ¢, have any jumps to
the right of the continuous spectrum. This has already been verified
for ¢, and ¢,_;,, and we proceed by induction. Suppose it has been
established for k+1<r=<n—1 that ¢, has no jumps to the right of s
and that B,(s;) is finite, negative, and greater than —(niz)~'. Since

From (A.1) we get

Bs)= ol
(n_k)f‘+21/%2#+(k+1)RF’BK+1(31)
and by virtue of the assumed inequality for r=k-+1 it follows that
B,(s,) is finite, negative, and greater than —(niy)~'%. Since By.(s) in-
creases steadily from its finite negative value at s=s, to zero at s=oo,
it follows that the denominator of (A.1) is not zero for s>s, and ¢, has
no jump to the right of s;. This completes the induction.

Now suppose it has been established that for some &k, 1<k +1<n—1,
and some choice of 1 and g, the measure ¢,,; has exactly » jumps. Let
these jumps be at o <w,<---<w,. Then z,<s, and in each of the r
intervals —oo <s<ay, £, <s<&Xy,++-, x,.;<s<x,, the function (k+1)ApB;..
increases steadily to -+, and thus in each interval its graph intersects
the graph of A+kp—s exactly once. Consequently ¢, has exactly one
jump in each of these intervals. In the interval z,<s<s, the function
(k4+1)ApB,., increases steadily from — oo to its possibly finite value at
sy, and in this interval ¢, has either one or no jumps. Thus ¢, has at
least  and at most 41 jumps. It follows that for any 4, ¢ the num-
ber of jumps of ¢, is at most n—*k.

Setting s=s, in (A.1)

1
A2 BB)=— o,
‘-2 = o i (W (et DBy
The necessary and sufficient condition that ¢, have one jump more than

¢ue1 is that this expression be negative. Now it follows by induction
starting from

1
Buo®)= e
that for k<n—1,
Bi(s))~ f—lf -
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as p—o with 1 fixed. Consequently, for any fixed 2, ¢, has exactly
n—k jumps for all sufficiently large #. On the other hand it follows
by induction that for each k<n-—1,

liI? V' uBy(s,), 4 fixed
>

exists and is positive but less than (n1)-2. Consequently, for any fixed
1, ¢, has no jumps for all sufficiently small z.

In order to make a more careful study of the number of jumps of
¢, we introduce the associated families of polynomials {Q%¥(x)} defined
for k=—1 by

Q" (@)= — % Qu(x)

and for k=0 by the recursion formulas
Q¥(x)=0 for r<k,

© (@)= — % ,

—2QF(@) =1, Q21 (x) — (A + )@ (@) +2Q L (), r=k+1 .

It is seen that except for the constant factor —(1/2), the polynomials
Q¥(x) with k fixed are the polynomials belonging to the (k+1)th as-
sociated process and are orthogonal with respect to ¢;.,. Applying (2.9)
to the kth associated process we obtain

_ 1 npQE(s)By(s)— Qi (s)
Blo)= npQEs(8)B.(s) — QF(s)

In terms of the variable b=pg/1 we have s,=A(1—1/nb)’, nuB.(s,)=1"nb.
If we let

PO b)= = Lo 0o Qe nby)

then
(A.3) Bus)=1 . P¥0/ b))V 0P b)

A P¢OA b)—V mPEOA D)
The quantities P™(¢) satisfy
(PEO=0. PRE=1,
—(n—1)EPPE)=rP(§)—2V n PP(€)+ PR(¢) ,

for k+1<r<n. By virtue of the form of this recurrence formula it
follows that for each fixed & the polynomials P®(¢), k+1<r=<n, form

(A.4)
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a finite system of orthogonal polynomials and that the polynomials
PE(E), k+2<r<m, are the corresponding associated polynomials. Wri-
ting (A.4) in the form

PEE)—V nPPE)=V n[PPE)—V n P& ()]
+(n—r)[P2(8) —EP(8)]

it is easily shown by induction that all of the polynomials P%(§),
P(E) =V 0 PP (€), k+1=<r=<mn, are strictly positive for &=0.

Now the polynomial
G2 =P8~V n PR ()

is a quasi-orthogonal polynomial, of exact degree n—Fk, belonging to the
system of polynomials PY*~", and the corresponding associated polynomi-
al is GP(£). Consequently G¥-2(§) has exactly (n—Fk) distinet positive
roots, say i l<&Fl<... <& and the n—k—1 roots of G¥(¢) lie one
in each of the open intervals &:-'< &< &k:].

The quantities B(s,) can be computed by using the recurrence for-
mulas for the polynomials P (£). In particular

- -t 1
Bl =0y @ —v b= v/n
-1
Wb n—1b)

which checks with an earlier computation. Thus we see that the root
&2 of G**(&) is V', and we already know that ¢,_, has no jump if
Vb <& and has one jump if Vb >&'"%. Suppose it has been esta-
blished that ¢,., has no jump if /b <&, has » jumps if &<V b <£&%,,
for r=1,2, ---, n—k—2, and has n—k—1 jumps if Vb >&:_,_,. This
property is easily extended to ¢, by induction. In fact ¢, always has
either the same number of jumps or else one more jump than ¢,.,, and
it has one more jump than ¢,., if and only if the expression

Bs)= L GP0/b)

V2 Egkjﬁ(vb;j
is finite and negative. The result follows because of the interlacing of
the roots of G¢-2(§) and GF(é).
Summarizing, the number of jumps of ¢, to the left of the conti-
nuous spectrum is equal to the number of roots of G¢¥-Y(¢) which are
less than 1”5 . In particular the number of jumps of ¢, the spectral

measure of the n server process, is equal to the number of roots of
the polynomial
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GEIE =P (O =V n PER(E)
=6QU1—6V n)) —&8V 1 Qu (A1 —EV 0 )]

which are less than 175 .

Appendix B. The random walk polynomials derived from the infinitely
many server queue.

In §6 we had occasion to consider, along with a birth and death
process, the imbedded random walk. A system of polynomials, which
are useful in a variety of problems, arises in this way from the infinitely
many server process. These polynomials depend on a parameter a=2/p
>0 and will be denoted by r,(x, @) or sometimes by 7.(x). The purpose
of this appendix is to list their useful properties.

The polynomials are defined by the recursion formulas

ro(z, @)=1,
ary(x, a)=n(2, a) ,
(n+a)zr,(x, a)y=nr,_,(z, &) +ar,.(z, a), n=1 .

They are orthogonal on the interval —1<x<1 with respect to a mea-
sure ¢ which consists entirely of jumps. If we let

ze=4 .9 ,k=0,1,2,---
k+a

then ¢ has equal jumps at z, and at —«, of magnitude

O'k:—l‘—alf —(k—_I_a’)k k:()r 1’ M

2 k+a klet+a’

and these have been normalized so the sum of all the jumps is one.
The orthogonality relation is

o - s
2 T"(xk)rm(xlc)o-lc + Z To(— xk){rm( —&,)0 = /;- B
k=0 = .

where

A generating function is

a(1-22)/x2

=3 7 r
S (@, @) 2= e”’(l _ ﬁ) ,
n=0 n! a

and from this explicit representations of the polynomials can be ob-
tained. For example
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where c,(x, @) are the Poisson-Charlier polynomials.
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