THE FREE LATTICE GENERATED BY
 A SET OF CHAINS

Howard L. Rolf

1. Introduction. P. M. Whitman [4] defined an ordering of the set of lattice polynomials generated by a set of unrelated elements. R. P. Dilworth [3] generalized this ordering to apply to the case of lattice polynomials generated by an arbitrary partly ordered set P. Dilworth proved that this ordering gives a lattice isomorphic to the free lattice, $F L(P)$, which is generated by P and which preserves bounds of pairs of elements of P. R. A. Dean [2] considered the ordering of lattice polynomials which preserves order of pairs of elements in P and which leads to the completely free lattice $\mathrm{CF}(P)$. He shows that $\mathrm{CF}(P)$ and $\mathrm{FL}(P)$ are identical in the case in which P is a set of unrelated chains.

This article is a further study of $\mathrm{FL}(P)$ where P is a set of unrelated chains. An arbitrary element of P will be denoted by p or q. The set of chains consisting of

$$
a_{11}<a_{12}<\cdots<a_{1 n_{1}} ; a_{21}<a_{22}<\cdots<a_{2 n_{2}} ; \cdots ; a_{m 1}<a_{m 2}<\cdots<a_{m n_{m}}
$$

where $a_{i j}$ and $a_{k 1}$ are unrelated when $i \neq k$, will be denoted by $n_{1}+n_{2}+$ $\cdots+n_{m}$.

Definition 1. Lattice polynomials over P are defined inductively as follows.
(1) The elements p, q, \cdots, of P are lattice polynomials over P.
(2) If A and B are lattice polynomials over P, then so are $A \cup B$ and $A \cap B$.

Definition 2. The rank, $r(A)$, of a lattice polynomial A is defined inductively as follows.
(1) $r(A)=0$ if and only if A is in P.
(2) $r(A \cup B)=r(A \cap B)=r(A)+r(B)+1$.

DEFINITION 3. The dual polynomial, A^{\prime}, of a polynomial A of $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$ is defined inductively as follows.
(1) If $A \equiv a_{i j}$, then $A^{\prime} \equiv a_{i}\left(n_{i}-j+1\right)$.
(2) If $A \equiv A_{1} \cup A_{2}$, then $A^{\prime} \equiv A_{1}^{\prime} \cap A_{2}^{\prime}$.
(3) If $A \equiv A_{1} \cap A_{2}$, then $A^{\prime} \equiv A_{1}^{\prime} \cup A_{2}^{\prime}$.

Received November 5, 1957. In revised form May 9, 1958.

From Definition 2, Lemma 1, and Lemma 2 of [2], and the fact that $\mathrm{FL}(P)$ and $\mathrm{CF}(P)$ are identical in the case under consideration, we have the following theorem.

THEOREM 1. Let P be a partly ordered set consisting of a set of unrelated chains. In $\mathrm{FL}(P)$, each relation $A \geqq B$ is one of six types. These types and necessary and sufficient conditions which apply to each case are the following.
(A) $p \geqq q$ if and only if $p \geqq q$ in P.
(B) $p \geqq B_{1} \cap B_{2}$ if and only if $p \geqq B_{1}$ or $p \geqq B_{2}$.
(C) $A_{1} \cup A_{2} \geqq p$ if and only if $A_{1} \geqq p$ or $A_{2} \geqq p$.
(D) $A \geqq B_{1} \cup B_{2}$ if and only if $A \geqq B_{1}$ and $A \geqq B_{2}$.
(E) $A_{1} \cap A_{2} \geqq B$ if and only if $A_{1} \geqq B$ and $A_{2} \geqq B$.
(F) $A_{1} \cup A_{2} \geqq B_{1} \cap B_{2}$ if and only if $A_{1} \geqq B_{1} \cap B_{2}$ or $A_{2} \geqq B_{1} \cap B_{2}$ or $A_{1} \cup A_{2} \geqq B_{1}$ or $A_{1} \cup A_{2} \geqq B_{2}$.
2. $\mathbf{F L}(2+2)$. Let $a_{1}<a_{2}$ and $b_{1}<b_{2}$ be the generators of $\mathrm{FL}(2+2)$. The notation of the elements of $\mathrm{FL}(2+2)$ is defined in the following recursive manner.

$$
A_{1}=a_{2}, \quad B_{1}=b_{2}
$$

and, for $n>1$,

$$
\begin{aligned}
& A_{n}=a_{2} \cap\left(a_{1} \cup B_{n-1}\right), \quad B_{n}=b_{2} \cap\left(b_{1} \cup A_{n-1}\right) . \\
& C_{n}=a_{1} \cup B_{n} . \\
& D_{n}=b_{1} \cup A_{n} . \\
& P_{n}=A_{n} \cup B_{n} . \\
& Q_{n}=C_{n} \cap D_{n} . \\
& M_{1}=a_{1} \cup b_{1} . \\
& M_{2}=\left(a_{2} \cap b_{2}\right) \cup a_{1} \cup b_{1} . \\
& V_{1}=b_{2} \cap\left(\left(a_{2} \cap b_{2}\right) \cup a_{1} \cup b_{1}\right) . \\
& V_{22}=\left(a_{2} \cap b_{2}\right) \cup\left(b_{2} \cap\left(a_{1} \cup b_{1}\right)\right) . \\
& V_{3}=b_{2} \cap\left(a_{1} \cup b_{1}\right) . \\
& W_{1}=a_{2} \cap\left(\left(a_{2} \cap b_{2}\right) \cup a_{1} \cup b_{1}\right) . \\
& W_{2}=\left(a_{2} \cap b_{2}\right) \cup\left(a_{2} \cap\left(a_{1} \cup b_{1}\right)\right) . \\
& W_{3}=a_{2} \cap\left(a_{1} \cup b_{1}\right) .
\end{aligned}
$$

These elements and their dual elements are all the elements of $\mathrm{FL}(2+2)$. This is shown by considering the \cap and U tables of the above elements and their dual elements. Since the generators of $\mathrm{FL}(2+2)$ are among these elements and their duals, in order to show that these
are all the elements of $\mathrm{FL}(2+2)$ it is sufficient to show that this set is closed under \cup and \cap. Actually, it is sufficient to show the set consisting of the above elements and their duals is closed under \cup (or \cap). This follows from the fact that the intersection of two elements, $A \cap B$, can be expressed as $A \cap B=$ $\left(A^{\prime}\right)^{\prime} \cap\left(B^{\prime}\right)^{\prime}=\left(A^{\prime} \cup B^{\prime}\right)^{\prime}$, the latter being found from the \cup table. The diagram of $\mathrm{FL}(2+2)$ as shown in Figure 1 is obtained from the relations found in the $\cup(\cap)$ table. Rather than give the entire U table, the diagram of $\mathrm{FL}(2+2)$ is given and a typical element, $A_{i} \cup B_{j}$, of the \cup table is considered. The other parts of the U table are obtained in a similar manner. First, we consider the following theorem.

Theorem 2. In $\mathrm{FL}(2+2)$ we have $A_{1}>A_{2}>\cdots, B_{1}>B_{2}>\cdots$, $C_{1}>C_{2}>\cdots$, and $D_{1}>D_{2}>\cdots$.

Proof. The proof of this theorem is similar to the proof, in $\S 4$ of [2], that $\mathrm{FL}(2+2)$ contains four infinite chains. In [2] the symbols, A_{n}, B_{n}, C_{n}, and D_{n} represent the same elements as $A_{2 n-1}, D_{2 n-1}, B_{2 n}$, and $C_{2 n}$, respectively, of this paper. Thus we conclude from the results of [2]

Fig. 1 that $A_{1}>A_{3}>A_{5}>\cdots, \quad B_{2}>B_{1}>B_{6}>\cdots, \quad C_{2}>C_{4}>C_{6}>\cdots$, and $D_{1}>$ $D_{3}>D_{5}>\cdots$. The conclusion of this theorem follows in a similar manner.

We now show that

$$
A_{i} \cup B_{j}= \begin{cases}P_{i}, & i=j \\ D_{i}, & i<j \\ C_{j}, & j<i\end{cases}
$$

$A_{i} \cup B_{i}=P_{i}$ by definition. Since $B_{j} \geqq b_{1}$, it follows by (D) of Theorem 1 that $A_{i} \cup B_{j} \geqq b_{1} \cup A_{i}=D_{i}$. Now consider the relation

$$
b_{1} \cup A_{i} \geqq A_{i} \cup B_{j}=\left(b_{2} \cap\left(b_{1} \cup A_{j-1}\right)\right) \cup A_{i}, \quad i<j .
$$

Since $A_{n} \geqq A_{n}, n \leqq m$ we have $b_{1} \cup A_{i} \geqq b_{1} \cup A_{j-1}, i<j$. Hence by (F) of Theorem 1, $b_{1} \cup A_{i} \geqq B_{j}$. Since $b_{1} \cup A_{i} \geqq A_{i}$, it follows by (D) of Theorem 1 that $b_{1} \cup A_{i} \geqq B_{j} \cup A$. This completes the proof that $D_{i}=b_{1} \cup A_{i}=$ $B_{j} \cup A_{i}, i<j$.

It follows in a similar manner that $A_{i} \cup B_{j}=C_{j}, j<i$.

3. Order-convergence.

Definition 4. In a lattice, $\left\{b_{i}\right\}$ is said to order-converge to b if sequences $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ exist such that

$$
v_{i} \geqq v_{i+1} \geqq b_{i+1} \geqq u_{i+1} \geqq u_{i}
$$

for all i, and $\operatorname{lub}\left\{u_{i}\right\}=\operatorname{glb}\left\{v_{i}\right\}=b$.
As seen from Figure 1, or as can be shown directly using Theorem 1 , it is clear that $A_{n} \geqq W_{1}$ for each $n, B_{n} \geqq V_{1}$ for each $n, C_{n} \geqq M_{2}$ and $D_{n} \geqq M_{2}$ for each n. Thus we conclude that W_{1} is a lower bound to the set $\left\{A_{n}\right\}, V_{1}$ is a lower bound to the set $\left\{B_{n}\right\}$, and M_{2} is a lower bound to each of the sets $\left\{C_{n}\right\}$ and $\left\{D_{n}\right\}$.

Theorem 3. In $\mathrm{FL}(2+2) W_{1}$ is glb $\left\{A_{n}\right\}, V_{1}$ is glb $\left\{B_{n}\right\}$, and M_{2} is glb $\left\{C_{n}\right\}$ and glb $\left\{D_{n}\right\}$.

Proof. Since each of W_{1}, V_{1}, and M_{2} is a lower bound to the indicated sets, in order to prove the theorem it is sufficient to prove the following four statements.
(1) If $A_{n} \geqq K$ for each n, then $W_{1} \geqq K$.
(2) If $B_{n} \geqq K$ for each n, then $V_{1} \geqq K$.
(3) If $C_{n} \geqq K$ for each n, then $M_{2} \geqq K$.
(4) If $D_{n} \geqq K$ for each n, then $M_{2} \geqq K$.

The proof is as follows. Let $r(K)=0$. If $A_{n} \geqq K$ for each n, then $K \equiv a_{1}$. In this case $W_{1} \geqq K$. Similarly if $B_{n} \geqq K$ for each n, then $K \equiv b_{1}$ and hence $V_{1} \geqq K$. If $C_{n} \geqq K$ for each n, then $K \equiv a_{1}$ or $K \equiv b_{1}$. In either case $M_{2} \geqq K$. Similarly if $D_{n} \geqq K$ for each n, then $M_{2} \geqq K$.

Proceeding by induction, we assume, when $r(K)<k$, that the four conditions (1), (2), (3), and (4) each hold. We now consider the cases when $r(K)=k$ and $K \equiv K_{1} \cap K_{2}$ or $K \equiv K_{1} \cup K_{2}$. First, let $K \equiv K_{1} \cap K$. If $A_{n} \geqq K$ for each n, then $a_{2} \geqq K$ and $a_{1} \cup B_{n-1} \geqq K$ for each $n>1$. The latter is true if and only if one of the following holds.
(a) $\quad a_{1} \geqq K_{1} \cap K_{2}$,
(b) $\quad B_{n-1} \geqq K_{1} \cap K_{2}$,
(c) $C_{n-1} \geqq K_{1}$,
(d) $C_{n-1} \geqq K_{2}$.

If (a) holds, then $W_{1} \geqq K_{1} \cap K_{2}$. We now show that if (a) does not hold, then one of (b), (c), or (d) must hold for each $n>1$. Since $\mathrm{B}_{m}>$ B_{m+1}, if $B_{m} \nexists K_{1} \cap K_{2}$, then $B_{n} \nexists K_{1} \cap K_{2}, n>m$. Otherwise $B_{m}>B_{n} \geqq K_{1} \cap K_{2}$ implies $B_{m}>K_{1} \cap K_{2}$. Similarly $C_{m} \nexists K$ implies $C_{n} \nexists K$ when $n>m$. Thus if (b), (c), and (d) fail to hold for some $n=i, j$, or k, respectively, then (b), (c), and (d) fail to hold for $n=\max (i, j, k)$. This result with the assumption that (a) is false contradicts the fact that $a_{1} \cup B_{n-1} \geqq K_{1} \cap K_{2}$ for each $n>1$. Thus one of (b), (c), or (d) holds for each $n>1$ if (a) fails to hold. If (b) is true, then $b_{2} \geqq K_{1} \cap K_{2}$. This, with $a_{2} \geqq K_{1} \cap K_{2}$, implies $W_{1} \geqq K_{1} \cap K_{2}$. By the induction hypothesis, (c) or (d) implies $M_{2} \geqq K_{1}$ or K_{2}, thus $M_{2} \geqq K_{1} \cap K_{2}$. This, with $a_{2} \geqq K_{1} \cap K_{2}$, implies $W_{1} \geqq K_{1} \cap K_{2}$.

Thus we conclude that $A_{n} \geqq K_{1} \cap K_{2}$ for each n and $r\left(K_{1} \cap K_{2}\right)=k$ imply $W_{1} \geqq K_{1} \cap K_{2}$. Similarly $K \equiv K_{1} \cup K_{2}$ and $A_{n} \geqq K_{1} \cup K_{2}$ for each n imply $W_{1} \geqq K_{1} \cup K_{2}$. It is shown in a similar manner that $D_{n} \geqq K$ for each n implies $M_{2} \geqq K ; B_{n} \geqq K$ for each n implies $V_{1} \geqq K$; and $C_{n} \geqq K$ for each n implies $M_{2} \geqq K$ where $r(K)=k$ in each case. Thus, by induction, the proof of the theorem is complete.

Corollary. In $\mathrm{FL}(2+2)$ the sequence $\left\{A_{n}\right\}$ order-converges to W_{1}, $\left\{B_{n}\right\}$ order-converges to $V_{1},\left\{C_{n}\right\}$ and $\left\{D_{n}\right\}$ each order-converge to M_{2}.

Proof. In the case of $\left\{A_{n}\right\}$ we let $u_{n}=W_{1}$ and $v_{n}=A_{n}$. Then each of the conditions of Definition 4 is satisified where lub $\left\{u_{n}\right\}=\operatorname{glb}\left\{v_{n}\right\}=W_{1}$. Thus $\left\{A_{n}\right\}$ order-converges to W_{1}. The other conclusions of the corollary follow in like manner.

We may generalize these results in the following manner. Let $n_{1}+n_{2}+\cdots+n_{m}$ be a set of chains in which two chains each have two or more elements. From each of these two chains take the least elements, $a_{i 1}, a_{i 2}$ and $a_{\jmath 1}, a_{j 2}$. If we replace a_{r} with $a_{i r}$ and b_{r} with $a_{j r}$, $r=1,2$, in $A_{n}, B_{n}, C_{n}, D_{n}, W_{1}, V_{1}$, and M_{2}, the resulting elements will be mutually related in the same manner as $A_{n}, B_{n}, C_{n}, D_{n}, W_{1}, V_{1}$, and M_{2} since the set $a_{i 1}, a_{i 2}, a_{j 1}, a_{j 2}$ is isomorphic to $2+2$.

If we substitute $\alpha_{i r}$ and $\alpha_{j_{r}}$ in A_{n}, B_{n}, etc. as indicated above, and if we designate the resulting elements by the same symbols as the symbols from which they are obtained, we obtain the following theorem.

Theorem 4. In $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$, where $n_{i} \geqq 2$ and $n_{j} \geqq 2$ for some unequal i, j, the set $\left\{A_{n}\right\}$ order-converges to $W_{1} ;\left\{B_{n}\right\}$ order-converges to $V_{1} ;\left\{C_{n}\right\}$ and $\left\{D_{n}\right\}$ each order-converge to M_{2}.
4. $\mathbf{F L}(4+\mathbf{1})$. The notation for the elements of $\mathrm{FL}(4+1)$ is defined recursively in the following manner.

$$
A_{1}=a_{3}, \quad B_{1}=a_{1} \cup b, \quad A_{2}=a_{3} \cap\left(a_{2} \cup B_{1}\right), \quad B_{2}=\left(a_{1} \cup b\right) \cap a_{4},
$$

and for $n>2$,

$$
\begin{gathered}
A_{n}=a_{3} \cap\left(a_{2} \cup B_{n-1}\right), \quad B_{n}=B_{1} \cap\left(\left(a_{4} \cap b\right) \cup A_{n-2}\right) . \\
C_{n}=\left(a_{4} \cap b\right) \cup A_{n} . \\
D_{n}=a_{2} \cup B_{n} . \\
F_{n}=A_{n} \cup B_{n} . \\
G_{n}=A_{n} \cup B_{n+1} . \\
H_{1}=a_{4} \cap D_{1} \text { and, for } n>1, H_{n}=C_{n-1} \cap D_{n} . \\
E_{1}=a_{4} \text { and, for } n>1, E_{n}=C_{n-1} \cap D_{n-1} . \\
S_{n}=A_{n} \cup H_{n} . \\
T_{n}=D_{n} \cap G_{n} . \\
P_{1}=a_{4} \cap F_{1} \text { and, for } n>1, \quad P_{n}=C_{n-1} \cap F_{n} . \\
Q_{n}=B_{n} \cup E_{n} . \\
V_{1}=a_{3} \cap\left(\left(a_{3} \cap\left(a_{1} \cup b\right)\right) \cup a_{2} \cup\left(a_{4} \cap b\right)\right) . \\
V_{2}=\left(a_{3} \cap\left(a_{1} \cup b\right)\right) \cup\left(a_{3} \cap\left(a_{2} \cup\left(a_{4} \cap b\right)\right) .\right. \\
V_{3}=a_{3} \cap\left(a_{2} \cup\left(a_{4} \cap b\right)\right) . \\
W_{1}=\left(a_{1} \cup b\right) \cap\left(\left(a_{3} \cap\left(a_{1} \cup b\right) \cup a_{2} \cup\left(a_{4} \cap b\right)\right) .\right. \\
W_{2}=\left(a_{3} \cap\left(a_{1} \cup b\right)\right) \cup\left(\left(a_{1} \cup b\right) \cap\left(a_{2} \cup\left(a_{4} \cap b\right)\right)\right) . \\
W_{3}=\left(a_{1} \cup b\right) \cap\left(a_{2} \cup\left(a_{4} \cap b\right)\right) . \\
M_{1}=a_{2} \cup\left(a_{4} \cap b\right) . \\
M_{2}=\left(a_{3} \cap\left(a_{1} \cup b\right)\right) \cup a_{2} \cup\left(a_{4} \cap b\right) .
\end{gathered}
$$

As in the case of $\mathrm{FL}(2+2)$, that these elements and their dual elements are all the elements of $\mathrm{FL}(4+1)$ follows from the fact that they include the generators of $F L(4+1)$ and are closed under \cup and \cap. The relations between the elements of $\mathrm{FL}(4+1)$ as shown by the diagram in Figure 2 are proved similar to the way the relations of the elements of $\mathrm{FL}(2+2)$ are proved. The following results are stated without proof since the proofs are similar to the proofs of the corresponding statements regarding $\mathrm{FL}(2+2)$.

TheOrem 5. $\mathrm{FL}(4+1)$ contains the infinite chains $A_{1}>A_{2}>\cdots$, $B_{1}>B_{2}>\cdots, C_{1}>C_{2}>\cdots$, and $D_{1}>D_{2}>\cdots$.

Theorem 6. In $\mathrm{FL}(4+1)$, $\left\{A_{n}\right\}$ order-converges to $V_{1},\left\{B_{n}\right\}$ orderconverges to $W_{1},\left\{C_{n}\right\}$ and $\left\{D_{n}\right\}$ each order-converge to M_{2}.

Theorem 6 can be generalized in the same manner as was the
corollary to Theorem 3. Let $n_{1}+n_{2}+\cdots+n_{m}$ be a set of two or more chains in which one chain contains four or more elements. From the chain containing four elements, take the four least elements $a_{i 1}, a_{i 2}, a_{i 3}$, and $a_{i 4}$. From another chain, take the least element $a_{j 1}$. If we substitute $a_{i r}$ for $a_{r}, r=$ $1,2,3,4$, and $a_{j 1}$ for b in A_{n}, $B_{n}, C_{n}, D_{n}, M_{2}, W_{1}$, and V_{1}, and if we designate the resulting elements by the same symbols as the symbols from which they are obtained then we get the following corollary in the same way as Theorem 4 was obtained.

Corollary. In $\mathrm{FL}\left(n_{1}+\right.$ $\left.n_{2}+\cdots+n_{m}\right)$, where $n_{i} \geqq 4$ for some i and $m \geqq 2$, $\left\{A_{n}\right\}$ orderconverges to $V_{1},\left\{B_{n}\right\}$ orderconverges to $W_{1},\left\{C_{n}\right\}$ and $\left\{D_{n}\right\}$ each order-converge to M_{2}.
5. $\mathrm{FL}(1+1+1)$ as a sublattice of $\operatorname{FL}\left(n_{1}+n_{2}\right), n_{1} \geqq 3$ and $n_{2} \geqq 2$, or $n_{1} \geqq 5$ and $n_{2} \geqq 1$. From Theorem 4 and Theorem 6 of [2] we have the following theorem.

Theorem 7. Let U be a subset of $\mathrm{FL}\left(n_{1}^{\prime}+n_{2}^{\prime}+\cdots+n_{m}^{\prime}\right)$

Fig. 2 and let $U=\left\{u_{i j}\right\}$ be isomorphic to $n_{1}+n_{2}+\cdots n_{m}$. Let $u_{i j} \geqq u_{p q}$ if and only if $i=p$ and $j \geqq q$. $\mathrm{FL}(U)$ is isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$ if and only if $\cup u_{i j} \geqq u_{a b}$ implies $i=a$ and $j \geqq b$ for some i, j, and dually.

THEOREM 8. $\mathrm{FL}\left(n_{1}+n_{2}\right), n_{1} \geqq 3$ and $n_{2} \geqq 2$, contains a sublattice isomorphic to $\mathrm{FL}(1+1+1)$.

Proof. In FL $\left(n_{1}+n_{2}\right)$ let $u_{11}=a_{2}, u_{21}=a_{3} \cap\left(a_{1} \cup b_{1}\right)$, and $u_{31}=a_{1} \cup\left(a_{3} \cap b_{2}\right)$. In order to show that the sublattice generated by u_{11}, u_{21}, and u_{31} is isomorphic to $\mathrm{FL}(1+1+1)$ it is sufficient to show, by Theorem 7, that the $u_{i 1}$ are unrelated and that $u_{i 1} \cup u_{j 1} \not \equiv u_{k 1}$ and $u_{i 1} \nsupseteq u_{j 1} \cap u_{k 1}$ when i, j, and k are all different.

A direct application of Theorem 1 shows $u_{i 1} \nexists u_{j 1}$ and $u_{j 1} \nsupseteq u_{i 1}$ when $i \neq j$, thus the $u_{i 1}$ form an unrelated set. A straightforward application of Theorem 1 also shows that $u_{i 1} \cup u_{j 1} \nsupseteq u_{k 1}$ and $u_{i 1} \nsupseteq u_{j 1} \cap u_{k 1}$ when i, j, and k are all different. Hence $\mathrm{FL}\left(u_{11}, u_{21}, u_{31}\right)$ is isomorphic to $\mathrm{FL}(1+1+1)$.

THEOREM 9. $\mathrm{FL}\left(n_{1}+n_{2}\right), n_{1} \geqq 5$ and $n_{2} \geqq 1$, contains a sublattice isomorphic to $\mathrm{FL}(1+1+1)$.

Proof. A proof similar to the proof of Theorem 8 shows that the sublattice of $\mathrm{FL}\left(n_{1}+n_{2}\right)$ generated by $u_{11}=a_{3}, u_{21}=a_{4} \cap\left(a_{2} \cup\left(a_{5} \cap b\right)\right)$, and $u_{31}=a_{2} \cup\left(a_{1} \cap\left(a_{1} \cup b\right)\right)$ is isomorphic to $\mathrm{FL}(1+1+1)$.
6. $\mathbf{F L}\left(\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\cdots+\boldsymbol{n}_{m}\right)$ as a sublattice of $\mathbf{F L}(\mathbf{1}+\mathbf{1}+\mathbf{1})$. In $\mathrm{FL}(1+$ $1+1$), with generators x_{1}, x_{2}, x_{3}, define $u_{0}=x_{1}$, and for $n \geqq 1$,

$$
u_{n}=x_{1} \cup\left(x_{3} \cap\left(x_{2} \cup\left(x_{1} \cap\left(x_{3} \cup\left(x_{2} \cap u_{n-1}\right)\right)\right)\right)\right) .
$$

Whitman has shown [5, p. 112] that $u_{0}<u_{1}<u_{2}<\cdots$ (In his notation $\left.u_{i} \equiv t_{6 i+1}\right)$.

Theorem 10. The free lattice generated by $3 m$ unrelated elements, $\mathrm{FL}(1+1+\cdots+1)$, contains a sublattice isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots\right.$ $+n_{m}$).

Proof. Denote the generators of $\mathrm{FL}(1+1+\cdots+1)$ by x_{1}, x_{2}, \cdots, $x_{3 m}$ and choose m sets of elements of $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$ in the following manner. For each $i, i=1,2, \cdots, m$, let $u_{i 0}=x_{3 i-2}$, and for $j \geqq 1$,

$$
u_{i j}=x_{3 i-2} \cup\left(x_{3 i} \cap\left(x_{3 i-1} \cup\left(x_{3 i-2} \cap\left(x_{3 i} \cup\left(x_{3 i-1} \cap u_{i j-1}\right)\right)\right)\right)\right) .
$$

We note that the polynomials of each set $u_{i j}, i$ fixed and $j=0,1,2, \cdots, n_{i}$, are the same, except for the subscripts of the x 's, as the polynomials $u_{\text {j }}$ defined immediately before this theorem. Since the x 's are unrelated, the reasoning that led to the conclusion $u_{0}<u_{1}<u_{2}<\cdots$ applies to the $u_{i j}$. We then conclude that $u_{i 0}<u_{i 1}<u_{i 2}<\cdots, i=1,2, \cdots, m$.

Since $x_{3 i-2} \nsupseteq x_{3 p-2}$ and $x_{3 i} \nsupseteq x_{3 p-2}$ when $i \neq p, u_{i j} \nsupseteq u_{p q}$. Similarly $u_{p q} \nsupseteq u_{i j}$ when $i \neq p$. Thus $u_{i j}$ is unrelated to $u_{p q}$ when $i \neq p$. Letting U denote the set of polynomials $u_{i j}, i=1,2, \cdots, m$ and $j=1,2, \cdots, n_{i}$ for each i, we see that U is isomorphic to $n_{1}+n_{2}+\cdots+n_{m}$. By means of Theorem 7, we shall show that the sublattice generated by U is isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$.

If $u_{a b} \geqq \cap u_{i j}$, then it is necessary that one of the following holds.
(1) $x_{3 a-2} \geqq \cap u_{i j}$,
(2) $x_{3 a} \cap\left(x_{3 a-1} \cup\left(x_{3 a-2} \cap\left(x_{3 a} \cup\left(x_{3 a-1} \cap u_{a b-1}\right)\right)\right)\right) \geqq \cap u_{i j}$,
(3) $u_{a b} \geqq u_{i j}$ for some i, j.

Condition (1) is true if and only if $x_{3 a-2} \geqq$ some $u_{i j}$. Since $j \neq 0$, this is false ; hence (1) cannot hold. Similarly (2) is false since $x_{3 a} \not \equiv$ some $u_{i j}$. Hence (3) must hold, but this is true if and only if $a=i$ and $b \geqq j$. Thus $u_{a b} \geqq \cap u_{i j}$ implies $a=i$ and $b \geqq j$.

If $\cup u_{i j} \geqq u_{a b}$, then it is necessary that

$$
\cup u_{i j} \geqq x_{3 a} \cap\left(x_{3 a-1} \cup\left(x_{3 a-2} \cap\left(x_{3 a} \cup\left(x_{3 a-1} \cap u_{a b-1}\right)\right)\right)\right) .
$$

This is true if and only if one of the following holds.
(a) $\cup u_{i j} \geqq x_{3 a}$,
(b) $\cup u_{i j} \geqq x_{3 a-1} \cup\left(x_{3 a-2} \cap\left(x_{3 a} \cup\left(x_{3 a-1} \cap u_{a b-1}\right)\right)\right)$,
(c) some $u_{i j} \geqq x_{3 a} \cap\left(x_{3 a-1} \cup\left(x_{3 a-2} \cap\left(x_{3 a} \cup\left(x_{3 a-1} \cap u_{a b-1}\right)\right)\right)\right)$.

Conditions (a) and (b) are false, respectively, since neither $u_{i j} \geqq x_{3 a}$ nor $u_{i j} \geqq x_{3 a-1}$ is ever true. Thus (c) must hold. If $i=a$ and $j<b$, since $u_{a j} \geqq x_{3 a-2}$, it follows that (c) must be false, otherwise it implies $u_{a j} \geqq u_{a b}$ when $j<b$ contrary to the known relationship $u_{a b}>u_{a j}, j<b$. If $a \neq i$, (c) implies at least one of the following.
(1) $x_{3 i-2} \geqq x_{3 a} \cap\left(x_{3 a-1} \cup\left(x_{3 a-2} \cap\left(x_{3 a} \cup\left(x_{3 a-1} \cap u_{a b-1}\right)\right)\right)\right)$,
(2) $x_{3 i} \geqq x_{3 a} \cap\left(x_{3 a-1} \cup\left(x_{3 a-2} \cap\left(x_{3 a} \cup\left(x_{3 a-1} \cap u_{a b-1}\right)\right)\right)\right)$,
(3) $u_{i j} \geqq x_{3 a}$,
(4) $u_{i j} \geqq x_{3 a-1}$.

Since $i \neq a$, each of these four conditions is false. Thus $i \neq a$ contradicts (c). We then conclude that if (c) is true, $i=a$ and $j \geqq b$. Furthermore, we conclude that $\cap u_{i j} \geqq u_{a b}$ implies that $i=a$ and $j \geqq b$ for some i, j, and dually. By Theorem 7, it follows that the sublattice generated by U is isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$.

Corollary 1. $\mathrm{FL}(1+1+1)$ contains a sublattice isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$.

Proof. FL($1+1+1$) contains a sublattice isomorphic to $\mathrm{FL}(M)$, where M is a set of $3 m$ unrelated elements, [5, Theorem 6], and $\mathrm{FL}(M)$ in turn contains a sublattice isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$.

Corollary 2. $\mathrm{FL}\left(m_{1}+m_{2}\right), m_{1} \geqq 3$ and $m_{2} \geqq 2$, or $m_{1} \geqq 5$ and $m_{2} \geqq 1$, contains a sublattice isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$.

Proof. By Theorems 8 and 9, $\mathrm{FL}\left(m_{1}+m_{2}\right)$ contains a sublattice isomorphic to $\mathrm{FL}(1+1+1)$. In turn, Corollary 1 implies that $\mathrm{FL}(1+1+1)$ contains a sublattice isomorphic to $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$.

We note that the reasoning in the proof of Theorem 10 is valid if m is any cardinal number and each chain contains a finite or countable
number of elements. In the corollaries to Theorem 10 m must be countable since $\mathrm{FL}(1+1+1)$ contains only a countable number of elements.
7. Order-convergence in $\mathbf{F L}\left(\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\cdots+\boldsymbol{n}_{m}\right)$. By Theorem 4 and the corollary to Theorem 6 , we see that $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$, where $n_{i} \geqq 2$ and $n_{j} \geqq 2$ for some distinct i, j, or some $n_{i} \geqq 4$ and $m \geqq 2$, contains an infinite subset that order-converges. We now show that in case $m \geqq 3$ there exists an infinite subset that order-converges. We summarize this in the following theorem and prove the case $m \geqq 3$ immediately following.

THEOREM 11. $\mathrm{FL}\left(n_{1}+n_{2}+\cdots+n_{m}\right)$, where $n_{i} \geqq 2$ and $n_{j} \geqq 2$ for some distinct i and j; or some $n_{i} \geqq 4$ and $m \geqq 2$; or $m \geqq 3$, contains an infinite subset that order-converges.

Proof. Denote the least elements of three different chains of $\mathrm{FL}\left(n_{1}+n_{1}+\cdots+n_{m}\right)$ by x_{1}, x_{2}, x_{3} and define

$$
\begin{array}{cc}
u_{0}=x_{1}, & n \geqq 1, \\
u_{n}=x_{1} \cup\left(x_{3} \cap\left(x_{2} \cup\left(x_{1} \cap\left(x_{3} \cup\left(x_{2} \cap u_{n-1}\right)\right)\right)\right)\right), & \\
v_{0}=x_{1}, & n \geqq 1 .
\end{array}
$$

As mentioned previously, Whitman has shown $u_{0}<u_{1}<u_{2}<\cdots$ [5]. Similarly $v_{0}<v_{1}<v_{2}<\cdots$.

We now define the following elements in $\mathrm{FL}\left(n_{1}+n_{2}+\cdots n_{m}\right)$.

$$
\begin{array}{ll}
a_{n}=\left(x_{2} \cup\left(x_{1} \cap x_{3}\right)\right) \cap u_{n}, & n=1,2 . \\
b_{n}=\left(x_{3} \cup\left(x_{1} \cap x_{2}\right)\right) \cap v_{n}, & n=1,2 .
\end{array}
$$

$A_{1}=a_{2}, B_{1}=b_{2}$, and, for $n>1$,

$$
\begin{aligned}
A_{n} & =a_{2} \cap\left(a_{1} \cup B_{n-1}\right), \quad B_{n}=b_{2} \cap\left(b_{1} \cup A_{n-1}\right) . \\
C_{n} & =a_{1} \cup B_{n} . \\
D_{n} & =b_{1} \cup A_{n} . \\
W_{1} & =a_{2} \cap\left(\left(a_{2} \cap b_{2}\right) \cup a_{1} \cup b_{1}\right) . \\
V_{1} & =b_{2} \cap\left(\left(a_{2} \cap b_{2}\right) \cup a_{1} \cup b_{1}\right) . \\
M_{2} & =\left(a_{2} \cap b_{2}\right) \cup a_{1} \cup b_{1} .
\end{aligned}
$$

These elements correspond to the elements of $\mathrm{FL}(2+2)$ designated by the same symbols. By means of Theorem 1, in a rather tedious but straightforward manner, it is shown that the above elements are related in the same manner as their corresponding elements in $\mathrm{FL}(2+2)$. Thus

$$
\begin{aligned}
& A_{1}>A_{2}>\cdots>W_{1}, \\
& B_{1}>B_{2}>\cdots>V_{1}, \\
& C_{1}>C_{2}>\cdots>M_{2}, \\
& D_{1}>D_{2}>\cdots>M_{2} .
\end{aligned}
$$

A proof similar to the proof of Theorem 3, although more tedious, shows that $W_{1}=\operatorname{glb}\left\{A_{n}\right\}, V_{1}=\operatorname{glb}\left\{B_{n}\right\}$, and $M_{2}=\operatorname{glb}\left\{C_{n}\right\}$ and $\left\{D_{n}\right\}$. The first step of the induction is vacuously true. If $A_{n} \geqq K$ for each n where $r(K)=0$, then it is necessary that $a_{2} \geqq K$. In turn this implies $x_{2} \cup$ $\left(x_{1} \cap x_{3}\right) \geqq K$ and $u_{2} \geqq K$. Since K is an element of $n_{1}+n_{2}+\cdots+n_{m}$, it follows from these two relations and Theorem 1, that at least two of x_{1}, x_{2}, x_{3} must be $\geqq K$. Since each x_{i} is from a different unrelated chain, this is false. Hence $A_{n} \geqq K$, for each n and $r(K)=0$, vacuously implies $W_{1} \geqq K$. Similarly, statements (2), (3), and (4) at the beginning of the proof of Theorem 3 are vacuously true when $r(K)=0$. The remainder of the proof is similar to the proof of Theorem 3.

We have answered, in the affirmative, the question posed by Whitman [5], " Does some infinite set in $\mathrm{FL}(1+1+\cdots+1)$ orderconverge?" Theorem 11 states that each infinite free lattice generated by a set of chains contains an infinite subset that order-converges.

References

1. Garrett Birkhoff. Lattice theory, 2d. ed. revised. New York: Amer. Math. Soc., 1948.
2. R. A. Dean, Completely free lattices generated by partially ordered sets, Trans. Amer. Math. Soc., 83 (1956), 238-249.
3. R. P. Dilworth, Lattices with unique complements, Trans. Amer. Math. Soc., 57 (1945), 123-154.
4. P. M. Whitman, Free lattices I, Ann. of Math., 42 (1941), 325-330.
5. , Free lattices II, Ann. of Math., 43 (1942), 104-115.

Vanderbilt University
Georgetown College

