
ASYMPTOTIC PERTURBATION SERIES FOR
CHARACTERISTIC VALUE PROBLEMS

C. A. SWANSON

1. Introduction. Ordinary linear differential operators of the type

will be under consideration on a half-open real interval (0, 6] (6 > 0),
designated as the basic interval. The coefficients pj — Pj(x)(j — 0,1, 9n)
are real-valued, continuous functions possessing j continuous derivatives
on (0, 6], and pn(x) ^ 0 on (0, 6]. The point x = 0 is supposed to be
a singularity for L.

The basic operator over the Hubert space J^2(O, b) will be obtained as
a restriction of L to a domain consisting of functions which are suf-
ficiently differentiable and which satisfy certain boundary conditions.
When L coincides with its Lagrangian adjoint, conditions are known [1]
under which an operator like this is self-adjoint over J5f2(0, δ). Our
attention will not be focused on a self-adjoint operator, however, but
on a basic operator which has at least one isolated point in its spectrum.

The investigation here concerns the spectrum of a perturbed opera-
tor. Let [ε, b] denote a closed subinterval of the basic interval, where
ε is a small positive number. A perturbed operator As is a restriction
of L to a domain in ^ 2 (ε, b) consisting of functions which are suitably
differentiable on [ε, 6], and which satisfy homogeneous boundary condi-
tions at the endpoints x = e and x — b. Then a set of perturbed opera-
tors is obtained when ε varies. It will be shown that for each charac-
teristic value A of the basic operator, there is a characteristic value
λ(ε) of the perturbed operator Az which converges to J as ε -> 0 and
furthermore that λ(ε) can be represented by an asymptotic expansion,
valid as ε —• 0.

An asymptotic expansion for the characteristic function u corres-
ponding to λ(ε) will also be established. In particular, the asymptotic
form u(x) = ί7(cc)[l + o(l)] will be obtained, in terms of the characteristic
function U of the basic operator corresponding to Λ, valid uniformly for
x contained in a certain closed subset of [ε, 6] as ε -> 0. Evidently such
an asymptotic form cannot hold uniformly near the zeros of U, nor can
it hold near the boundary x — e since u is forced to satisfy a boundary
condition at x = ε. The procedure used herein permits a representation
for the characteristic functions to be obtained in the " boundary layer "
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near x = ε, as well as the uniform result stated above.
The distinctive feature of the problem under consideration is that

the domain of the basic operator has been perturbed to a " slightly dif-
ferent " domain, depending upon the small parameter ε. In the usual
perturbation theories, the operator L itself is perturbed: the perturbed
operator is defined formally by the relation A, — To + ε2\ + ε2T2 + .
One then develops the characteristic values and characteristic functions
of A2 in convergent or asymptotic power series in ε as ε -> 0 [5]. In the
present case, when the perturbation arises from the domain of the opera-
tor, power series expansions are not valid in general, and instead more
general types of expansions will be obtained.

The present method consists of comparing the solutions of the per-
turbed problem with those of the basic problem by means of an integral
equation of Volterra's type. The kernel of the integral equation has
a well-known [2, 4] representation as the quotient of determinants of
order n. A specific representation for solutions of the perturbed prob-
lem can then be obtained.

The analogous problem for second order self-ad joint operators has
been treated previously [9]. The present results will correspond to the
class 1 problems in [9], for which there exist linearly independent solu-
tions of (1.1) which can be ordered according to their asymptotic behaviour
near x = 0. Asymptotic expansions for perturbed characteristic values
and functions are then obtained, and the main theorems are enunciated
in §4.

2 Definitions* The asymptotic terminology to be used in the sequel
will first be described. This follows Van der Corput [10]. Asymptotic
expansions of functions /(ε) for small values of the positive, real varia-
ble ε will be under consideration. Let δ(ε) be a positive function of ε
with the property that δ — o(l) as ε —> 0. The function δ will be called
a scale.

DEFINITION 1. The formal series ΣA ^s sa^ t° be an asymptotic
expansion for the function f(ε) with scale δ, as ε -> 0, if the order
relation f - fx - f2 - - fi = 0(8*) holds for each i = 1, 2, .

The notation / ^ Σ/« signifies that Σ/« *s a n asymptotic expansion
for/.

Suppose that / and ft are functions not only of ε, but of an addi-
tional real variable x on an interval I, which may depend on ε. Let 8
be a function of ε and x with the property that δ = o(l) as ε -> 0,
uniformly for x e I. Then a uniform asymptotic expansion for / is
defined as follows.
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DEFINITION 2. The series ^f is said to be an asymptotic expansion
for f with scale S as ε ~-» 0, valid uniformly for x e I, if for some
function a(x, ε) the order relation f ~ fx ~ f2 — — ft — O(αδ*) feoZds
uniformly for x e I for each i = 1, 2, .

The differential operator (1.1) is under consideration on the real
interval (0, 6] (6 > 0). It will be assumed without essential loss of generali-
ty that

(2.1) pn(χ) = - 1 , pn.λ{x) = 0 0 < x < b .

All points in the interval (0, b] are supposed to be ordinary points of L
and x = 0 is supposed to be a singular point.

Let ξ> denote the Hubert space ^ 2 ( 0 , δ), and let (, ) and | | | | denote
the inner product and norm respectively in ξ>. Let '^n~\a, b) denote as
usual the class of real valued functions on (α, 6) possessing n — 1 con-
tinuous derivatives. Certain transformations on § will now be defined
by suitably restricting the formal operator L.

D E F I N I T I O N 3. The basic domain ® is the set of all % e § satisfying
the following conditions.

(a) u e cέ?n~\§, b) and u^n~^ is absolutely continuous on every closed
subinterval of (0, 6],

(b) Lu 6 ξ>
(c) u satisfies a set of n — m (1 < m < n) linearly independent

homogeneous boundary conditions at x = 6, o/ the form

(2.2) ^ f c M - ΣβkJV
a-Ό(b) = 0 (fc = 1, 2, w - m)

for real numbers βkj [2],
The 6αsΐc operator T is then defined to have domain ® and

(2.3) Tu = Lu u 6 ® .

It is possible that T is already a self-adjoint transformation on the
space ξ>. When n = 2, this corresponds to the limit point case in WeyPs
classification of singular points [2, 11]. If T is not self-adjoint, one
can try to obtain all possible self-ad joint transformations by adjoining
suitable conditions at x = 0 but we are not going to be interested in
forming self-ad joint transformations, and instead make some direct
assumptions.

A set of n linearly independent functions V α̂?) on (0, b) are said to
be asymptotically ordered as x —> 0 when there exists a number x0 > 0
so that each F έ > 0 whenever 0 < x < x0, and

(2.4) lim V ί ^ ^0 (i = 1,2, . . . n - 1)
7 ( )
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This property induces an ordering on the set {VJ, which can be in-
dicated by the chain

v,< v2< ... < vn.
Let A be a real number, and consider a fundamental set of solutions
Ui = Ut(x, A) (i = 1, 2, , n) of the differential equation Ly — Ay. Let

(2.5) Wt = Wt(xf A) = ( - l)n+iάet{Uh^)

(h, i = 1, 2, , n; h Φ i k = 1, 2, , n — 1) .

The following assumptions will be made.

ASSUMPTIONS For at least one real number A, there is a funda-
mental set of solutions U% of the differential equation Ly — Ay with the
properties

(i) The set {C7J is asymptotically ordered as x-+0.
(ii) For j — i k, i = 1, 2, , n — 1 and j == k — n, i = 1, 2, -«, n — 1,

(2.6)
Un(x) I*

(iii) i^or some positive number xQ1

(2.7)

(0 < x <t <xQ) (i = 1,2, . . . , w - 1)

(iv) J 7 n . T O e ® | | ^ m | | = l .
(v) (TFW, Z7fc) exists for each k — ly2y , ^ — 1, a n d ( W n , f/w-m) ^ 0.
(vi) The solution space Wl of (2.2) m ίfee manifold {Ui} is spanned

by the m functions Un-m, Un-m+1, ---, Un-X.

It will be convenient to use the notation

(2.8) Vj= Un.
m+j

The assumptions (i), (ii) correspond to those for class 1 problems in
[9]. When n = 2, assumption (iii) is implied by (i), and (v) is implied
by (iv). Concerning (iv), it may be that not only Un-m9 but a subset
31 of 3Ji with dim 5ft > 1 lies in ®. However, our attention will be
focused on the function Un-m, in fact the minimal element of the chain
Ut< U2< ••• -< Un which lies in ®. The function Un_m will be called
a basic characteristic function for T, corresponding to the characteristic
value A. It can be shown that under the assumptions, the characteristic
values are isolated numbers.

The Wronskian determinant W of the functions Uό(x) is a constant
because of Abel's formula [4], since pn-i(%) = 0, and without loss of
generality
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(2.9) W = άet(Uj^) = - 1 (i, i = 1, 2, . . , rc) .

The perturbed transformation A, will now be defined as a restric-
tion of L to functions y satisfying a set of m homogeneous boundary
conditions at x = ε, of the form

(2.10) ^ly\ = Σ α.Xε^o-)^) = 0
i = i

0 < ε < b (ΐ = 1, 2, . . ,ra) ,

where the α u are real-valued functions of ε, and at least one of the
functions ail9 ai2, ain does not vanish for any ε. It will be necessary
to assume that these functions satisfy some mild conditions, which will
be stated below.

Let \&u\ denote the boundary operator defined by

j - l

i = 1, 2, . m) .

Let ] det | (au) denote the sum of the absolute values of the m! terms in
the expansion of the determinant of an order-m matrix (aiό). Consider
the matrix (bik) with elements given by

(2.11) bίk = 6<fc(ε) = m m (i, k = 1, 2, m) ,

where the functions Vk are given by (2.8). Let (diJc) be the matrix
obtained from (bi]c) by replacing the hth column vector (bih) by the vector
(— bi0) = (— &ulVo\) (the dependence of (dίJc) on h will not be indicated
in the notation) and let (eίk) be obtained from (bik) by replacing (6iΛ) by
any vector whose components are dominated by those of (| ^

ASSUMPTIONS. It will be assumed that the functions

( 2 1 2 ) VΛdet(dik). Vh\det\(eίk).
Vodet(bih)' Vmάet(bίIC)'

are bounded functions of e whenever 0 < ε < ε 0 (j = 1,2, ••• n — l h —
1,2, m ) , and in particular

(2.13) det(bik)Φ0 0 < ε < ε0 .

DEFINITON 4. The perturbed domain S)3 is the set of all u e §
satisfying the following conditions

(a) u 6 c^pn'1{ε, b) and u(-n~1') is absolutely continuous on [ε, 6],
(b) Lu e ξ>
(c) ^ satisfies the n — m boundary condition (2.2) α£ α? = δ.
(d) u satisfies the m boundary conditions (2.10) αέ a; = ε.
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(e) u is identically zero on (0, ε).
The perturbed operator A, is then defined to have domain S ε and

(2.14) Azu = Lu % G S H ,

The domain ®ε is to be considered as a perturbation of the basic
domain ®, and the perturbation is due to the boundary conditions (d) of
Definition 4 being adjoined. In a sense, the operators A2 converge to the
basic operator T as ε->0 [8]. Our problem is to show that the characteristic
values and functions of A2 converge to those of Γ, and furthermore to
obtain asymptotic representations which are valid for small values of ε.

3» The comparison procedure* The characteristic value problem under
consideration is

(3.1) Lu^Xu u e ®5 .

Let {Uj} be the fundamental set of solutions of Ly = Ay which was
postulated in § 2. Let Vo — Un-m be the basic characteristic function
corresponding to the characteristic value A, that is

(3.2) LVQ = AV0 Voe® \\V0\\ = 1 .

Let U be any function in the manifold spanned by the n functions U}.
Let u = u(x, λ) be defined by the integral equation

(3.3) u(x, λ) = U(x, A) + (A - λ) \bG(x, t; Λ)u(t, X)dt

for ε < x < bf and let

u(x, λ) = 0 for 0 < x < e ,

where the function

(3.4) G(x,t;A) = ± Wh(t, A) Uh(x, A)
Λ = l

is obtained by the classical method of variation-of-parameters [4], and
Wh is given by (2.5).

LEMMA 1. If U e <gr7W(ε, b), then for each fixed value of λ and ε
there exists a solution u of (3.3) in (έfn(ε, 6). This solution satisfies
the differential equation (3.1), and furthermore satisfies the n — m
boundary conditions (2.2) at % — b if U satisfies these same conditions.

The proof is well-known [2]. In the sequel U will lie in the solu-
tion space of (2.2) in the manifold spanned by {£/<} (i = 1, 2, n).
Then U will have the form



ASMYPTOTIC PERTURBATION SERIES 597

(3.5) U(x) = V0(x) + 7 l Vi(!c) + + Ύ^V^x)

where the numbers γ7 are independent of x but depend on ε. The γ' s
are to be determined from the boundary conditions (2.10).

LEMMA 2. // the numbers yL, γ2, •• ,γm_1, X can &β determined so
that the solution u of the integral equation (3.3), with U given by (3.5),
satisfies the m boundary conditions (2.10), then X is a characteristic
value for A3 and u is the corresponding characteristic function.

For u satisfies all the conditions of Definition 4, so that u e ®ε,
and by Lemma 1, Lu = Xu.

Let H be the integral operator defined by

(3.6) Hf(x)= \bG(x,t;Λ)f(t)dt
Jx

and let W be the i th iterate of H. The solution of (3.3) can then be
expressed in the form

(3.7) u{x) = U(x) + ±(A - XYHjU(x) ,
.7 = 1

which is uniformly convergent and termwise differentiate up to order
n (according to Lemma 1). Application of the boundary conditions (2.10)
gives the set of m equations

(3.8) o = miu] = &
j = l

Define for convenience

(3.9) ym = A - λ, 70 = 1 .

Then by (3.5), equations (3.8) can be written in the form

m-l

+ Ίm Σ Ύ . m i H V , - ] + Σ Σ Ί K Ί U Ά I W V Λ (ί = 1,2, ••• m),

These are power series in 7X, γ2, γm. Our problem is to invert
them, but first certain preliminary results concerning the size of the
coefficients in (3.10) will be established. These results will be given in
a sequence of lemmas.

LEMMA 3. The following asymptotic forms are valid

(3.11) HUk{x) = ΩkUn(x) + o[Un(x)Ί
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as x -> 0, k = 1, 2, , n — 1, where

(3.12) β* = (W», E/*).

Proo/. According to (3.4) and (3.6)

(3.13) HUk(x) - ΩkUn(x) = ^ E (̂aQ fδ ^hU)Uk(t)dt
Un(x) »Φn Un(x) Jx

- \* Wn(t)Uk(t)dt .
Jo

Since (Wn, Uk) exists by assumption (v), the last term on the right side
of (3.13) is o(l) as x-+0. By assumption (ii), each term in the sum-
mation is also o(l) as x -> 0.

The following notation will be used:

(3.14) U(x) = maximum{| Uk(x)\}

= maximum {I

W(x) = maximum {| Wk(x) \}
k

0<x<b (k, h + 1 = 1,2, •••,%)

(3.15) g(x) = Γ T7(ί)t/(ί)dί ίCo < x < b

= [ X ° \ W n ( t ) \ U ( t ) d t + g(x0) 0<x<x0,
Jx

where x0 is a positive number, as postulated in (2.4), (2.7). The function
g(x) is uniformly bounded for x0 < x < b.

LEMMA 4. There is a constant C independent of x and j so that

(3.16) \H'Uk(x)\ <

0<x<b, k = 1, 2, . . . ,w - 1; j = 1, 2 . - .

Proo/. Suppose that cc0 < x < b. Then it follows easily from (3.4),
(3.6), and (3.15) that

\HUk(x)\ <ng(x)U(x) .

Hence (3.16) is true for j — 1. Under the assumption that it is true for
j , it follows that
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y 1
0 — 1)!

<C nJ ύ(x) \b

0 1 ) !

Therefore (3.16) is valid by mathematical induction.
Suppose now that 0 < x < x0. Then

\Huk{x)\ <

5 xo
\Wn(t)Un(x)Uk(t)\dt + ng(xo)U(x) .

It follows from assumption (v), below (2.7), that (3.16) is true for j — 1.
Proceeding by induction.

\H^uk{x)\ <

+ Σ Γ l^.(

< c
^ - 1) '

( j — 1) ! Ĵ o

This completes the proof of Lemma 4.

LEMMA 5. For the m boundary operators &ei[y] defined by (2.10),
the following asymptotic forms are valid:

(3.17) mi[HUk] - Ωt&lίUΛ +

as ε -> 0, ί = 1, 2, , m & = 1, 2, , n — 1.

Proof. It is permissible to differentiate HUk(x) under the integral
sign. Hence
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= _ Γ-

The first term on the right side is o(l) as in Lemma 3. Each term in
the summation may be decomposed into the factors

The first factor is o(l) as ε -> 0 by (2.6), and the second factor is bound-
ed by hypothesis (2.12). These considerations establish (3.17).

It will be convenient to introduce, in addition to (2.11), a matrix
(cik) defined by

(3.18) ctk(e) = b,M for k = 1, 2, . . , m - 1

cim(e) = ^t[HV01 (i = l , 2 , . . . , m ) .

Then (3.17) becomes, for k = n — m,

(3.19) cίm(e) = Ωn-mbim(e) + o[δ<m(β)]

as ε->0, ί = 1, 2, •• ,m .

An analogue of Lemma 4 will now be stated. The proof is similar
to that of Lemma 4, and will be omitted.

LEMMA 6. There is a constant C independent of x and j so that

k(x)Yh-»\ < C
U - 1)!

(3.20) \mιwuΛ\ <

0 < ε < e o ( i = 1 , 2 , . . , m ; A; = 1 , 2 , -- , n - l i = 1 , 2 , • • • )

where \&H\ is defined below (2.10) and U is defined by (3.14).

4. Characteristic values and functions. The problem has been re-
duced to investigating the solutions <γj(j = 1, 2, , m) of the system
(3.10). The quantity J - γm, depending on ε, is the characteristic value
λ under consideration. The system (3.10) can be written in the form

(4.1) - bί0 = ΣcifcΎfc
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where the last summation is extended over indices j \ , j 2 , j m with the
properties

(4.2) j \ < 1, j 2 < 1, , j m _ λ <l',jm>l.

The coefficients cίjc are given by (3.21), (2.11), and the coefficients
Ci9 JvJi,...,jn are of the form miLH^V*] (jm = 1, 2 , . . . k = 0 , 1 , . . . , m - 1).
The latter will sometimes be abbreviated by Cit....

It follows from Lemma 6 that

(4.3) IC,,...,, | < M ^

0 < ε < ε0 , i = 1, 2, , m j m = 1, 2, .

The determinant of the linear system

m

(4.4) - 5 i 0 = Σ c Λ (ί = l,2, . . m)

associated with (4.1) has, on account of (3.18), (3.19) the following
asymptotic behaviour

(4.5) det (cik) = βw_mdet (bi]ύ)[l + o(l)] as ε -> 0 (i, fc = 1, 2, , m) .

Since Ωn-m Φ 0 by hypothesis (v), and since det(6ifc) φ 0 by (2.13), the
linear system (4.4) possesses unique solutions γfc for 0 < ε < ε0. Hence
(4.1) can be written in the form

(4.6) 7Λ = 1Ά + Σ A » •• ,7ίi7ί» 7i» (Λ = 1,2, . . ,m)

where

(4.7) vh = _ M ^ - [ i + o(l)] as ε -> 0
ί 2 w d e t ( 6 )

and

(4.8) Dh, . . . - π

d e t i α ; ^ , [1 + o(l)l as ε -> 0
β d e t ( 6 )

Here, the matrices (6iΛ), (cίiλ:) have been defined in (2.11)-(2.12), and
(ailc) is defined as follows

a** — δ«fc foτ k = 1,2, -•-,m,k φh

= Ci9 - fork = h.

The result (4.5) has been used in obtaining the asymptotic forms (4.7),
(4.8).
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It follows from the assumption (2.12), and from (4.3), (4.7), and (4.8)
that there exists a constant C so that

(4.9) \vh(ε

(4.10) 1A>,..J<(

" Um-ϊ)l\Vh{e)\

0 < ε < ε0, h = 1, 2, , m j m = 1, 2, .

Let new variables sΛ be introduced by the relations

(4.11) ΎΛ = v*sh (Λ = l ,2, . . . , m ) .

Then the system (4.6) becomes

(4.12) 8h = 1 + Σ Eh, , βίis|« si«

where

(4.13) Eh, - DΛ, , vίuψ vy1 ^m .

.LEMMA 7. T/̂ β system (4.12) possesses unique solutions sh(ε) in the
neighborhood of ε = 0, which may be represented by the convergent
series

(4.14) sh = 1 + ±BM ,

where the coefficients Bhlc are obtained by formal substitution of the m
power series

(4.15) β» = H Σ V

into the system

(4.16) *A = s + Σ # * > > S'1S^ *" * s-m

αwcί equating the coefficients of each power of z.

Proof. The Cauchy majorization procedure [3, p. 470] will be used
to show that (4.16) has solutions sh representable by power series ex-
pansions, convergent when z = 1. Accordingly, (4.16) can be dominated
by the system

(4.17) Sh = S=Z-[l + R-'iS, + + SJ] + [1 - R'KS, + SJY1
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provided R is chosen suitably. In the power series expansion of the
right side of (4.17), the sum of the exponents for any term is > 2, as
is the case also in (4.16).

It can be seen from (4.9), 4.10), and (4.13) that the system (4.16)
is dominated by (4.17) whenever R'1 is of order u1(ε)g(ε)f which is o(l)
as ε—>0 by (2.6), (3.15). Then, according to the Cauchy majorίzation
procedure, the series (4.15) for the solutions of (4.16) are dominated by
the series for the solutions Sh of (4.17). However, the latter are easily
constructed, as follows:

αitt 9 - R{R + mZ) f1 Λ 4(£m + m2)Zγ/2Π
( 4 1 8 ) bh ~ 2(Rm + m2) L1 ~ V " (JB + mZf ) J '

and the right member is developable in a power series about Z — 0,
with radius of convergence ZQ of order (^g)"1. Then the m series (4.14),
obtained from (4.15) when 2 = 1, are convergent series expansions for
the solutions of the system (4.12).

LEMMA 8. The series on the right side of (4.14) constitutes an
asymptotic expansion of sh(ε) with scale S = v1(e)g(ε)f as ε -> 0. In
particular, the following asymptotic forms are valid:

(4.19) s}h(ε) = 1 + o(l) as ε -> 0 (h = 1, 2, . . . , m) .

Proof. The coefficients BhΊc in (4.14) are dominated by the coefficients
in the power series expansion of (4.18). Hence

which establishes (4.19).
The coefficients Bhkf as determined by formal substitution of (4.15)

into (4.16), have the form

(4.20) Bhk — 2 ΦEhιhj2ί...ΛBlqιB2H (BmmιBmmt BmiΛi)

where the summation extends over indices

3if 3\> , i Qi, q2, $ Qm-i m19 m 2 , , mt

with the properties

3i < h j \ < 1, " , ί = 1, 2, •-.;

<?i + ?2 + + Qm-i + mx + m2 + . + m4 = Λ .

The coefficients Φ depend on the indices but not on ε. It is understood
that Bhl = 1. It follows from (4.13) that
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Then an inductive argument shows that Bhk — Oίδ*"1) (h = 1, 2, , m A; =

1,2, .-•). Hence by (4.14),

so that the series on the right side of (4.14) is an asymptotic expansion
for sh with scale δ(ε) as ε -> 0.

According to (4.11), (4.14), the solutions of (4.6) are

(4.21) γΛ(e) = vh(ε) Γl + ± 5Λfc(ε)Ί (h = 1, 2, ..., m)

and the right member constitutes an asymptotic expansion for γft(ε) as
ε->0 for each h = 1, 2, « ,m. Evidently (4.21) are also solutions of
(4.1) and hence of (3.10). In particular the following asymptotic forms
are valid:

(4.22) 7A(ε) = vA(ε)[l + o(l)] as ε -> 0 .

THEOREM 1. .For each characteristic value Λ of the basic operator
T, there exists a characteristic value λ(ε) of the perturbed operator A*
which converges to A as e ~> 0, and furthermore λ(ε) has the convergent
asymptotic expansion

(4.23) λ(ε) = Λ- vm(ε) Γl
L

with scale vxg as ε -> 0

Proof. The coefficients γΛ given by (4.21) have been determined so
that the function u, with the representation (3.7), satisfies (3.10), or
(2.10). Then Lemma 2 shows that λ(ε) = A — γm(ε) is a characteristic
value for A2, and that u is the corresponding characteristic function.
The expansion (4.23) follows from (4.21).

In particular, the following asymptotic form is valid

λ(ε) = A- vm{ε){l + o(l)] as ε -* 0 .

An asymptotic expansion for the characteristic function u — u(x, λ)
corresponding to λ can now be obtained directly from (3.7); for it fol-
lows from (3.7), (3.16), (4.23) that

u(x, λ) - U{x, A) - ££\

e < ε0, ε < x < 6, N = 1, 2,
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Furthermore, ym(ε)g(x) = o(l) as ε -> 0, uniformly for ε < x < δ, on ac-
count of (2.6), (3.15), (4.9), and (4.22). Then u has the asymptotic ex-
pansion

(4.24) u(x, λ) - U(x, Λ)~± [yn(e)Y& U(x)

with scale δ = ym(ε)g(x) as ε -> 0, valid uniformly for ε < x < b. The
function a in Definition 2 can be taken to be ym(e)U(x, A). The func-
tion U(x, A), depending on ε, is defined by (3.7).

In particular, the result

(4.25) u(x, λ) = V0(x, A) + ΣΪvMVk(x, A) + O[ym(ε)U(x, A)]
fc = l

displays the error term u(x, λ) — V0(x, A). When x is in a closed sub-
set /of ε < x < b which is independent of ε, the error term is of order
ι^(ε), or V0(ε)l Vi(e), uniformly for x e I. On the other hand, when the
ratio xjε remains bounded as ε -> 0, the error term is of order ym(ε)Un(x),
or V0(ε).

THEOREM 2. The characteristic function u(x, λ) corresponding to
the characteristic value λ(ε) of the perturbed operator As possesses the
uniform asymptotic expansion (4.24), valid as ε ~> 0 over the perturbed
interval ε < x < b.

Some special cases will now be stated. Let J[VQ] denote a closed
subset of the interval (0, δ] with the property that V0(x, A) does not
vanish whenever x e J[VΌ]. Then the asymptotic form

(4.26) u{x, λ) = V0(x, A)[l + o(l)]

is valid as ε->0, uniformly for x e J [ F 0 ] .

Further, let J[V0, V19 , F J (k = 0,1, , m — 1) denote a closed
subset of (0, 6] on which none of the functions Vo, Vlf •••, Vk vanish.
Then the asymptotic series

(4.27) φ , λ) - VQ(x, A) + y.itήVάx, A) + . . . + yk(ε)Vk(x, A)[l + o(l)]

is valid as ε -> 0, uniformly for x e J [ F 0 , V19 , Ffc] (k = 0,1, , m — 1).

5 Regular singularities. In this section, the point x = 0 is sup-
posed to be a regular singular point for the differential operator (1.1).
Specifically, it is assumed that the functions Pj(x) have the asymptotic
behavior

(5.1)

as x->0(j = 0 , 1 , ---,n — 2), and that (2.1) holds. Let TΓ, ( i = 1,2, ,n)
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denote the n zeros of the polynomial

n

Σ Pj9j-nπ(π — 1) (7Γ — i + 1) + po>.n ,

where pn>0 = — 1, pn-lt-! — 0, all supposed to be real and distinct, ordered
as follows:

(5.2)

Evidently

(5.3)
n

j = l

πλ > π2 >

- 1 + 2 + (n-1).

Then the differential equation Ly = Ay possesses a fundamental set of
solutions Uj(x) with the asymptotic behavior

(5.4) UjW^djX'j x-^0 (j = 1, 2, . . . , w) ,

where the constants α̂  are independent of A as well as x.
It follows from (5.2) that the solutions (5.4) are asymptotically or-

dered as x -> 0, and hence assumption (i) of section (2) is satisfied.
Also, according to (2.5) and (5.4),

Wj(x) ~ bjxtj, βj - Σ*i - 1 - 2 (rc - 2) ,

and from this it is seen that assumption (ii) is valid. From the asympto-
tic behavior of U3 and W5 as x -> 0, it follows that

\Ui(χ)Wi(t)\
\Un(x)Wn(t)\ ~

and hence assumption (iii) is also valid. Then in the case that the ex-
ponents at the singularity are real and distinct, ordered by (5.2), the
assumptions (i), (ii), (iii), are all satisfied independent of the number A.
The distinctness assumption could be removed by introducing solutions
like x*, x* logx, corresponding to a double zero π [4]. This has been
done in [9] for the case n = 2, but the discussion will be omitted here.

Concerning the boundary conditions (2.10), suppose that each func-
tion ain(ε) Φ 0 (0 < ε < ε0 i = 1,2, , m) and that the limits

(5.5)

all exist. Then sufficient conditions for (2.12), (2.13) to hold are

(5.6) ^ i . - ^ O

where
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μiic - 0n + Σ oi3πk{πk - 1) (πk - j + 2) .

Similar conditions can be obtained when some of the functions ocin{ε)
are identically zero.

Explicit asymptotic forms for vh in (4.7) can now be obtained under the
assumptions (5.5), (5.6), with the aid of (2.10), (5.4). The results turn
out to be

(5.7) vh(ε) = ωhe\[l + o(l)], s - 0(Λ = 1, 2, ., m) ,

where

ω - αQ d e t ( / ^ j ) • a - π - π

ahΩn.m άet(μik)

Here, the index i assumes the values 1, 2, , m; k assumes the values
n — m + 1, n — m + 2, , n; and j assumes the same values as k ex-
cept n — m + h is replaced by n — m. Then asymptotic forms of the
type (4.23) can be obtained for the characteristic values λ(ε) as ε -> 0.

As an example of (2.10), consider the boundary conditions y^'^ie) =
0 (ί — 1,2, « ,m). In this case, the matrix (μlk) involved in (5.7) is
given by

μu = πk(πk - 1) (πk - i + 2) (i = 2, 3, -., m) ,

and it can be seen that (μlk) is equivalent to the Van der Monde matrix

(π^-1). Since [6] detiπ^-1) = Π fa - π*)(i > k) {t follows that

where the product is taken over all the values j = n — m + l,n — m+2,
• n, except n — m + h. Since πj Φ πn-m+h for j Φ n — m + h by the
distinctness hypothesis, it follows that the asymptotic forms (5.7) for
vh(ε)(h = 1, 2, , m) can be determined explicitly, and in particular when
h = m,

λ(ε) = A - ωmεV[l + o(l)] as ε -> 0 .

For characteristic functions u = w(α?, λ), a result more precise than
(4.24) will be obtained when x is on a closed subset of (0, 6]. Consider
the decomposition

i = jm + k (k = 1, 2, •••, m i = 0,1, 2, •••)

of the positive integer i. Define
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(5.8) Ft{x, s) = yLy^H'U^x, A)

and

(5.9) σt = j{πn_m — πn) + (πn-m — 7Γn-TO+

Then, according to (3.16) and (5.8),

\Ft(x, e)| <

It follows that whenever x is on a closed subset of (0, b],

, λ) - Σ F f t ( » , ε) =
Λ l

0 < ε < ε 0 (i = 1,2, -..) .

Then the series Σ - ^ O ^ J
 ε) represents a uniform asymptotic expansion for

the characteristic function u(x, λ) as ε -> 0.
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