A GENERAL SOLUTION FOR A CLASS
OF APPROXIMATION PROBLEMS

ANNETTE SINCLAIR

1. Introduction. This paper generalizes a class of theorems show-
ing the existence of an approximating funection which may be required
to satisfy certain auxiliary conditions.

Various theorems in analytic function theory which prove the ex-
istence of a function fulfilling specified conditions in an open set R have
been proved by using a method of the following type. The set R is
covered by an increasing sequence of sets {R;}. Then the existence of
a convergent sequence of functions {f;(z)} is shown such that each f,(2)
behaves properly in R, and such that {fi(z)} converges to a function
satisfying the required conditions everywhere in R. Examples of theo-
rems in which such a method of proof can be applied are furnished by
the Mittag-Leffler Theorem, the Carleman Approximation Theorem [1],
some rate of growth theorems proved by P. W. Ketchum [2], and the
author’s generalization of Runge’s Theorem [5]. W. Kaplan considered
certain problems of this type and remarked, [1], that Brelot has pointed
out that this type of proof is valid for approximation to a function
Qx, x,+++ , 2, continuous for all (x,x, ---,2,) by a function
Uy, Xyy =+, Tpey) harmonic for all (xy, x,, < -+, Tpee).

The present paper attempts to give an abstract solution for this
general class of problems. Examples are also given of some new results
obtainable by applying Theorem 1 and fundamental approximation
theorems.

In Theorem 3 approximation by an analytic function is considered
on a point set S consisting of an infinite number of circular discs tan-
gent on the real axis. It is shown that a function w(z) analytic at
interior points of S and continuous on the closure of any finite number
of the circular regions—hence, continuous at their points of tangency—
can be approximated by an integral function f(z). Moreover, f(z) can
be chosen so that the approximation is stronger than uniform approxi-
mation—so that corresponding to any {¢;} there exists f(z) such that

[f(2) —w(z)| <& on S,

where S, is the 4th. circular region.
Theorem 2 combines some previously obtained results [5] by requir-
ing that certain auxiliary conditions be satisfied simultaneously.
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Theorem 1 can sometimes also be used to show that when an ap-
proximation is known to be impossible in the infinite case that analogous
results cannot hold in the finite case. An example of this usage is
given.

In Part II a topological abstraction is made of Theorem 1 in which
the sets of functions are topologized and the system so obtained inter-
preted as an inverse mapping system. It is then shown that Theorem
1 can be regarded as a special case of Theorem 5.

ParT 1

2. Fundamental theorem. Let R be an open subset of a topological
space. A sequence of sets {R;} which satisfy the following conditions
will be called an increasing sequence of R-covering sets.

(1) R, CR;
(2) R, is interior to Ry
w)£m=ﬁ

W,U W, U --- such that W, N W,, = ¢ for k == m is said to be a
decomposition of a set S if S= W, U W,U ---. An R-covering sequence
{R;} for R and a decomposition W, U W,U +-- of a set SC R are said
to correspond if, for every n, W,CR,, but W,.,N R, = ¢.

For a given set S C R suppose that an increasing sequence {R,} of
R-covering sets and a decomposition W, U W,U --- of S correspond.
Let there be defined classes of functions % and &%, transforming W,
and R, respectively into the complex plane, n = 1,2, ---. Suppose that
each function of &, defines a function of “#,_,n=2,38, ---..

THEOREM 1. Let S, R, R,, W,, &%, and ¥, n=1,2, .-, be defined
as above. Suppose that

(1) If {9(X)} 1s a sequence of functions of F,., which converges
on R,., and uniformly on any closed subset of R,.,, lim,.. g(X) defines
a function of A,;

and (2) Any function defined on R, by an arbitrary function of

the class #, and on W,.. by a function of #,.. can be uniformly ap-
proximated arbitrarily closely on R, U W,., by a function of ., n =0,
1,2, --- (where R, is the null set.).
Let w(X) be a function defined on S in such a way as to determine a
Sunction of 9 for each i. Then, corresponding to any {¢;}, there exists
r(X) defined on R which determines a function of %, for each n such
that

| r(X) — w(X)| < ¢ when X e W, 1=1,2, .-,
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Proof. Suppose {¢;} and w(X) preassigned. When n is taken as
0, (2) implies the existence of r/(X) of .2% such that

[r(X) — w(X) | < &/2? when Xe W, .

In general, for n =1,2, .-+, choose r,(X) of Z, so that

| 7(X) — (X)) | < ;H

. on R,_,

and

7 (X) = w0 1< 57 on W,

where ¢™ = min.. {&, ¢, ***, &,}.
Since {ry(X)};-x+: converges in R,.,, for arbitrary k, and uniformly
on any closed subset of R,.,,, it follows from (1) that lim r(X) = »(X)
{—o00

defines a function of &, for k=1,2, ---.

It remains to show that r(X) satisfies the assigned approximation
conditions. For any k, there exists m > k so that

&

|7(X) = ra(X) | <,

when X e R, .

Now
|7(X) = () | < 17X = 1K) | + | 7(X) = w(X) |

<) = XD 1 317X = 7pn ()] 4+ ru(X) — w(X) |

e(k)

<4 S

2k Jok+1 2j+1

e(J) E(k)
+ e when Xe W, C R, .

Thus, | "(X) — w(X)| < €¥<¢, when X ¢ W,. This completes the proof

of the theorem.

3. Applications to specific problems. In Theorem 2 we consider
approximation on a Q-set of the complex plane having an infinite number
of components. A set S is a @-set if its component are closed and its
set of sequential limit points lie in C(S), the complement of S. (4
sequential limit point of S is a limit point of a set of points chosen one
from each component of S. We note incidentally that a Q-set in the
complex plane has at most a denumerable number of components and
that its set of sequential limit points may separate the plane [5].)

A set in C(S) is called a B*(S)-set if it contains the set B of
sequential limit points of S and exactly one point of each component
I(S) of C(S) such that I(S) N B = ¢,
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The author has shown [5] that if S is any @-set of the complex
plane and B* any B*(S)-set there exists an increasing sequence {R;} of
closed covering sets for C(B) such that

(1) If S, is any component of S and if S, N R, # ¢, then S, C R,;

(2) If I(R,, S) is any component of C(R, U S),

I(R,, S)NB* + ¢ .

When we set W,=SNR,NCR,.), we obtain a decomposition
W,uU W,U +-- of S which corresponds to the increasing sequence {R;}
of covering sets for C(B).

A function is meromorphic on a set if it is single-valued and ana-
Iytic in a neighborhood of each point of the set except for poles.

THEOREM 2. Suppose S is a Q-set, B its set of sequential limit
points, and B* any B*(S)-set. Let {R;} be an increasing sequence of
covering sets for C(B) as described above which determines the correspond-
ing decomposition W, U W, U «-- of S. Suppose w(z) is meromorphic on
S and that I denotes the set of points of S at which w(z) has poles. Then,
corresponding to any sequence {&;} of positive constants, there exists r(z)
meromorphic in C(B) and analytic in C(B* U I) such that

| 7(z) — w(2) | < &, when ze (W, — 1), =12 .-

It can be required that

(1) The poles of 1(2) at points of I have the same principal ports
as w(z);

and (2) If K is an isolated interior subset of S such that KNI = ¢,
r(z) can be chosen so that r(k) = w(k) at each point k of K. If B* has
no limit point on S, r(z) can be required to have the same multiplicities
at points of K as w(z).

Proof. Define 97 as the set of those functions meromorphic on W,
and analytic on (W, — I) which have poles with the same principal parts
as w(z) on (IN W,) and k-points with the same multiplicities as w(z) on
(KN W,). In <% include those functions meromorphic on R; and ana-
lytic in R, — (I U B*) which have poles with the same principal parts as
w(z) on (I N R,) and k-points with the same multiplicities as w(z) on
(K N R,), also those functions which are identically constant on a com-
ponent of R, which contains no point of I.

Suppose {g:(2)} is a sequence of functions of .ZZ,., which converges
in R,.; and uniformly on any closed subset of R,,, (where any points
of (I U B*) are deleted from a closed subset which contains them). Then
lim g,(2) is meromorphic on R, and analytic in R, — (I U B*) with poles
and k-points identical with those of w(z) at points of I and K, except
that lim g;(z) may be identically constant on a component of R, which
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contains no points of I. Thus, lim g,(z) € . %, and (1) of Theorem 1 is
satisfied.

Before applying Theorem 1 it remains to show that for any g(z)
of &, and v(z) of 9%, corresponding to arbitrary ¢ > 0, there exists
Sf(z) of . Z,., such that

|f(z) — g(z)| < e when z¢e R,
and |f(z) —v(z)| <& when ze W,.,.

This follows from Walsh’s generalization of Runge’s Theorem [7,
p. 15] and from another theorem of Walsh [7, p. 313] after it is noted
that a finite number of poles on R, U W,., cause no real difficulty. Just
apply the general Mittag-Leffler Theorem [4] to show the existence of
a function %(z) meromorphic in C(B) whose poles coincide with those of
9(z) and v(z) on R, and W,,, respectively with the same principal parts.
Then define F'(z) = {g(z) — Mz) on E,.

v(z) — h(z) on W,...

Since F(z) is analytic on R, U W,.;, by Walsh’s generalization of
Runge’s Theorem [7, p. 15], there exists a rational function %(z) whose
poles lie in B* such that | F(z) — k()| < ¢ when ze (R, U W,.,). An-
other theorem by Walsh [7, p. 313] implies that #(z) can be chosen so
that k(z) = F'(z) at points of K and so that %(z) has the same multi-
plicities at these points as F'(z). Set f(z) = h(z) + k(2).

Now f(z) is meromorphic on R,., and its poles on R,., lie at points
of IU (R,.; N B*) with those on I having the same principal parts as
n(z), hence as g(z) or v(z), and so the same as w(z). Also

l9(2) —f(&) | = | [9(2) — h(2)] — k() |
= | F(z) — k(z) | < ¢ when z € R,

and similarly |v(z) — f(2)| = | F(z) — k(2) | <& when ze W,,,. Since
k(2) = F(2) at points of K,

S(2) = M) + k(z) = b(z) + F(2) = Mz) + 9(z) — M(2)
=g(z) on R, N K

and, similarly, »(z) on W,,, N K.

This completes the proof that the hypothesis of Theorem 1 is satis-
fied. Hence, by Theorem 1, there is a function »(z) defined on C(B)
(where <o is allowed as a functional value) which determines a function
of <&, for each n such that

| 7(2) — w(z) | <& when ze W, 1=1,2, .-,

Thus, 7(z) is meromorphic in C(B), analytic in C(I U B*), and has poles
and k-points of w(z) on S as specified and also satisfies the required
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approximation condition. (In general, r(z) is not identically constant on
a component of C(B).)

In Theorem 3 S consists of circular discs tangent on the real axis.
More precisely, let W, = {z/|z — 7| < 1/2}, except that z=1¢— 1/2 is
deleted, and define S as Uz, W,. Set R, = {z/|z]| <7+ 1/2} and let
R be the finite plane. Then {R;} and the decomposition W, U W, U --- of
S correspond.

THEOREM 3. Suppose S defined as in the preceding poragraph. Let
w(2) be any function analytic at interior points of S and continuous on
the boundary ewcept at infinity. Then, corresponding to any {&}, there
exists an integral function r(z), such that | r(2) — w(2) | <&, when z € W,
and r(@ + 1/2) = w( + 1/2),4=1,2, ---.

Proof. Let &2, be the set of all functions f(2) analytic on R, such
that f(k + 1/2) = w(k + 1/2) for £ =1,2,---, 5. Let 9% be the set of
all functions f(z) analytic at interior points of W, and continuous on
W, such that f(¢ + 1/2) = w(@ + 1/2) and lim,.; f(z —1/2) = w(z —1/2),
—1/2)e W,i1=1,2, ---,

If {g«(2)}, where g¢,(2) is a member of <,, converges on R,.,,
uniformly on any closed subset of R,., lim g,(2) gives a function of
%ﬂ!

By a theorem of Walsh [7, p. 47] a function g(z) analytic interior
to and continuous on a closed set C which does not separate the plane
and which is bounded by a finite number of Jordan curves, as is the
case if C = R, U W,,,, can be uniformly approximated on C by a poly-
nomial p(z). Then by another theorem of Walsh [7, p. 310], p(z) can
be chosen so that »p(k + 1/2)=gk +1/2), k=1,2, .-, n+ 1. If
g(k + 1/2) = w(k + 1/2) then p(2) € Z,... Thus, the hypothesis of Theo-
rem 1 is satisfied and the required conclusion follows.

The next theorem is an extension of the Carleman approximation
theorem in that values of ahe approximating function are preassigned
at certain points.

THEOREM 4. (Carleman Approximation Theorem). Let w(x) be a
continuous complex-valued function of x for —o < & < . Then, cor-
responding to any {&;}, there exists an integral function f(z) such that

[f(@) —wx)| <e when 1 — 1 < |x| <7, 1=1,2,--.,
and such that f(¢) = w(),1 = +1, £ 2, ---.

Proof. The proof is like that of Theorem 3 when W, is defined
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as {zfi — 1 < |x| <4} (except that W, also includes the origin); R; as
{2/|2]| <4} ; R as the finite plane; %% as those functions continuous
on W, such that f(+7) = w(+4) and lim, (15, S(&) = w(+ ¢ ¥ 1); and
%, as those functions f(z) analytic on R; such that f(k) = w(k), k =
+1, +£2 -, £ 1.

Theorem 1 can sometimes be used to show that certain requirements
on the approximating function cannot, in general, be made, even when
the approximation is on a set having only a finite number of components.
Next an application of this type is indicated.

When approximating a function analytic and simple on each com-
ponent of a closed set C by a function f(z) analytic in a preassigned finite
region D containing C, one cannot, in general, require that f(z) be
simple in D. To verify this we consider a Q-set S whose components
are simply connected and which has infinity as its only sequential limit
point. Suppose {R;} is an increasing sequence of R-covering sets, as
deseribed for Theorem 2, which gives the corresponding decomposition
W,U W,U.--of S. Let & (and %) consist of all functions analytic
and simple on R,(W;), also all constants. We note that (1) of Theorem
1 is satisfied [6, p, 2038]. If (2) were also satisfied, Theorem 1 would
imply that arbitrary w(z) simple on S could be approximated on S by a
function simple in the whole finite plane. Since w(z) can be chosen so
that f(2) would necessarily have an essential singularity at oo, this does
not hold. We conclude that (2) is not, in general, satisfied.

Theorems 2, 3, and 4 and the illustration just stated are examples
of some of the applications which can be made of Theorem 1.

Part 1II

4. Topological abstraction of Theorem 1. Theorem 1 can be in-
terpreted as a density result for a Cartesian product space. The author’s
original version treated the .<Z’s of Theorem 1 with the respective
topologies induced by the metrics

Af, 9) = sup |f(X) = 9(X) |

as a mested sequence of spaces. The interpretation given in Theorem 5
as an inverse mapping system was suggested by Prof. Hans Samelson
of the University of Michigan. In addition to having the advantage of
conforming to convention, this formulation applies to classes of functions
other than analytic functions.

If {W,} is any sequence of topological spaces, W= denotes the
Cartesian product space W, x W, x ---. We shall be concerned with
the box topology for W= in which a neighborhood of w = (w, w,, «--) is
defined as N, (W) x N, (W,) x «--.
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If {R;}:.,is a denumerable system of T,-spaces and if for n = 2,3, - -,
there is defined a continuous transformation [[Z_, of R, into R,.,, the
system 3. = {R;, I’} of the R,’s and [I’s is an inverse mapping system,
[3, p. 81]. The subset R of R* =R, x R, x --- of all those points
x = {x;} such that [[i*'w,,, = @; is called the limit space of the inverse
mapping system >..

In Theorem 5 we suppose that R, R,, --- are given sets and that
for each ¢, and arbitrary points p, q € R;,, there is defined a metric
d,(p, ¢), where « is allowed as a possible value. Then R, with the
neighborhood system induced by di(p, ¢) is a T,-space. If, for¢ = 2,3,---,
a transformation [[i_, of R, into R;_, is defined which is a contraction
(that is, d,_(IIi-1 », I1i-; @) < di(p, q)), then the []’s are continuous and
{R;, TTi-;} is an inverse mapping system.

Before stating Theorem 5 we note that the R,’s of this theorem are
analogous to the <2’s and the W,’s to the %’s of Theorem 1.

THEOREM 5. Let {W,}i, be a system of topological spaces and let
{R;, IT*} be an inverse mapping system as described in the preceding
paragraphs. Suppose that for each © there is defined a continuous trans-
Sformation f; which maps R; into W,. Suppose also that the following
conditions are satisfied :

(1) If {p{™}5.1 is a Cauchy sequence in R,, its image {I1p-,05™}5-
%8s convergent in R,_;

(2) fu(R) is dense in W, and, when n > 1, [12-; x fu(R.) s dense
mn R,_; X Wh,.

Then under the transformation {xf;} the image of the limit space R of
the tnverse mapping system S, is dense in W= by the box topology.

Proof. Let w = (w, w,, ---) be any point of W= and let N, =
N, (W1) x N, (W,) x --- be an arbitrary neighborhood of w.

Since fi(R,) is dense in W, there is a point 7, € R, such that
Si(r) e Ny (W), There exists N, (R;) C N{(R), where N =
{p e R/d(p,r) < a}. Since f; is continuous and R, is regular, we can
suppose N, (R,) chosen so that f; (N,) C N, (W)).

In general, since [[7., x fu(R.) is dense in R, ; x W,, there exists
r.€ R, so that Ili-, xfu(r,) € N, (R..)) x N, (W,). There exists
N, (R, C N;ZZ"'I’(R,L). Since f, and []?_, are continuous and R, is regu-
larf we can suppose N, (F,) chosen so that N,n(Rn)cN;f”—l)(Rn) and so
that

112 X fu(N,) C N, _(Bacs) X Ny (W) .

The sequence {I17*"7+}i Where [15* = [I5*" - -+ IIii-1, is a Cauchy
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sequence in R,. For, corresponding to any ¢ > 0, there exists m > % so
that 1/(2™-%) < ¢; then

k-1
dn(HZL+kTm+k; H;’:‘,rm) g z%dn(HZL+Z+lrm+i+1; HZLHTli)
i=

< kz_‘ld (II77L+1}+1 N r ) <k_zl 1 1

= 2 Gl To+itly Tm+s 2 omeint < om-2 <e.
The first inequality follows from the triangle inequality, the second
from the fact that the J[’s are contractions, and the third holds since
TL2 T msies € N, (Ry) © N0

By (1) the image of the Cauchy sequence above is convergent in
R,_.. Hence, we let r™V denote lim,.. iy in R,_;. Now
"V eN, (R,.) and f,.; (N, (R.))CN, (W,.,. Hence,
fn—l’r(n_l) € an—l( Wn—l)‘

To complete the proof of the theorem it is sufficient to show that
{r% "V}, belongs to the limit space, that is, that »®» = [[,Zr*""" for
n=234,..-.. Since {[[?*!r,.;} converges to r*~Vin R,_;, corresponding
to any 6>0, there exists k such that 4>k implies d,_ (1% 7,1, 7"~ )<0.
Then, since the =’s are contractions, d,_ (11244, [1220r™Y) < 6 for all
4>k, Now lim [[**»,., is unique in R,_,, and so [[?zir®Y =
lim,_.. [1%*,., = r®». This completes the proof of Theorem 5.

If a function of <Z, defines a function of %%, n = 1,2, --., Theorem
1 can be obtained from Theorem 5. Since each function of <z, in
Theorem 1 defines a function of <#,_, (and in the case just specified,
also %), transformations [[“_, and f, are determined of <2, into <Z,_,
and %,. Let us define a metric d.(f,g) for each &, (also %) as
SUDx e, (or w,) | F(X) — g(X)]. Thus, T,-topologies are determined for 7.
and %, respectively. If f, g e <2, then,

sup (X)) — 9(X)| < sup |f(X) — g(X)|
XeRn-jor Wa XeRrR,

and so [[?.; and f, are contractions and hence continuous. We note
that {<Z, I1i-,} is an inverse mapping system >,. The hypotheses (1)
and (2) of Theorem 1 correspond to (1) and (2) of Theorem 5. By Theorem
5 the image of the limit space .<# of the inverse mapping system 3 is
dense in 97 =. This is just a statement that corresponding to any
function w(X) which defines a point w of %/ = and to any {¢} there
exists r(X) which determines a function of .2, for each n such that
| "(X) — w(X)| < & when X e W,. In this way Theorem 1 can be re-
garded as a special case of Theorem 5.
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