
ON THE LEBESGUE AREA OF A DOUBLED MAP

PAUL SLEPIAN

If X is a metric space and A is a non-empty closed subset of X we
construct a space Y by doubling X about A in such a way that X is
imbedded homeomorphically in Y, the image of A is the boundary of
the image of X, and X is also homeomorphic to the closure of the com-
plement of its homeomorphic image in Y. In this way any function /
on X may be doubled in a natural way to yield a function F on Y. In
17 it is shown that if X and A satisfy certain triangulability conditions,
and / is continuous to Euclidean n space, En, with n ^ k ^ 2, then
Lk{F) g 2Lfc(/), with Lk denoting A -dimensional Lebesgue area. In 18,
21 and 22 the restrictions of 2-dimensionality are used to show that,
when k = 2, we have in fact L2(F) = 2L2(/).

In particular if (X, A) is a 2-dimensional manifold with boundary,
then Y is a compact 2-dimensional manifold. Furthermore, if X is
finitely triangulable, then X and A satisfy the required triangulability
conditions and L2(F) == 2L2(/). Thus to compute the Lebesgue area of
/, we need only to know the Lebesgue area of F, whose domain is a
compact 2-dimensional manifold.

Our terminology is consistent with [1] however, some additional
notations are cited below

1. NOTATIONS.

( i ) 0 is the empty set,
(ii) {x} is the set whose sole element is x.
(iii) σA—{x\ for some y, x e y e A}.
(iv) R is the set of real numbers.
( v ) An = {x\x a A}.

(vi) N(f, A,y) is the number of elements, possibly infinite, in the
set {x\x 6 A and y =/(#)}.

(vii) d m n / = {x\ for some y, (x, y) 6 /}.
(viii) rng/ = {y \ for some x, (x, y) e /}.

2. AGREEMENT.

( i ) If X is a topological space and i is a positive integer, then
X1 = {A1A is an ί-cell in A}.
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(ii) If for some positive integer iy A is an ΐ-cell and / is any
homeomorphism of A into Et note that the set

{x\f(x) 6 bdryrng/}

is independent of the homeomorphism/selected. Consequently

we agree to denote this unique set by A.

3. NOTATIONS.

( i ) If n is a positive integer, k is an integer and k ^ n, then H*
is k-dimensional Hausdorff measure over En.

(ii) Let X be a ^-dimensional finitely triangulable topological space
and let / be a continuous function on X to En with k ^ n. Then
Lk(f) is the k-dimensional Lebesgue area of /. More precisely,
Lk(f) is the infimum of the set of all t e R such that for any
ε > 0 there exists a quasi-linear function g on X to En such
that I g(x) -fix) \ <• e f or each a? 6 X and f Me/, X, y)dHk

ny < t.

4. DEFINITION. X is a k-dimensional manifold if and only if X is
such a connected separable metric space that for any x e X there exists
A such that A is an open λ>cell in X with x e A.

5. DEFINITION. (X, A) is a 2-dimensional manifold with boundary
if and only if the following conditions are satisfied :

( i ) X is a compact metric space and A is a closed subset of X.
(ii) X — A is a 2-dimensional manifold.
(iii) If x e A, there exist A and β such that /? is an open subset

of X, x 6 /?, and & is a homeomorphism of /9 onto E% ΓΊ {21 £2 ̂  0}
such that rng(/2,|A) = E2 Π {z|22 = 0}.

THEOREM. Let (X, A) be a 2-dimensional manifold with boundary.
Then

( i ) A has a finite number of components
(ii) each component of A is a simple closed curve.

Proof. A is compact, and finitely many of the open sets β described
in 5 (iii) cover A. For each such β the set A Π β is connected. Thus
A has a finite number of components.

Let x be a component of A and let t e x. Then ordxt = 2, [2,
§46], and x is a simple closed curve.

7. DEFINITION. Y is obtained by doubling X about A if and only
if:

{ i ) X is a metric space and A is a closed, non-empty subset of
A;



ON THE LEBESGUE AREA OF A DOUBLED MAP 615

(ii) Y is the topological space (rug g+ (J rng<7~) c (X x R) where
g+ and g~ are the functions on X to (X x R) such that for
each x e X,

g+(x) = (x,dist({x},A)) ,

g-(x) = (x,-άiat({x},A)).

8. AGREEMENT. Throughout this paper we fix X, Y and A such
that Y is obtained by doubling X about A. In addition we agree to let
g+ and g~ be the functions specified in 7 (ii).

9. THEOREM. g+ and g~ are both homeomorphisms of X into Y
such that

bdry rng g+ — bdry rng g~ = rng (#+ | A) = rng {g~ \ A) .

The proof is trivial.

10. THEOREM. // (X, A) is α 2-dimensionαl manifold with boundary
then Y is a compact 2-dimensional manifold.

The proof is trivial.

11. DEFINITION. The map F is obtained by doubling the map f if
and only if / is a function on X and F o g+ = F o g- — f,

12. AGREEMENT. Throughout the remainder of this paper we fix
and F such that the map F is obtained by doubling the map /.

13. THEOREM.

( i) F is a function, dmn F — Y, and rng F — rng/.
(ii) / / / is continuous, then F is continuous.
(iii) If X is compact and f is light and continuous, then F is light

and continuous.

Proof. The proofs of (i) and (ii) are trivial.
Suppose X is compact and let z e rng F. Then

{x I F(x) = z) = (rng g+ f] {x \ F(x) = z}) U (rng g- Π {x \ F(x) = z}) .

Both sets on the right are closed in Y and homeomorphic to {x \f(x) — z}
which is 0-dimensional. Thus {x\F(x) = z} is 0-dimensional.

14. DEFINITION. (P, Q) is a finitely triangulable pair if and only
if P is a topological space, Q c P, and there exist (K, τ) and K! such
that (K, τ) is a finite triangulation of P, K! c K and rng (r \Q) = σiί'.



616 PAUL SLEPIAN

15. THEOREM. Let (P, Q) be a 2-dimensional manifold with boundary,
such that P is finitely triangulable. Then (P, Q) is a finitely triangulable
pair.

The theorem is an immediate consequence of 6.

16. LEMMA. Let X be k-dimensional and suppose that (X, A) is a
finitely triangulable pair. Let rng/ c En with n ^ k and let f be con-
tinuous. Let e > 0.

Let (K, τ) be a finite triangulation of X in Eq and let E! c K such
that rng (τ \ A) = σK'. Let u be a quasi-linear function on X to En such
that for each B e K, (u o inv τ) \B is a barycentric map of B, and such
that for each x e X, \ u(x) — f(x) \ ̂  ε.

Then there exists a quasi-linear function h on Y to En such that
I h(y) — F(y) \ <; ε for each y e Y, and

N(uJX,y)dmy.

Proof. We may suppose that τ is the identity map, X c Eq and
Γc£7 β + 1 .

For each B e K let B* be the set of vertices of B. Then for each
B e K let <p% be the function which maps B barycentrically onto the
unique Euclidean simplex in EQ+1 spanned by the affinely independent
set τng(g+\B*). More precisely, if x e B e K, and γx is that unique
function on £* to R Π {y \0 <L y ^ 1}, such that ΣteB*rx(t) = 1 and
x = Σieϋ rΛί)*, then let φ+(χ) = Σ*ιeB*rJtjt)g+(t).

Similarly for each B e K let ψi be the function which maps B
barycentrically onto the unique Euclidean simplex in Eq+λ spanned by
the set rng(g-\B*).

Then let

H = \J({τngφS] U {rng^}) .
B€K

Also let λ+ and λ~ be defined by,

*+ = υ ψi, λ- = u ΨB .

Then let

37 — (Λ+ o inv ^+) U (Λ~ o inv ^~) .

Since (X, A) is a finitely triangulable pair, η is a function and (if, 9)
is a finite triangulation of Y in 2£β+1.

Next let

h — (u o inv #+) U (^ o inv g~) .
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Then h is a function, and (homvη)\Br is a barycentric map of B'
for each Bf e H. Thus M s a quasi-linear map of Y into En. Also
I h{y) — F(y) \ <̂  ε for each y e Y.

Finally,

ί N(h, Y, y)dH*y = ( N{h, rng g+ U rng g-, y)dH*y

^ f N(h, rng g+, y)dH*y + ( N(h, rng <r, y)dH*y

N(u, X, y)dHk

ny .

17. COROLLARY. L#£ X δβ k-dimensional and suppose that (X, A) is
α finitely triangulable pair. Let r n g / c En with n^k, and let f be
continuous. Then Y is finitely triangulable and Lk(F) ^ 2Lk(f).

Proof. The construction of 16 guarantees that Y is finitely triangul-

able. Now suppose that 2Lk(f) < d < Lk{F). Let ε > 0. It suffices to

establish a quasi-linear function h on Y to En such that | h(y) — F(y) \ fg ε

for each y e Y and f iV(Λ, Γ, 2/)dfίS2/ < S.

Let (iί, τ) be a finite triangulation of X in 2£β and let V a K such
that rng (τ\A) = σV. By 6.24 of [1] there exists K such that K is a finite
simplicial subdivision of if, and there exists a quasi-linear function u on

X to # w such that \u(x)~f(x)\ ^ ε for each x s X, \ N(u, X, y)dHk

ny < δ/2,

and (^oinvr) | jB r is a barycentric map of B' for each Br e K.

Now let F = iΓr Π \JBevB". Clearly (if, r) is a finite triangulation
of X in Eq, and since i f is a subdivision of if, we can state that
rng (r I A) = σVr. Thus Lemma 16 applies to produce a quasi-linear func-
tion h on Y to 2£n such that | h(y) — F(y) | <̂  ε for each y e Y, and

, y)dHly ^ 2 [ N(u, X, y)dH*y < d .

18. LEMMA. Lβί B be a 2-cell metrized by p and let V e B1 Π Bn.

Let M—{V~ V) and let ε > 0. Then there exists a function u such

that:

( i ) u is a homeomerphism of B into B.

(ii) u(x) = x for x e (B — M).

(iii) rng(^/M) c (B - B).

(iv) M Π rng w = 0.

(v) p(x, u{x)) < ε /or βαc& x e B.
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Proof. We may suppose that B c E2. In fact, letting

a = (1/2, 1) e # 2 ,

β = (-112,1) eEi9

r = (0, 0) e E2,

we may assume that B is the convex hull of the set {α, /?, r} c Z£2.
Furthermore we may suppose that

V= {at + ( 1 - *)jβ|ί e {z(0;gz;g l } } .

Now let v be the function on B — {γ} such that for each x e (B — {γ})
we have v(x) = [ σ ( F Π {ίa?|ί 6 22})]lβ

Then let w be the function on R such that w(x) = (ε/4) — ε#2. For
each x e R.

Finally let u be the function on B such that

u(x) = [1 - «φ(a?))>, if a? e (S - {r}),

%(r) = r .

It is easy to check that u satisfies the required conditions.

19. REMARK. Let (K,τ) be a finite triangulation of a topological
space P and let ε > 0. Then by barycentrically subdividing each element
of K, we obtain K! such that {K, τ) is a finite triangulation of P, JK7 is
a finite simplicial subdivision of K and each element of K' is less than
ε in diameter.

20. DEFINITION. A subset Voί En is k-removable ([1, 6.26]) if and
only if V is a closed set with the following property.

If % is a continuous function on a ^-dimensional finitely triangulable
space T, to En, and

G = {PIP is a finitely triangulable subset of Γ and rng (% | P) Π V = 0} ,
then Lk(u) = supP eσ^*(w|P).

In the following lemma we make use of the fact that any finite
subset of En is k removable.

21. LEMMA. Let M be a metric space. Let K be a finite 2-dimen-
sional cell-complex in M such that M = σK. Suppose there exists a finite
non-empty set P a (K Π Mι) and a function γ on P such that for each
x e P

( i ) {γ(x)} = {B\(Be(KΠ M*)) and (x c S)},

and1

1 Geometrically the conditions (i) and (ii) state that each 1-cell of P is a subset of the
boundary of exactly one 2-cell of K, and futhermore, this 2-cell of K meets no other element
of P.
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(ii) σPf)γ(x) = x.

Let J be that set of all M such that M is a finitely triangulable
subset of M and M Π σP — 0. Let u be a continuous function on M to
En with n ^ 2. Then L2(u) = supM€J Lz(u \M).

Proof. Let p metrize M. It suffices to show that Lλ(u) <ϊ
SUPjrej Llu\M).

The remainder of the proof is divided into 2 parts.

Part 1. Let ε > 0. There exists a function φ such that:
( i ) ψ is a homeomorphism of M into M.
(ii) For each x e M, p{x, φ(x)) < ε.

(in) \JnepB=σP Πrngφ = σP f) rng (φ | σP) .

Proof of Part 1. For each x e P we apply Lemma 18 to produce
a function dx is satisfying the following conditions :

( i') dx is a homeomorphism of γ(x) into γ{x) .

(ii') dx(t) = t, for te[ί{x)-(x-x)].

(iiϊ) rng (dx \ (x-x)) c (γ(x) - γ{x)) .
(ivr) (x - x) Π rng dx - 0 .
(v') For each ί € γ(x), p(dx(t)f t) < ε .
Let ?Γ be the identity map of (M — σ rng γ) onto itself and let

φ = \J dx u
 ?/ .

2. L2(^) ^ supM,ej L2(u\M).

Proof of Part 2. Let ε > 0 and produce a function φ satisfying the
conditions (i)-(iii) of part 1.

The finite set rng(^ | [σP (Ί rng φ\) is 2-removable. Thus if we let
W be the set of all Q such that Q is a finitely triangulable subset of
rng ψ and

rng(u I Q) Π rng(w | [σP Π rng ̂ ]) = 0

we can state that

Lz(u o ψ) — L2(u I rng φ) = sup L./^ | Q) ^ sup L/^ | AT) .

Due to the arbitrary nature of ε we have

Lλ{u) ^ Lz(u o φ) ̂  sup L2(% I ikΓ) .
M'ej

22. COROLLARY. Lβέ K be a finite 2-dimensional cell complex in X
such that X = σK. Suppose there exists a finite non-empty set Pa(KΓ[Xι)



620 PAUL SLEPIAN

such that A c σP, and there exists a function γ on P such that for each
xe P,

{γ(x)} - {B\(Be(Kf] X2)) and (x c B)} ,
and

σP Π γ(x) = x.

Let r n g / c En with n>2 and let f be continuous. Then 2L2(/) <£ LZ(F).

Proof. Let J be the set of all X! such that X is a finitely tri-
angulable subset of X and X Π σP = 0. Let V e J. Then since

mg((/+ I V) Π rng(#- | V) = 0 ,

we infer that,

La(F|rng(^+ I V)) + Lz(F\τng(g- \ V)) - LΔ(F\(rng(g+ \ V) U rng(^- | V)))

^ I4F)
Since Fog-z=Fog==f,

and
2L2(/) - 2 sup L2(/| X) ^

X'βJX'βJ

23. COROLLARY. Suppose that (X, A) is a 2-dimensional manifold
with boundary and X is finitely triangulable. Let r n g / c En with n ̂  2
and let f be continuous. Then 2Lz(f) = Lλ(F).

Proof. From 15 and 17 we infer that Lλ{F) ̂  2L2(/).
Let (iί, τ) be a finite triangulation of X. By appropriately subdivid-

ing each 2-cell of if we can easily produce H such that if is a finite
2-dimensional cell-complex in X, σH = X, and such that B f] A e H
for each B e H with B Π AφO. Let P = An d H Π X1. Note that if
x e P9 then the set

{J51 (B e {H n X2)) and (α? c JB)}

has precisely one element.
Thus let γ be the function on P such that for each x e P

r(x) = σ{B \(Be(H Π X2)) and (a? c J5)} .

The construction of H guarantees that σP ft γ{x) — x for each x e P.
Thus 22 applies and 2L2(f) =
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