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1. Introduction. The Young-Frankel [11, 5] successive overrelaxa-
tion scheme, which has been shown [11, pp. 104-109] to be applicable
to the numerical solution of partial equations of elliptic type, can be
described as follows. If the system of linear equations to be solved is

( 1 ) Mx = k ,

where the nxn matrix M — (mit3) is such that mM=£0 for i = l, 2, , n,
then the iterative sequence, defined by the successive overrelaxation
scheme, is given by

( ) { Σ , ώ Σ KJ?

where x{0:> is arbitrary, i = 1, 2, , n, and where

( 3 ) j

(0,
and

( 4 ) c4 = fc4/mM, i = l , 2 , - - , w .

With certain assumptions, Young [11] has shown that, for suitable choice
of the relaxation factor ω, relatively rapid convergence of the iterative
process (2) is assured. These hypotheses are satisfied by the usual five-
point difference approximation to — v (k v ^ ) = S, k > 0, in the plane
[11,9].

We show that successive overrelaxation can be considered as a
special case of a more general iterative scheme applicable to the wider
class of p-cyclic matrices, to be defined below. Indeed, ordinary succes-
sive (point) overrelaxation, as well its generalization [1] to successive
block (line) overrelaxation, is just the special case p = 2 of the iterative
scheme we shall now define.

2. p-cyclic matrices* We begin with the following

This paper was originally accepted by the Trans. Amer. Math. Soc. Presented to the
American Mathematical Society, August 30, 1957, under the title "The p-color problem:
a generalization of the Young-Frankel successive overrelaxation scheme.'7 Received by
the editors of the Trans. Math. Soc. January 24, 1958.
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DEFINITION 1. The n x n matrix A = (altj) is cyclic of index p
(p |> 2) if and only if, after some permutation of rows and columns of
A, the matrix A assumes the cyclic block form

0

( 5 )

VO 0 Lp 0

where the zero diagonal submatrices are square.
This terminology was introduced by Romanovsky [8]. For A cyclic

of index p, Romanovsky [8, pp. 162-166] proved that the characteristic
polynomial pn(X) = \ XI — A | of A is of the form

( 6 ) j>B(λ) = λvΠ (X" - σf)

where v + /p — n. (See Theorem 3.)
The following generalizations of the results of [11, 1] are easily

established, and so we state them without proof.1 The results will be
stated only for generalizations of Young's (point) property (A); the ex-
tension to generalizations of block (line) property (A*) is easily carried
out.

DEFINITION 2. The n x n matrix M— {mitj) is p-cyclic, p ^ 2, if

and only if the diagonal entries of M are all non-zero, and there exists

p disjoint non-empty subsets S/, / = 0,1, , p — 1, of W, the set of

the first n positive integers, such that \JfSo

ι Si = W, and if mit} Φ 0,

then either i = j , or if ίeSi, then j e S μ , subscripts taken mod p.2

THEOREM 1. The n x n matrix M — ( m ^ ) is p-cyclic if and only
if there exists a vector j = (y1 , jn) with integral components such
that if mttJ Φ 0, i Φ j , then jj — γ« = —1, or <Yj — γ4 = p — 1, and for
each integer /,§<./ ^ p — 1, there exists some jj such that j 3 = /(mod p).

Any vector γ with the properties above is called an ordering vector
for the matrix M.

1 Proofs and other details are given in Report WAPD-T-567 of the Bettis Plant of the
Westinghouse Electric Corporation.

2 For the case p = 2, this reduces to Young's (point) property (A). Young, however,
does not assume that the sets So and Si are non-empty. This distinction is trivial, since
if So, say, is empty, then M is a diagonal matrix, and if all πiu Φ 0, then the matrix B
of (3) is the null matrix.
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DEFINITION 3. The n x n p-cyclic matrix M is consistently ordered
(relative to the ordering vector 7) if and only if the following hold. If
mij Φ 0, i Φ j , then:

1. If j > i, then jj — γ« = p — 1.
2. If j < i, then °/3 — γ, = — 1 .

REMARK. If Λf is p-cyclic, then by the same permutation of its
rows and columns, M can be consistently ordered.

THEOREM 2. Let the n x n p-cyclic matrix M be consistently
ordered. If Mf = (m{j), and M" — (m"}j) are defined by

3) n _ (mtj, i = i|
( 7 )

/or αί£ λ, det(Λf') = det(M").

The relationship between Definitions 1 and 2 is now brought out
through the following

THEOREM 3. The n x n matrix M is p-cyclic if and only if the
matrix B of (3) is cyclic of index p. Thus, if M is p-cyclic, then the
characteristic polynomial pn(X) = Iλ l— B\ of B is of the form

1
( 8 ) pn(X) = λvΠ (λ* - μf) ,

where v + /p = n, and μ% Φ 0.

From this theorem we see that if M is p-cyclic then its non-diago-
nal entries define a matrix which is cyclic of index p. The second part
of Theorem 3 follows from Romanovsky's result (6), and gives a new
proof, for the case p = 2, of Young's lemma3 [11, p. 98] which asserts
that, for p — 2, the non-zero eigenvalues of the matrix J?, of (3), occur in
± pairs.

Returning to equation (2), it may be written in the form

( 9 ) x(ί+1) = Lσ>ωx(b + f ,

where / is a fixed vector and L σ ω is a linear operator, where σ denotes
the dependence of the equations (2) on the ordering σ of the rows and
columns of M.

We can now determine a relationship between the eigenvalues of
the matrix B of (3) and the eigenvalues of the matrix Lσtfo of (9).

THEOREM 4. Let the matrix M be p-cyclic, and let σ denote a
3 This result has been presented elsewhere. See [2, pp. 368-3691.
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consistent ordering. If ω Φ 0, and if X is a non-zero eigenvalue of
Lσ,ω, and if μ satisfies

(10) (λ + ω - l ) p = Xp'1ωpμp ,

then μ is an eigenvalue of B. If μ is an eigenvalue of B, and λ
satisfies the equation above, then λ is an eigenvalue of Lσt<a.

We define the spectral radius* of a matrix C, μ{C), as the maxi-
mum of the moduli of its eigenvalues. If Jt{C) < 1, then C is said to
be convergent, and

(11) R(C) = -/n{μ{C))

is defined as the rate of convergence of C.
The iterative method of simultaneous displacements [11, p. 100] is

defined in general by the vector equation

(12) χ«+1) = B¥b + c ,

where the matrix B is defined in (3). The particular choice of ω = 1
in (2), defining the operator LσΛ, is called the Gauss-Seidel method.
Theorem 4 leads immediately to the following generalization of Young's
Corollary 2.1 [11, p. 100].

COROLLARY 1. Let M to be a consistently ordered p-cyclic matrix.
If μ is an eigenvalue of B, then μp is an eigenvalue of Lσ>1; if λ is
a non-zero eigenvalue of L σ l , and if μp — λ, then μ is an eigenvalue
of B. The method of simultaneous displacements converges if and
only if the Gauss-Seidel method converges, and if both converge, the
latter converges exactly p times as fast.

3 Determination of the optimum relaxation factor. With the
n x n matrix M = (mttJ) of (1) a consistently ordered p-cyclic matrix,
whose associated matrix B of (3) is convergent (μ = μ(B) < 1), we shall
determine the optimum overrelaxation factor ωh, producing fastest con-
vergence in (2), assuming in particular that the eigenvalues of Bp are
real and non-negative.5 (See Corollary 2.) More precisely, ωb is the
unique positive real root (less than pj(p — 1)) of the equation

4 This is called the spectral norm of C by Young [11, p. 94] although it is not a
norm in the usual sense. When the matrix B of (3) has non-negative entries, ]l(B) is
called the Jacobi constant for the matrix M of (1) by Ostrowski, Comm. Math. Helv.
(1956), 175-210.

5 Similarly, in the case p = 2 of Young, Young [11, p. 102] assumes M to be sym-
metric and positive definite in finding a formula for ω&. This implies that the eigenvalues
of B2 are real and non-negative.
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(13) ψωl = p\p - iy-p(ωb - 1) .

Note that if p = 2, this reduces to Young's equation [11, p. 95] ~μ2ω\ =
ί(ωb — 1). We shall also assume that ~μ > 0, since the case ~μ = 0 is
trivial.

From (10), with μ = μ and λ = zΌ, we obtain, after taking pth
roots, the polynomial equation zp — ω~μzv~λ + (ω — 1) = 0. We therefore
define the polynomial gp(z; ω) as

(14) #p(z; ω) = z* - ώμz*-1 + (ω - 1) .

LEMMA 1. / / ωb and gp(z;ω) are defined respectively by (13) and
(14), then:

1. i^or 1 < ω < α)δ, gp(z; ω) has precisely two positive real zeros.
2. For ω = α>&, #3,(2; α>) /KZS α unique positive real zero of multi-

plicity two.
3. For ωb < ω < p/(p — 1), ^(2 ; ω) fcαs ?ιo positive real zeros.

Proof. For ω > 1, let 2 = f(ω — l)1/ί?, and we obtain

(15) gp(z; ω) = (α> - 1)[^ - ε ^ ) ^ 1 + 1] = (α> - l)^(f; ω) ,

which defines the polynomial hp(ξ; ω). For ω Φ 1, we note that hp and
gp have the same zeros. By definition,

(16) ε(ω) = ωμ(ω — l)" 1 / p .

From Descartes' rule of signs, gp(z; ω) has at most two positive real

zeros. Since

i V/> — T Λ

dω (ω — I ) 2 L

the function ε(ω) is strictly decreasing for 1 < ω < —^—. Now,
p - 1

ε K ) (p -

If ςQ = (p — l) 1^, then fep(f0; ft>6) = 0, and it can be readily shown that
(p — l)llP is a zero of multiplicity two for hp(ξ; ωb), which proves part
2. Using the monotonicity of ε(α>), we have that hp(ζ0; ω) < 0 for
1 < ω < ωb, from which we conclude part 1. For all ζ ^ 0 we have
Λ'pίξΊ ωb) ^ 0, and again using the monotonicity of ε(α>), we have for all
ζ ^ 0, that fep(f; <ϊ>) > 0 for ωb < ω < pj(p — 1), which proves part 3.

LEMMA 2. For 1 < ω < ωδ, £&e function gp(z; ω) has a positive
real zero greater in modulus than [{ωb — l)(p — l)] 1 / p .
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Proof. For 1 < o) < o)b9 one shows directly that hp(ξ1ω) < 0, where

ξl = l:(°)b (ω-^Γ^J '
and the conclusion follows from Lemma 1, part 1.

LEMMA 3. For any ω ^ 1, the function gp(z; ώ) has a zero greater
in modulus than [(ωb — l)(p — l)JlP.

Proof. By definition, gp(z; 1) = zp~\z - μ). It is trivial to verify
that for μ < 1 we have μ > [(ωb — l)(p — l)] 1 / p . For ω > 1, it is easily
shown that gp(μ; ώ) < 0, and since gp(+^>) ω) = + oo, the result follows.

We now consider the case for ω Ξ> ωb. From Lemma 1, the real
polynomial gp(z; ω) has no positive real zeros for ωb < ω < pj(p — 1), so
we now consider the continuous image, for all ω > ωb, of the double
root in the upper half (complex) z plane <_j/rz >̂ 0. This continuous
image z(ω), ω > ωb1 of the double root in the upper half plane is shown
by a somewhat tedious argument to lie in the annulus6

(17) l(

and we have

\z(ω)\ <g {{ω - I)]1 "

LEMMA 4. For ω > ωb, the function gp(z; ω) has a zero z0 satisfy-
ing [(ωb - l)(p - I)]1'* < I*01 ̂  [{ω - l)(p - l)] 1 ^.

4 Spectral radius of Lσ>ω. We consider, for ω = ωby the following
equation derived from (10):

(18) - 1 L ωb-l

plane
where again zp = λ. If |« | = r0, it can
be directly verified from (18) that for
rt> = (ωb — l)(p — 1), the exterior of the
circle | z \ = r0 is mapped conformally onto
the exterior of the closed curve μ(roe

ίθ).
We now denote by Sp(μ) the closed set of
points which is the complement of the open
set of image points μ(2), where \z\ > r0.
The case p — 3 is illustrated in the adjacent
figure.

THEOREM 5. // all the eigenvalues of B lie in Sp(β), where

0 < ~μ < 1, and X(ω) denotes the spectral radius of the operator L σ ω ,

then

6 For p > 2, it can be shown that strict inequality throughout is valid in (17).
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1. X(ωb) = (ωb - l)(p - 1).

2. λ(o>) > X(o)b) — (ωb — l)(p — 1) for all ω Φ ωb.

(X(ωb) < X(ω) <(ω- l)(p - 1) for p > 2.
3. For ω > ωb, \

[χ(ωb) < X(ω) = (ω - 1) /or p = 2.

Proof. With the previous lemmas, the conclusions of Theorem 5
will follow if we show that X(ωb) = (ωb — l)(p — 1). Since, by the defi-
nition of Sp(μ), the image of the exterior of \z\ = r0 contains no eigenvalue
of J5, then X(ωb) < (ωb — l)(p — 1). On the other hand, all eigenvalues
μi of B satisfy \μι\^Jι9 with equality for some i. By definition,
r'S — (ωb — l)(p — 1), and it follows from (18) that μ(r0) = ~μ. Since, by
(18), \μ{z)\ ^ Ji for all \z\ <k r0, and, by assumption, all eigenvalues of
B lie in Sp(μ), it follows that the image of the closed exterior of |2 | = r<>
contains at least one eigenvalue of J5, so that X(ωb) ^ (ωb — l)(p — 1),
and thus X(ωb) = (ωb — l)(p — 1), which completes the proof.

The mapping μ(z) of (18) has p-fold symmetry in the sense that if
we let z = reι\ then

(19) μ(reHθ+2**/Pη = eto«*ipμ(reto) ,

for fc = 0,l, « , p — 1. We now assume that the eigenvalues of Bv

are real and non-negative. The closed set Sp(μ) contains the segment
0 <£ τ ^ JI, as well as, by (19), the segments

p /

The assumption that the eigenvalues of B p are real and non-negative
implies, by Theorem 3, that the eigenvalues of B lie on the p segments
τ exp (2πiklp), 0 ^ τ ^ / 2 , fe = 0,l, ---,p — 1. Thus, all the eigenvalues
of B lie in Sp(μ), which gives us the following.

COROLLARY 2. If all the eigenvalues of Bp are real and non-nega-
tive, and 0 < ~μ < 1, then the conclusions of Theorem 5 are valid.

From the proof of Theorem 5, we obtain the following useful result.

COROLLARY 3. If all the eigenvalues of B lie in SjtjJ.^), 0 < "μλ < 1,
then L σ ω i is convergent, where ωx is the solution of (13) with ~μ = μlΛ

Using the definition of (11), we now compare the quantities R(Lσω )
and R(Lσl).
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THEOREM 6. // ωh satisfies (13), then as μ-> 1 —, we have

(
\p —

Proof. Since R{Lσ^ωι) = ~/n[(ωb — l)(p — 1)], and R(Lσl) = — p/nμ,
the result follows upon applying LΉospitaΓs rule twice to

Combining the results of Theorem 6 and Corollary 1, we have the
following

COROLLARY 4. If R(B) denotes the rate of convergence of the method
of simultaneous displacements, then as Ji->1 —, we have

t
We remark first that, by Theorem 6, generalized successive over-

relaxation (with the optimum overrelaxation factor) always gives an order
of magnitude improvement in the rate of convergence for the Gauss-
Seidel method, even though the coefficient \2pj(p — 1)]1/2 strictly decreases
with p. On the other hand, from the result of Corollary 4, generalized
successive overrelaxation, while giving an order of magnitude improve-
ment for the rate of convergence of the method of simultaneous dis-
placements, is associated with the coefficient [2p2l(p — 1)]1/2, which is
strictly increasing with p.

Finally, we mention three facts, obtained by Young in the case
p — 2, which extend to the general case. First, overestimating or un-
derestimating ]i, respectively, results in an overestimate or an under-
estimate of ωb. Second, overestimating μ by a small amount does not
cause an appreciable decrease in R(Lσta>b), but, on the other hand, under-
estimating p causes a larger relative decrease in iϋ(σ,ω&). Finally, if the
Jordan normal form of Bp is diagonal, then7

( 20 )

In other words, for any p ^ 2, the largest degree of the elementary
divisors [10, Chap. Ill] of Lσ,ω is two.

7 The quantity \\v\\ is the norm of the vector v. If the component of v are Vi, i=l,

2, ...,w, then || v\\ = [ Σ f = 1 M 2 ] 1 / 2 .
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5. Applications, As a first application, we limit ourselves to plane
connected domains #, with boundary S, which are a union of a finite
number of equilateral triangles of side h. Let Sh denote the nodes, or
mesh points, which are points of S, and let Rh be all other nodes. If
we consider the real function u(x), where x is a node, xeRh, then in-
terpreting x as a point in the complex plane, we have that x + hcύj is
also a node of the triangular mesh, where ωό is any complex root of
z3 + 1 = 0.

Consider the following special numerical approximation to the Dirichlet
problem for Ω:

(21) u(x) - -^Σ u(x + hωj) = 0, xeRh,

where the values u(x),xeSh, are prescribed. The matrix M determined
by this system of linear equations is 3-cyclic, and generalized successive
overrelaxation applies in this case.

As a second application, we consider the Peaceman-Rachford iteration
scheme [7]. (See also [4] and [3].) We suppose that the matrix M of (1)
can be expressed in form

(22) M = H + V,

where H and V are symmetric and positive definite, and are similar to
tridiagonal or Jacobi matrices. With equation (22), (1) is equivalent, for
any scalar p, to each of the equations

(23) (H + pl)x = k - (V - pl)x ,

(23') (V + ρl)x = k-(H- pl)x .

The Peaceman-Rachford implicit alternating direction method consists in
using the implicit process defined by

(24) (H + PnI)x* = k-(V- pnl)xn ,

(240 (V+ pj)xn+1 = k-(H- pnl)x* ,

for a suitable sequence of non-negative scalars ply p2, •••. Since the
matrices H and V are tridiagonal, equations (24)-(24') can be rapidly
solved by means of Gauss elimination. In typical computational applica-
tions, only a finite number of non-negative scalars plf p2, , pt are
used, these values being repeated cyclically in (24)-(24').

The concept of a cyclic matrix, as given in Definition 1, can now
be profitably applied to Peaceman-Rachford iteration scheme. The basic
equations (23)-(23') are clearly equivalent to
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(25)

ίk\
where (-») is a column vector with 2n components.

H +

H-

RICΉARD S.

pi V-p

pi V+p

VARGA

I/Xx) ~

Λ

For p > 0, the diagonal blocks of the matrix of (25) are non-singular,
and (25) is equivalent to:

(26) u = Bpu + g ,

where

0 (H+piy\pI- V)
(27) . .

""+ piγ\pI-H) 0

(270 Γ* = ( * = < H + ' f > - 1 %

By definition, Bp is cyclic of index 2. It can be show that Bp satisfies
(block) property (A*), and is consistently ordered in the sense of [1].
For fixed p > 0, the Gauss-Seidel (block) iteration scheme applied to (26)
gives

(28) 5 r = {H

2(m+υ = ( y + pl)-\pl - H)x[m

or equivalently,

( 2 9 ) (ff + pl)x[m+1) = (pi - V)x^} + k,

(V + ρl)x^+υ = (pi - ίf)5(Γ+1) + fe .

This, except for notation, is equivalent to (24)-(24;) for a single fixed
factor p. Generalizing, if the Peaceman-Eachford iteration scheme uses
/ parameters plf p2, , pί cyclically, then we consider

(30) u = B{Pί}u + g ,
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where

(31)

and

(31')

0

0

0
0

T,

• 0

0

0

Ά
0

0

- V); \p,l - H)

By definition, B{ίi} is cyclic of index 2s, and u is a column vector with
2n/ components. Morever, if we use the extension of the results of
§§2-3 to block overrelaxation, as was stated to be possible in the
introduction, then B{Pΰ is a consistently ordered 2/-cyclic matrix. The
application of the Gauss-Seidel block iteration scheme to (30), with
B{Pι} defined in (31), is exactly the Peaceman-Rachford scheme with /
parameters used cyclically. This gives us the following

THEOREM 7. The Peaceman-Rachford iteration scheme (24)-(24') is
the Gauss-Seidel block iteration scheme applied to the 2/-cyclic matrix
B[Pι) of (31).

The special case ρ± = p2 = = ρι is admitted in the preceding
result.

Since the Peaceman-Rachford scheme can be considered as the Gauss-
Seidel block iteration scheme applied to a consistently order 2/-cyclic
matrix, the results of §4 strongly suggest the application of successive
over-relaxation to the Peaceman-Rachford scheme. For the case / — 1,
over-relaxation applied to (28) results in

(32) S(Γ+1) = ω{(H + ρiγ\pl - V)x[m) + (H +

(320 2£TO+1) = ω{(V+ piγ\pl - H)x[m+n + (V

Unfortunately, it is hard to predict the rate of convergence of iterative
schemes based on (32)-(32')» because their spectra are difficult to estimate.
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