TWO THEOREMS OF GAUSS

Daniel Shanks

The purpose of this note is to show that two famous theorems of Gauss can be derived from a common source. The theorems alluded to are the following :

Theorem 1. (The triangular-exponent identity)

$$
\begin{equation*}
\prod_{s=1}^{\infty} \frac{1-x^{2 s}}{1-x^{2 s-1}}=\sum_{s=1}^{\infty} x^{s(s-1) / 2} \tag{1}
\end{equation*}
$$

Theorem 2. (The evaluation of Gauss sums)

$$
\sum_{s=0}^{m-1} e^{2 \pi i s^{2} / m}=\left\{\begin{array}{lll}
\sqrt{m} & \text { for } & m \equiv 1(\bmod 4) \tag{2}\\
i \sqrt{m} & \text { for } & m \equiv 3(\bmod 4) .
\end{array}\right.
$$

Both these results will be obtained as consequences of the following identity previously stated by the author [2] without proof.

A finite identity.

Theorem. If $P_{0}=1$ and

$$
P_{n}=\prod_{s=1}^{n}\left(\frac{1-x^{2 s}}{1-x^{2 s-1}}\right)
$$

for $n=1,2, \cdots$, then

$$
\begin{equation*}
A_{n}=\sum_{s=0}^{n-1} \frac{P_{n}}{P_{s}} x^{s(2 n+1)}=\sum_{s=1}^{2 n} x^{s(s-1) / 2}=S_{n} \tag{3}
\end{equation*}
$$

and

$$
A_{n}^{\prime}=\sum_{s=1}^{n} \frac{P_{n}}{P_{s}} x^{s(2 n+1)}=\sum_{s=1}^{2 n+1} x^{s(s-1) / 2}=S_{n}^{\prime}
$$

Proof. We readily verify that

$$
\begin{aligned}
\left(1-x^{2 n}\right) x^{s(2 n+1)}= & \left(1-x^{2 n-1}\right) x^{s(2 n-1)}+\left(1-x^{2 s+1}\right) x^{(s+1)(2 n-1)} \\
& -\left(1-x^{2 s}\right) x^{s(2 n-1)}
\end{aligned}
$$

and by multiplying by $\frac{P_{n-1}}{P_{s}\left(1-x^{2 n-1}\right)}$ we find
Received February 5, 1958, and in revised form May 7, 1958.
(4)

$$
\frac{P_{n}}{P_{s}} x^{s(2 n+1)}=\frac{P_{n-1}}{P_{s}} x^{s([[n-1]+1)}+\alpha_{s, n}-\beta_{s, n}
$$

where

$$
\alpha_{s, n}=\frac{1-x^{2 s+1}}{1-x^{s n-1}} \frac{P_{n-1}}{P_{s}} x^{(s+1)(2 n-1)}
$$

and

$$
\beta_{s, n}=\frac{1-x^{2 s}}{1-x^{2 s-1}} \frac{P_{n-1}}{P_{s}} x^{s(2 n-1)} .
$$

Now

$$
\beta_{s+1, n}=\alpha_{s, n} \quad(\text { for } s=0,1, \cdots, n-2)
$$

and since, further,

$$
\beta_{0, n}=0 \text { and } \alpha_{n-1, n}=x^{n(2 n-1)},
$$

by summing (4) from $s=0$ to $s=n-1$ we obtain :

$$
A_{n}=A_{n-1}+x^{(n-1)(2 n-1)}+x^{n(2 n-1)} .
$$

But this may be written $A_{n}-A_{n-1}=S_{n}-S_{n-1}$, and by induction

$$
A_{n}-S_{n}=A_{1}-S_{1}=\frac{1-x^{2}}{1-x}-(1+x)=0 .
$$

This proves (3) and by adding $x^{n(2 n+1)}$ to both sides we verify (3^{\prime}).
Gauss' triangular exponent Theorem (1), now follows at once from (3).
Proof of Theorem 1. The leading term in A_{n} (that is $s=0$ in the left side of eq. 3) is P_{n}. Since the remaining terms ($s=1,2, \cdots$, $n=1$) are of order $x^{2 n+1}$ and higher, the power series of the function $P_{n}(x)$ must agree with that of $S_{n}(x)$ at least to terms of order $x^{2 n}$. By induction the function P_{∞} must have the power series S_{∞} and this proves (1).

Proof of Theorem 2. The magnitude of

$$
G=\sum_{s=0}^{m-1} e^{2 \pi t s^{2} / m}
$$

for any odd integer m is given by $|G|=\sqrt{m}$. This is easily shown, [1, p. 163], by multiplying G by its complex conjugate. The real difficulty in Theorem (2) is to show that G is positive real or positive imaginary according as $m \equiv 1$ or $m \equiv 3(\bmod 4)$. But the identity (3) enables us to do this without undue computation.

First we write $x=v^{2}$ where $v=e^{t 9}$. Then

$$
P_{n}=v^{n} \prod_{s=1}^{n}\left(\frac{v^{2 s}-v^{-2 s}}{v^{2 s-1}-v^{1-2 s}}\right)
$$

and if

$$
Q_{0}=1, \quad Q_{n}=\prod_{s=1}^{n}\left(\frac{\sin 2 s \theta}{\sin (2 s-1) \theta}\right)
$$

we may write

$$
\begin{align*}
& S_{n}=\sum_{s=1}^{2 n} v^{s(s-1)}=\sum_{s=1}^{n-1} v^{n+s((4 n+1)} \frac{Q_{n}}{Q_{s}} \tag{5}\\
& S_{n}^{\prime}=\sum_{s=1}^{2 n+1} v^{s(s-1)}=\sum_{s=0}^{n} v^{n+s(4 n+1)} \frac{Q_{n}}{Q_{s}} .
\end{align*}
$$

Now for any odd integer, $m=2 N+1$, if $\theta=2 \pi / m$ we have

$$
v^{2 N}=v^{-1}
$$

and thus

$$
\begin{aligned}
G=\sum_{s=0}^{m-1} v^{s^{2}} & =\sum_{s=-N}^{+N} v^{(N+s)^{2}}=v^{N^{2}} \sum_{s=-N}^{+N} v^{s(s-1)} \\
& =v^{N^{2}}\left[\sum_{s=1}^{N} v^{s(s-1)}+\sum_{s=1}^{N+1} v^{s(s-1)}\right] .
\end{aligned}
$$

Therefore if $m=4 n+1$ and $N=2 n$,

$$
\begin{equation*}
G=\sum_{s=0}^{n-1} v^{(n+s)(4 n+1)} \frac{Q_{n}}{Q_{s}}+\sum_{s=0}^{n} v^{(n+s)(4 n+1)} \frac{Q_{n}}{Q_{s}} \tag{6}
\end{equation*}
$$

But $v^{4 n+1}=1$ and $Q_{s}=$ positive real for $s=0,1, \cdots, n$ so that

$$
G=+\sqrt{m} \quad m \equiv 1(\bmod 4)
$$

And, if $m=4 n+3$ and $N=2 n+1$, then

$$
\begin{aligned}
G & =v^{N^{2}}\left[\sum_{s=0}^{n} v^{n+s(4 n+1)} \frac{Q_{n}}{Q_{s}}+\sum_{s=0}^{n} v^{n+1+s(4 n+5)} \frac{Q_{n+1}}{Q_{s}}\right] \\
& =\sum_{s=0}^{n} v^{(4 n+3)(n+s)}\left[v^{2 n+1-2 s} \frac{Q_{n}}{Q_{s}}+v^{2 n+2+2 s} \frac{Q_{n+1}}{Q_{s}}\right] .
\end{aligned}
$$

But now $v^{4 n+3}=1$ and

$$
Q_{n+1}=\frac{\sin [(2 n+2) \theta]}{\sin [(2 n+1) \theta]} Q_{n}=-Q_{n}
$$

and thus

$$
\begin{equation*}
G=2 i \sum_{s=0}^{n} \sin [(2 n+1-2 s) \theta] \frac{Q_{n}}{Q_{s}} \tag{7}
\end{equation*}
$$

which is positive imaginary. Therefore

$$
G=+i \sqrt{m} \quad m \equiv 3(\bmod 4)
$$

References

1. E. Landau, Aus der elementaren Zahlentheorie, Chelsea, New York, 1946.
2. D. Shanks, A short proof on an identity of Euler, Proc. Amer. Math. Soc. 2 (1951), 749.

David Taylor Model Basin
Washington 7, D. C.

