ON THE LEBESGUE AREA OF A DOUBLED MAP

Paul Slepian

If X is a metric space and A is a non-empty closed subset of X we construct a space Y by doubling X about A in such a way that X is imbedded homeomorphically in Y, the image of A is the boundary of the image of X, and X is also homeomorphic to the closure of the complement of its homeomorphic image in Y. In this way any function f on X may be doubled in a natural way to yield a function F on Y. In 17 it is shown that if X and A satisfy certain triangulability conditions, and f is continuous to Euclidean n space, E_{n}, with $n \geqq k \geqq 2$, then $L_{k}(F) \leqq 2 L_{k}(f)$, with L_{k} denoting k-dimensional Lebesgue area. In 18, 21 and 22 the restrictions of 2-dimensionality are used to show that, when $k=2$, we have in fact $L_{2}(F)=2 L_{2}(f)$.

In particular if (X, A) is a 2-dimensional manifold with boundary, then Y is a compact 2 -dimensional manifold. Furthermore, if X is finitely triangulable, then X and A satisfy the required triangulability conditions and $L_{2}(F)=2 L_{2}(f)$. Thus to compute the Lebesgue area of f, we need only to know the Lebesgue area of F, whose domain is a compact 2-dimensional manifold.

Our terminology is consistent with [1]; however, some additional notations are cited below

1. Notations.

(i) 0 is the empty set,
(ii) $\{x\}$ is the set whose sole element is x.
(iii) $\sigma A=\{x \mid$ for some $y, x \in y \in A\}$.
(iv) R is the set of real numbers.
(v) $A^{\cap}=\{x \mid x \subset A\}$.
(vi) $N(f, A, y)$ is the number of elements, possibly infinite, in the set $\{x \mid x \in A$ and $y=f(x)\}$.
(vii) $\operatorname{dmn} f=\{x \mid$ for some $y,(x, y) \in f\}$.
(viii) $\operatorname{rng} f=\{y \mid$ for some $x,(x, y) \in f\}$.

2. Agreement.

(i) If X is a topological space and i is a positive integer, then $X^{i}=\{A \mid A$ is an i-cell in $A\}$.

[^0](ii) If for some positive integer i, A is an i-cell and f is any homeomorphism of A into E_{i} note that the set $\{x \mid f(x) \in \operatorname{bdry}$ rng $f\}$
is independent of the homeomorphism f selected. Consequently we agree to denote this unique set by \hat{A}.

3. Notations.

(i) If n is a positive integer, k is an integer and $k \leqq n$, then H_{n}^{k} is k-dimensional Hausdorff measure over E_{n}.
(ii) Let X be a k-dimensional finitely triangulable topological space and let f be a continuous function on X to E_{n} with $k \leqq n$. Then $L_{k}(f)$ is the k-dimensional Lebesgue area of f. More precisely, $L_{k}(f)$ is the infimum of the set of all $t \in R$ such that for any $\varepsilon>0$ there exists a quasi-linear function g on X to E_{n} such that $|g(x)-f(x)| \leqq \varepsilon$ for each $x \in X$ and $\int_{E_{n}} N(g, X, y) d H_{n}^{k} y<t$.
4. Definition. X is a k-dimensional manifold if and only if X is such a connected separable metric space that for any $x \in X$ there exists A such that A is an open k-cell in X with $x \in A$.
5. Definition. (X, A) is a 2-dimensional manifold with boundary if and only if the following conditions are satisfied:
(i) X is a compact metric space and A is a closed subset of X.
(ii) $X-A$ is a 2 -dimensional manifold.
(iii) If $x \in A$, there exist h and β such that β is an open subset of $X, x \in \beta$, and h is a homeomorphism of β onto $E_{2} \cap\left\{z \mid z_{2} \geqq 0\right\}$ such that $\operatorname{rng}(h \mid A)=E_{2} \cap\left\{z \mid z_{2}=0\right\}$.

Theorem. Let (X, A) be a 2-dimensional manifold with boundary. Then
(i) A has a finite number of components;
(ii) each component of A is a simple closed curve.

Proof. A is compact, and finitely many of the open sets β described in 5 (iii) cover A. For each such β the set $A \cap \beta$ is connected. Thus A has a finite number of components.

Let x be a component of A and let $t \in x$. Then $\operatorname{ord}_{x} t=2,[2$, $\S 46]$, and x is a simple closed curve.
7. Definition. Y is obtained by doubling X about A if and only if :
(i) X is a metric space and A is a closed, non-empty subset of A;
(ii) Y is the topological space ($\left.\mathrm{rng} g^{+} \cup \mathrm{rng} g^{-}\right) \subset(X \times R)$ where g^{+}and g^{-}are the functions on X to $(X \times R)$ such that for each $x \in X$,

$$
\begin{aligned}
& g^{+}(x)=(x, \operatorname{dist}(\{x\}, A)), \\
& g^{-}(x)=(x,-\operatorname{dist}(\{x\}, A)) .
\end{aligned}
$$

8. Agreement. Throughout this paper we fix X, Y and A such that Y is obtained by doubling X about A. In addition we agree to let g^{+}and g^{-}be the functions specified in 7 (ii).
9. Theorem. g^{+}and g^{-}are both homeomorphisms of X into Y such that
bdry rng $g^{+}=$bdry rng $g^{-}=\operatorname{rng}\left(g^{+} \mid A\right)=\operatorname{rng}\left(g^{-} \mid A\right)$.
The proof is trivial.
10. Theorem. If (X, A) is a 2-dimensional manifold with boundary then Y is a compact 2-dimensional manifold.

The proof is trivial.
11. Definition. The map F is obtained by doubling the map f if and only if f is a function on X and $F \circ g^{+}=F \circ g^{-}=f$.
12. Agreement. Throughout the remainder of this paper we fix and F such that the map F is obtained by doubling the map f.

13. Theorem.

(i) F is a function, $\operatorname{dmn} F=Y$, and $\operatorname{rng} F=\operatorname{rng} f$.
(ii) If f is continuous, then F is continuous.
(iii) If X is compact and f is light and continuous, then F is light and continuous.

Proof. The proofs of (i) and (ii) are trivial.
Suppose X is compact and let $z \in \operatorname{rng} F$. Then

$$
\{x \mid F(x)=z\}=\left(\operatorname{rng} g^{+} \cap\{x \mid F(x)=z\}\right) \cup\left(\operatorname{rng} g^{-} \cap\{x \mid F(x)=z\}\right)
$$

Both sets on the right are closed in Y and homeomorphic to $\{x \mid f(x)=z\}$ which is 0-dimensional. Thus $\{x \mid F(x)=z\}$ is 0-dimensional.
14. Definition. (P, Q) is a finitely triangulable pair if and only if P is a topological space, $Q \subset P$, and there exist (K, τ) and K^{\prime} such that (K, τ) is a finite triangulation of $P, K^{\prime} \subset K$ and $\mathrm{rng}(\tau \mid Q)=\sigma K^{\prime}$.
15. Theorem. Let (P, Q) be a 2 -dimensional manifold with boundary, such that P is finitely triangulable. Then (P, Q) is a finitely triangulable pair.

The theorem is an immediate consequence of 6 .
16. Lemma. Let X be k-dimensional and suppose that (X, A) is a finitely triangulable pair. Let $\operatorname{rng} f \subset E_{n}$ with $n \geqq k$ and let f be continuous. Let $\varepsilon>0$.

Let (K, τ) be a finite triangulation of X in E_{q} and let $K^{\prime} \subset K$ such that rng $(\tau \mid A)=\sigma K^{\prime}$. Let u be a quasi-linear function on X to E_{n} such that for each $B \in K$, ($u \circ \operatorname{inv} \tau) \mid B$ is a barycentric map of B, and such that for each $x \in X,|u(x)-f(x)| \leqq \varepsilon$.

Then there exists a quasi-linear function h on Y to E_{n} such that $|h(y)-F(y)| \leqq \varepsilon$ for each $y \in Y$, and

$$
\int_{E_{n}} N(h, Y, y) d H_{n}^{k} y \leqq 2 \int_{E_{n}} N(u, X, y) d H_{n}^{k} y
$$

Proof. We may suppose that τ is the identity map, $X \subset E_{q}$ and $Y \subset E_{q+1}$.

For each $B \in K$ let B^{*} be the set of vertices of B. Then for each $B \in K$ let φ_{B}^{+}be the function which maps B barycentrically onto the unique Euclidean simplex in E_{q+1} spanned by the affinely independent set rng $\left(g^{+} \mid B^{*}\right)$. More precisely, if $x \in B \in K$, and γ_{x} is that unique function on B^{*} to $R \cap\{y \mid 0 \leqq y \leqq 1\}$, such that $\sum_{t \in B^{*} \gamma_{x}}(t)=1$ and $x=\sum_{t \in B^{*} \gamma}(t) t$, then let $\varphi_{B}^{+}(x)=\sum_{t \in B^{*}} \gamma_{x}(t) g^{+}(t)$.

Similarly for each $B \in K$ let φ_{B}^{-}be the function which maps B barycentrically onto the unique Euclidean simplex in E_{q+1} spanned by the set rng $\left(g^{-} \mid B^{*}\right)$.

Then let

$$
H=\bigcup_{B \in K}\left(\left\{\operatorname{rng} \varphi_{B}^{+}\right\} \cup\left\{\operatorname{rng} \varphi_{B}^{-}\right\}\right) .
$$

Also let λ^{+}and λ^{-}be defined by,

$$
\lambda^{+}=\bigcup_{B \in K} \varphi_{B}^{+}, \quad \lambda^{-}=\bigcup_{B \in K} \varphi_{B}^{-}
$$

Then let

$$
\eta=\left(\lambda^{+} \circ \operatorname{inv} g^{+}\right) \cup\left(\lambda^{-} \circ \operatorname{inv} g^{-}\right)
$$

Since (X, A) is a finitely triangulable pair, η is a function and (H, η) is a finite triangulation of Y in E_{q+1}.

Next let

$$
h=\left(u \circ \operatorname{inv} g^{+}\right) \cup\left(u \circ \operatorname{inv} g^{-}\right) .
$$

Then h is a function, and $(h \circ \operatorname{inv} \eta) \mid B^{\prime}$ is a barycentric map of B^{\prime} for each $B^{\prime} \in H$. Thus h is a quasi-linear map of Y into E_{n}. Also $|h(y)-F(y)| \leqq \varepsilon$ for each $y \in Y$.

Finally,

$$
\begin{aligned}
& \int_{E_{n}} N(h, Y, y) d H_{n}^{k} y=\int_{E_{n}} N\left(h, \mathrm{rng} g^{+} \cup \mathrm{rng} g^{-}, y\right) d H_{n}^{k} y \\
& \qquad \begin{array}{l}
\leqq \int_{E_{n}} N\left(h, \mathrm{rng} g^{+}, y\right) d H_{n}^{k} y+\int_{E_{n}} N\left(h, \mathrm{rng} g^{-}, y\right) d H_{n}^{k} y \\
\end{array} \quad=2 \int_{E_{n}} N(u, X, y) d H_{n}^{k} y .
\end{aligned}
$$

17. Corollary. Let X be k-dimensional and suppose that (X, A) is a finitely triangulable pair. Let $\operatorname{rng} f \subset E_{n}$ with $n \geqq k$, and let f be continuous. Then Y is finitely triangulable and $L_{k}(F) \leqq 2 L_{k}(f)$.

Proof. The construction of 16 guarantees that Y is finitely triangulable. Now suppose that $2 L_{k}(f)<\delta<L_{k}(F)$. Let $\varepsilon>0$. It suffices to establish a quasi-linear function h on Y to E_{n} such that $|h(y)-F(y)| \leqq \varepsilon$ for each $y \in Y$ and $\int_{E_{n}} N(h, Y, y) d H_{n}^{k} y<\delta$.

Let (K, τ) be a finite triangulation of X in E_{q} and let $V \subset K$ such that $\operatorname{rng}(\tau \mid A)=\sigma V$. By 6.24 of [1] there exists K^{\prime} such that K^{\prime} is a finite simplicial subdivision of K, and there exists a quasi-linear function u on X to E_{n} such that $|u(x)-f(x)| \leqq \varepsilon$ for each $x \equiv X, \int_{E_{n}} N(u, X, y) d H_{n}^{k} y<\delta / 2$, and $(u \circ \operatorname{inv} \tau) \mid B^{\prime}$ is a barycentric map of B^{\prime} for each $B^{\prime} \in K^{\prime}$.

Now let $V^{\prime}=K^{\prime} \cap \cup_{B \in V} B^{\cap}$. Clearly (K^{\prime}, τ) is a finite triangulation of X in E_{q}, and since K^{\prime} is a subdivision of K, we can state that $\operatorname{rng}(\tau \mid A)=\sigma V^{\prime}$. Thus Lemma 16 applies to produce a quasi-linear function h on Y to E_{n} such that $|h(y)-F(y)| \leqq \varepsilon$ for each $y \in Y$, and

$$
\int_{E_{n}} N(h, Y, y) d H_{n}^{k} y \leqq 2 \int_{E_{n}} N(u, X, y) d H_{n}^{k} y<\delta .
$$

18. Lemma. Let B be a 2-cell metrized by ρ and let $V \in B^{1} \cap \hat{B}^{\cap}$. Let $M=(V-\hat{V})$ and let $\varepsilon>0$. Then there exists a function u such that:
(i) u is a homeomerphism of B into B.
(ii) $u(x)=x$ for $x \in(\hat{B}-M)$.
(iii) $\operatorname{rng}(u / M) \subset(B-\hat{B})$.
(iv) $M \cap \mathrm{rng} u=0$.
(v) $\rho(x, u(x))<\varepsilon$ for each $x \in B$.

Proof. We may suppose that $B \subset E_{2}$. In fact, letting

$$
\begin{aligned}
& a=(1 / 2,1) \in E_{2}, \\
& \beta=(-1 / 2,1) \in E_{2}, \\
& \gamma=(0,0) \in E_{2},
\end{aligned}
$$

we may assume that B is the convex hull of the set $\{a, \beta, \gamma\} \subset E_{2}$. Furthermore we may suppose that

$$
V=\{a t+(1-t) \beta \mid t \in\{z \mid 0 \leqq z \leqq 1\}\} .
$$

Now let v be the function on $B-\{\gamma\}$ such that for each $x \in(B-\{\gamma\})$ we have $v(x)=[\sigma(V \cap\{t x \mid t \in R\})]_{1}$.

Then let w be the function on R such that $w(x)=(\varepsilon / 4)-\varepsilon x^{2}$. For each $x \in R$.

Finally let u be the function on B such that

$$
\begin{aligned}
& u(x)=[1-w(v(x))] x, \text { if } x \in(B-\{\gamma\}), \\
& u(\gamma)=\gamma
\end{aligned}
$$

It is easy to check that u satisfies the required conditions.
19. Remark. Let (K, τ) be a finite triangulation of a topological space P and let $\varepsilon>0$. Then by barycentrically subdividing each element of K, we obtain K^{\prime} such that $\left(K^{\prime}, \tau\right)$ is a finite triangulation of P, K^{\prime} is a finite simplicial subdivision of K and each element of K^{\prime} is less than ε in diameter.
20. Definition. A subset V of E_{n} is k-removable ($[1,6.26]$) if and only if V is a closed set with the following property.

If u is a continuous function on a k-dimensional finitely triangulable space T, to E_{n}, and
$G=\{P \mid P$ is a finitely triangulable subset of T and $\operatorname{rng}(u \mid P) \cap V=0\}$, then $L_{k}(u)=\sup _{P \in G} L_{k}(u \mid P)$.

In the following lemma we make use of the fact that any finite subset of E_{n} is k removable.
21. Lemma. Let M be a metric space. Let K be a finite 2-dimensional cell-complex in M such that $M=\sigma K$. Suppose there exists a finite non-empty set $P \subset\left(K \cap M^{1}\right)$ and a function γ on P such that for each $x \in P$
(i) $\{\gamma(x)\}=\left\{B \mid\left(B \in\left(K \cap M^{2}\right)\right)\right.$ and $\left.(x \subset \hat{B})\right\}$, and ${ }^{1}$

[^1](ii) $\quad \sigma P \cap \gamma(x)=x$.

Let J be that set of all M^{\prime} such that M^{\prime} is a finitely triangulable subset of M and $M^{\prime} \cap \sigma P=0$. Let u be a continuous function on M to E_{n} with $n \geqq 2$. Then $L_{2}(u)=\sup _{M \in J} L_{2}\left(u \mid M^{\prime}\right)$.

Proof. Let ρ metrize M. It suffices to show that $L_{2}(u) \leqq$ $\sup _{\mathbf{k}^{\prime} \in J} L_{2_{2}}\left(u \mid M^{\prime}\right)$.

The remainder of the proof is divided into 2 parts.
Part 1. Let $\varepsilon>0$. There exists a function φ such that:
(i) φ is a homeomorphism of M into M.
(ii) For each $x \in M, \rho(x, \varphi(x))<\varepsilon$.
(iii) $\bigcup_{B \in P} \hat{B}=\sigma P \cap \operatorname{rng} \varphi=\sigma P \cap \operatorname{rng}(\varphi \mid \sigma P)$.

Proof of Part 1. For each $x \in P$ we apply Lemma 18 to produce a function d_{x} is satisfying the following conditions:
(i^{\prime}) d_{x} is a homeomorphism of $\gamma(x)$ into $\gamma(x)$.
(ii') $d_{x}(t)=t$, for $\mathrm{t} \in[\widehat{\gamma(x)}-(x-\hat{x})]$.
(iii') $\operatorname{rng}\left(d_{x} \mid(x \hat{-x})\right) \subset(\gamma(x)-\widehat{\gamma(x)})$.
(iv') $(x-\hat{x}) \cap \operatorname{rng} d_{x}=0$.
(v^{\prime}) For each $t \in \gamma(x), \rho\left(d_{x}(t), t\right)<\varepsilon$.
Let Ψ be the identity map of ($M-\sigma \mathrm{rng} \gamma$) onto itself and let

$$
\varphi=\bigcup_{x \in P} d_{x} \cup \Psi
$$

Part 2. $L_{2}(u) \leqq \sup _{M^{\prime} \in J} L_{2}\left(u \mid M^{\prime}\right)$.
Proof of Part 2. Let $\varepsilon>0$ and produce a function φ satisfying the conditions (i)-(iii) of part 1.

The finite set $\operatorname{rng}(u \mid[\sigma P \cap \operatorname{rng} \varphi])$ is 2-removable. Thus if we let W be the set of all Q such that Q is a finitely triangulable subset of rng φ and

$$
\operatorname{rng}(u \mid Q) \cap \operatorname{rng}(u \mid[\sigma P \cap \operatorname{rng} \varphi])=0
$$

we can state that

$$
L_{2}(u \circ \varphi)=L_{2}(u \mid \operatorname{rng} \varphi)=\sup _{Q \in W} L_{2}(u \mid Q) \leqq \sup _{M^{\prime} \in J} L_{2}\left(u \mid M^{\prime}\right)
$$

Due to the arbitrary nature of ε we have

$$
L_{2}(u) \leqq L_{2}(u \circ \varphi) \leqq \sup _{M^{\prime} \in J} L_{2}\left(u \mid M^{\prime}\right)
$$

22. Corollary. Let K be a finite 2-dimensional cell complex in X such that $X=\sigma K$. Suppose there exists a finite non-empty set $P \subset\left(K \cap X^{1}\right)$
such that $A \subset \sigma P$, and there exists a function γ on P such that for each $x \in P$,

$$
\{\gamma(x)\}=\left\{B \mid\left(B \in\left(K \cap X^{2}\right)\right) \text { and }(x \subset \hat{B})\right\}
$$

and

$$
\sigma P \cap \gamma(x)=x .
$$

Let $\operatorname{rng} f \subset E_{n}$ with $n \geqq 2$ and let f be continuous. Then $2 L_{2}(f) \leqq L_{2}(F)$.
Proof. Let J be the set of all X^{\prime} such that X^{\prime} is a finitely triangulable subset of X and $X^{\prime} \cap \sigma P=0$. Let $V \in J$. Then since

$$
\operatorname{rng}\left(g^{+} \mid V\right) \cap \operatorname{rng}\left(g^{-} \mid V\right)=0
$$

we infer that,

$$
\begin{gathered}
L_{2}\left(F \mid \operatorname{rng}\left(g^{+} \mid V\right)\right)+L_{2}\left(F \mid \operatorname{rng}\left(g^{-} \mid V\right)\right)=L_{2}\left(F \mid\left(\operatorname{rng}\left(g^{+} \mid V\right) \cup \operatorname{rng}\left(g^{-} \mid V\right)\right)\right) \\
\leqq L_{2}(F)
\end{gathered}
$$

Since $F \circ g^{-}=F \circ g^{-}=f$,

$$
2 L_{2}(f \mid V) \leqq L_{2}(F)
$$

and

$$
2 L_{2}(f)=2 \sup _{X^{\prime} \in J} L_{2}\left(f \mid X^{\prime}\right) \leqq L_{2}(F)
$$

23. Corollary. Suppose that (X, A) is a 2-dimensional manifold with boundary and X is finitely triangulable. Let $\operatorname{rng} f \subset E_{n}$ with $n \geqq 2$ and let f be continuous. Then $2 L_{2}(f)=L_{2}(F)$.

Proof. From 15 and 17 we infer that $L_{2}(F) \leqq 2 L_{2}(f)$.
Let (K, τ) be a finite triangulation of X. By appropriately subdividing each 2-cell of K we can easily produce H such that H is a finite 2-dimensional cell-complex in $X, \sigma H=X$, and such that $B \cap A \in H$ for each $B \in H$ with $B \cap A \neq 0$. Let $P=A^{\cap} \cap H \cap X^{1}$. Note that if $x \in P$, then the set

$$
\left\{B \mid\left(B \in\left(H \cap X^{2}\right)\right) \text { and }(x \subset \hat{B})\right\}
$$

has precisely one element.
Thus let γ be the function on P such that for each $x \in P$

$$
\gamma(x)=\sigma\left\{B \mid\left(B \in\left(H \cap X^{2}\right)\right) \text { and }(x \subset \hat{B})\right\} .
$$

The construction of H guarantees that $\sigma P \cap \gamma(x)=x$ for each $x \in P$. Thus 22 applies and $2 L_{2}(f)=L_{2}(F)$.

Refernces

1. H. Federer, On Lebesgue area, Ann. of Math. 61, (1955), 289.
2. C. Kuratowski, Topolojie, Monografie Matematyczne, 21, Warsaw (1950).

Hughes Research Laboratories

[^0]: Received May 27, 1958. This work was supported in part by a research grant from the National Science Foundation. This paper forms one chapter of a doctoral thesis presented at Brown University, June 1956. The author is indebted to Professor H. Federer for his supervision of this thesis, and his valuable suggestions and criticisms.

[^1]: ${ }^{1}$ Geometrically the conditions (i) and (ii) state that each 1 -cell of P is a subset of the boundary of exactly one 2 -cell of K, and futhermore, this 2 -cell of K meets no other element of P.

