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I* Introduction. For a second order linear homogeneous differen-
tial equation

(1-1) L(y) = y" + p1{x)yt + p2(x)y = 0 ,

with pλ{x), p2(x) continuous real-valued functions on an open interval
(α, b) of the real line, and such that for arbitrary xlf ylf x2, y2 with
a < xx < x2 < b there is a unique solution y(x) = y(x; x19 yt; x2, y2) of
(1.1) satisfying y(xa) — ya, ipc = 1, 2), a real-valued function u(x) has
been termed "sub-(L) on (α, b)" if for arbitrary c, d on a < c < d < b
we have

w(#) <̂  ?/(#; c, u(c); d, ιι{d)) on c <^ x <L d .

The class of such sub-(L) functions is a special instance of sub-i*7 func-
tions as introduced by Beckenbach [1], who established for general sub-F
functions various properties analogous to those of convex functions.

In particular, for sub-(L) functions it has been established by Peixoto
[8] and Bonsall [3] that a real-valued function u(x) of class C" on (α, b)
is sub-(L) on this interval if and only if L(u) ^ 0 on (α, 6); indeed,
Peixoto has shown that for certain types of non-linear second order
differential equations the corresponding sub-functions of class C" are
characterized by a similar differential inequality. Now if a < xQ < b and

I— Γ x ~~1

rQ(x) = exp \ pλ(t) dt , pQ(x) = — p2(x)r0(x) ,

then for a function u(x) of class C" the condition L(u) ^ 0 on (α, b) is
equivalent to the condition that on each compact subinterval [c, d] of
(α, b) the function u(x) affords a minimum to the integral

[ro(x)y'2 + pQ(x)y2] dx

in the class of y(x) that are absolutely continuous with yf{x) of integrable
square on [c, d], and

y(c) = %(c), y(d) = u(d), i/(a;) ^ t φ ) on [c, d] .
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It is the purpose of the present paper to show that sub-(L) functions
in general are characterized by the property of affording a minimum for
an associated unilateral variation problem. For such a study it is more
appropriate to consider the diffei ential equation in self-ad joint form, and
such is done throughout the paper.

Certain preliminary results on sub-(L) functions are presented in § 2;
§ 3 is devoted to variational criteria of the type mentioned above, and
related results. Finally, in § 4 it is shown that sub-(L) functions are
characterized by a property that is a direct generalization of the well-
known fact that a real-valued function is convex on (α, b) if and only
if u(x) is continuous and

u(x) ^ (2hyi\ u(t) dt

for all x e (a, b) and h > 0 such that [x — h, x + K] is a subinterval of

(α, 6).
In regard to similar problem involving partial differential equations

in two independent variables, it is to be commented that Levin [6] has
considered the minima of double integrals with respect to unilateral
variations, with special attention to subharmonic functions; for more
general multiple integrals necessary conditions for a unilateral variation
problem are given by Carson [4; Sections 8, 10].

2 Prefatory results* Suppose that r(x), p(x) and q(x) are real-valued
continuous functions of the real variable x on the open interval (α, 6) with
r(x) > 0 on this interval, and consider the self-ad joint differential equation

(2.1) L(y) = (φ)yf + q(x)y)' - (q(x)y' + p(x)y) = 0 .

By a solution of (2.1) is meant a y(x) such that on (α, b) the functions
y(x) and r(x)yr{x) + q{x)y are continuously differentiate and L(y) = 0.
We shall be concerned with equations (2.2) which possess the following
property:

(I). // a < xλ < x2 < b and ylf y2 are arbitrary real numbers, then
there exists a unique solution y(x) = y(x; xlf yL; x2, y2) of (2.1) such
that y{xΛ) = yΛ, (a = 1, 2).

Corresponding to the terminology of Bonsall [3] and Peixoto [8], a
function u(x) is termed "sub-(L) on (α, b)" if u(x) is real-valued, and
for arbitrary x19 x2 satisfying a < xλ < x2 < b we have

(2.2) u(x) <̂  y(x; x19 u(x^); x2, u(x2)) on xλ <̂  x ίg x2 .

A function u(x) is said to be "strictly sub-(L) on (α, &)" if for arbitrary
x19 x2 satisfying a < xx < x2 < b the strict inequality holds in (2.2) for
Xγ \ X <C. X<ι
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LEMMA 2.1. Condition (1) implies that there exists a solution yo(x)
of (2.1) such that yt)(x) > 0 on (a, b); moreover, if a < x{] < b and
x = χ\t\ is defined by

dz a<t<β ,
J*o yl(z)r(z)

where

a — lim I dzl\_yl(z)r(z)\, β = lim 1 <

is sub-(L) on (α, 6) ΐ/ and on/]/ i/ w(ί) = u(x[t])lyQ(x[t]) is convex

on (a, β).
If α < x0 < 6, and α < s < 6, s Φ xOf then condition (I) implies the

existence of a unique solution y(x; s) of (2.1) satisfying y(x0; s) = 1,
2/(s; s) — 0. In view of condition (I) it follows readily that

yf(x0; sλ) < y'(x0; s2), #(α, s :) < y(x, s2) on x > x09 if xQ < sλ < s2;

2/'(a? 0 ; s O < 2/'(05 o; s 2 ) , 2 / ( » , s 2 ) > 2 / ( « , s 2 ) o n x < a? 0 , i / s x < s 2 < xQ;

y'(x*> s2) < y'(x0; s2), if sλ < xQ < s2 .

Consequently, && = lims_δ y'(x0; s) and fcα = lims_α y'(x0; s) are finite,
kb ^ ka, and if j/0(xc) is a solution of (2.1) satisfying the initial conditions
yo(xo) = 1, fcδ ^ ^(^o) ^ fcα> then yo(x) > 0 on (a, 6).

In view of the identity

yo(x)L(yow) = (yl(x)r{x)wj

it follows that if x\t] is defined by (2.3) then y(x) is a solution of (2.1)
if and only if y(t) — y(x[t])lyo(x[t]) is a linear function of t on (a, β).
Moreover, it is clear that a function u(x) is sub-(L) on (a, b) if and only
if u(t) — u(x[tj)!yo(x[t]) is a convex function on (a, β), that is, ύ(t) is
sub-(Lo) on (α, /9) with L0(w) Ξ ^ " .

LEMMA 2.2. // u(x) is sub-(L) on (α, 6), ί/̂ etι /or an arbitrary
compact sub-interval [c, d] of (a, 6):

( i ) %(#) is Lipschitzian on [c, d];
(ii) if Π is a partition c — x0 < ^ < < xn — d, (n^2), of

[c, d], and y-n(x) is the continuous function on [c, d] defined by

( 2 . 4 ) y π ( x ) = τ / ( x ; a ? , , - ! , ^ j _ 1 ) ; ^ , ^ , ) ) , ^ j - x ^ x ^ x j 9 (j = 1 , , w ) ,

(a) α£ ίcfc, (fc = 1, •• , n — 1), the right- and left-hand derivatives
y'-nixt) and y'^xΰ) satisfy y'R{xt) ^ y^xς);

(b) there exists a constant M independent of Π such that \y'Ά(x) | ^M
on [c, d], and if \\ Π \\ denotes the maximum of x5 — xό-ly (j = 1, , n),
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then as \\ II \\ —> 0 we have yu(%) -* u(x) uniformly on [c, d] and y\τ{x) —•
u'(x) almost everywhere on this interval.

For the case L(y) ΞΞ y" the results of this lemma are classical results
on convex functions; for the general equation (2.1) they are corollaries
of the corresponding results for convex functions, in view of Lemma
2.1.

It is to be commented that the arguments used by Bonsall [3] to
establish his Lemma 1, Theorems 1 and 2 may be employed to prove
the same results for functions that are sub-(L) with L(y) of the form
(2.1), and these results imply conclusions (i) and (iia) of the above lemma;
moreover, it is not difficult to give a direct proof of conclusion (iib) that
does not employ the auxiliary transformation of Lemma 2.1. It is to
be remarked also that conclusion (i) of the lemma may be derived as a
consequence of Theorem 3 of Green [5].

3. Variational criteria. If a < c < d < 6, for brevity we shall denote
by Γ(c, d) the class of real-valued functions ΎJ{X) that are absolutely
continuous on the compact interval [c, d~\, and η'(x) belongs to the class
S2(c, d) of functions of Lebesgue integrable square on this interval. The
symbol Γ0(c, d) will signify the class of functions TJ(X) e Γ(c, d) for which
η(c) — 0 = η(d), and Γό(c, d) will denote the class of functions η(x) e Γ0(c, d)
satisfying η{x) <; 0 on [c, d].

LEMMA 3.1. Condition (I) holds if and only if for arbitrary c, d
satisfying a < c < d < b the quadratic functional

(3.1) 1(7]; c, d) = j * \r{x)ψ + 2q(x)ηηf + p(x)r)2]dx

is positive definite on Γ0(c, d)> that is, I(η; c, d) ^ 0 for η e Γ0(c, d)
and the equality sign holds only if η{x) = 0 on [c, d]. Moreover, if
condition (I) holds then for y(x) an arbitrary solution of (2.1) and
a < c < d < 6,

(3.2) I(η; c, d) ^ I(y; c, d) for η - y 6 Γ0(c, d) ,

and the equality sign in (3.2) holds only if rj(x) = y(x) on [c, d~\.
Condition (I) is clearly equivalent to the condition that (2.1) is non-

oscillatory on (α, &), that is, if y(x) is a solution of (2.1) for which
y(xx) = 0 = y(x2), where a < xx < x2 < 6, then y(x) = 0. In turn, the
fact that non-oscillation of (2.1) on a subinterval [c, d] is equivalent to
the positive definiteness of I(η; c, d) on Γ0(c, d) is a well-known result
of the calculus of variations, (see, for example, Bliss [2; Chapter IV],
or Morse [7; Chapter I]).

Let I(η19 η2; c, d) denote the bilinear functional
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S a

r W(rrA + Q?h) + Vi(qγA + w 2)] dx .

If L(y) = 0 and η — y e ΓQ(c, d) then

I(V ~ V> V\ c, d) = [(η - y){ry' + qy)fc = 0 ,

and the final statement of the theorem is an immediate consequence of
the identity

1(7]; c, d) = 7(2/ c, d) + 2I(η - 2/, y; c, d) + I(η - y; c, d)

and the previously established result that condition (I) implies
I(Ϊ] — y; c, d) > 0 unless η(x) = #(cc) on [c, cϊ].

The central result of this paper is the following theorem.

THEOREM 3.1. 7/(2.1) satisfies condition (I) then u(x) is sub-(L) on
(α, b) if and only if for each compact subinterval [c, c£] of (α, b) the
function u(x) belongs to Γ(c> d), and

(3.3) I(η; c, d) ^ I(u; c, d) for η - u e Γ~(c, d) .

Before presenting a proof of this theorem, it is to be remarked that
if condition (7) holds and u(x) e Γ(c, d) then condition (3.3) is equivalent
to

(3.30 I(ξ, u; c, d) ^ 0 for ζ e Γό(c, d) .

Indeed, by Lemma 3.1 condition (7) implies I(ξ; c, d) ^ 0 for a < c < d < b
and ζ(x) e Γ0(c, d)y while for θ > 0 the function θζ(x) e Γ0"(c, d) whenever
ξ(x) e ΓQ(C9 d), so that if ξ(x) e Γ0~(c, d) the equivalence of (3.3) and
(3.3;) is an immediate consequence of the identity

I(u + θζ; c, d) = I(w, c, d) + 2ΘI{ζ, u; c, d) + θ2l(ζ; c, d) .

Now suppose that u(x) is such that for each compact subinterval
[c, d] of (α, b) we have u{x) e Γ(cy d) and (3.3) holds. If a < aλ < b± < b
and y(x) — y(x; alf n(a^)\ bx uQ>D), then in case u(x) ^ y(x) does not hold
throughout [alf bj there exist values c, cZ such that αx ^ c < cί g bλ and
τ/(c) = u(c), y(d) — u(d), u(x) > y(x) on (c, cί). Then y — u e Γ0"(c, d)
and (3.3) implies that I(y; c, d) ^ 7(u; c, cί), whereas Lemma 3.1 provides
the contradictory result I(u; c, d) > I(y; c, d). Hence u(x) ^ y(x) on
[a19 6i], and in view of the arbitrariness of a19 bx we have that u(x) is
sub-(L) on (α, 6).

On the other hand, if u(x) is sub-(L) on (α, 6) and [c, d] is a sub-
interval of (α, 6), then by conclusion (i) of Lemma 2.1 the function u(x)
is Lipschitzian on [c, cZ], and hence u(α?) e Γ(c, d). If 77: c = x0 < ^ <
• < xn — d is a partition of this subinterval, and ΐ/π(#) is the function
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d e f i n e d b y (2 .4) , t h e n y\λ{xϊ) — ίMx;) >0, (k = 1, •••, n - 1) . S i n c e
L(y-n) — 0 on each subinterval (xj-i, x), (j — 1, , n), if ξ(x) e Γϊ(c, d)
then ξ(xk) <Ξ 0, (fe = 1, , w — 1), and an integration by parts yields

/(£, Vπ\ c, d) - Σ f N r + qyui~
X\ ^ 0 for ζ e /γ(c, d) .

fc l

If {/7m}, (m — 1, 2, •), is a sequence of partitions of [c, d] such that
| |/7m | |->0, then from conclusion (iib) of Lemma 2.1 and the Lebesgue
bounded convergence theorem it follows that (3.3') holds, and hence (3.3)
is satisfied by this function u(x).

It is to remarked that an alternate method of proof for the above
theorem is to establish this result for the special case of convex func-
tions, that is, for the special differential equation L(y) = y" = 0, and to
reduce the general case to this special case by means of the transforma-
tion of Lemma 2.1.

In view of the linearity of I(ξ, u; c, d) as a functional of ξ, if
for given c, d we have I(ξ, u; c, d) = 0 for all ζ e Γό(c, d) then
I(ζ, u; c, d) — 0 for all ζ e Γ0(c, d), and from the fundamental lemma
of the calculus of variations it follows that u(x) is a solution of (2.1)
on (c, d). Since a sub-(L) function u(x) can fail to be strictly sub-(L)
only if there is a subinterval on which u(x) is a solution of (2.1), we
have the following result.

COROLLARY 1. If (2.1) satisfies condition (I) then u(x) is strictly sub-
L on (α, b) if and only if for each subinterval [c, d] of (α, b) the func-
tion u(x) 6 Γ(c, d), inequality (3.3;) holds, and there is a function
ζ e ΓQ(C, d) such that the strict inequality in (3.3) holds.

Now for u(x) e Γ(c, d) an integration by parts yields

I(ξ, u; c, d)

= Γ ζ'(x)[r(x)u'(x) + q(x)u(x) - \* (q(s)uf(s) + p(s)u(s))ds] dx for ξ e Γ0(c,d),

where x0 is an arbitrary point on (α, 6). Consequently, if u(x) e Γ(c, d)
for arbitrary subintervals [c, d] of (α, 6), it follows from Theorem 3.1
for the differential equation L0(y) = y" — 0 that u(x) satisfies (3.3') for
arbitrary subintervals [c, d] if and only if the function

(3.4) \X \r{t)u\t) + q{t)u(t) - Γ (q(s)u'(s) + p(s)u(s))ds]dt

is convex on (α, 6), and we have the following result.

COROLLARY 2. If (2.1) satisfies condition (I) then u(x) is sub-(L)
on (α, 6) if and only if u(x) e Γ(c, d) for arbitary compact subintervals
[c, d] of (a, 6), and (3.4) is a convex function on (α, 6); in particular,
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if u(x) and r(x)u'(x) + q(x)u(x) are continuously dίjfereniiable on (α, b)
then u(x) is sub-(L) if and only if L(u) ^ 0 on this interval.

In view of the linearity of I(ζ, u; c, d) as a functional of the coef-
ficients of L(y), the results of the following corollaries are immediate
consequences of the criteria of Lemma 3.1 and Theorem 3.1.

COROLLARY 3. If L(y) satisfies condition (I) on (α, 6), and k(x) is
a non-negative continuous function on this interval, then Lx{y) — L(y) —
k(x)y satisfies (I) on (a, b), and if u(x) is sub-(L) on (α, b) with u(x) ̂  0
on a subinterval (au bj, then u(x) is sub-(Lλ) on (alf bλ).

COROLLARY 4. // ra(x), pa(x), q<*(x), (oc = 1, 2), are real-valued
continuous functions with ra{x) > 0 on (α, 6), and

LM = (ra(x)yf + qa(x)y)' - {q*{x)yf + pΛ(x)y) = 0 , (a = 1, 2),

satisfy condition (I) on (a, b), then L3(y) =Ξ L^y) + L2(y) = 0 satisfies
condition (I) on this interval; moreover, if u(x) is sub-(La), (a = 1, 2),
on (α, b) then u(x) is sub-(L3) on this interval.

4. Another characterization of sub*(L) functions. It will be estab-
lished now that sub-(L) functions are characterized by a property that
is a direct generalization of the well-known fact that a function u(x) is
convex on (α, b) if and only if u(x) is continuous and

(4.1) u(x) ̂ (2hyi\ u(t)dt
jx-li

for all x e (a, b) and h > 0 such that [x — h, x + K\ is a subinterval of

(α, 6).
Suppose that (2.1) satisfies condition (I) on (α, b), and for a given

s of this interval let z = z(x; s) be the solution of the system

(4.2) L(z) = - 1, z(s) = 0 = z'(8) .

Since r(x) > 0, it follows readily from (4.2) that z(x; s) < 0 for x in a
sufficiently small deleted neighborhood of the point s. Moreover, by
Corollary 2 to Theorem 3.1 the function u(x) = — z(x; s) is sub-(L) on
(α, 6); consequently, there is no subinterval [c, d] such that z(c; s) =
0 = z(d; s), z(x; s) < 0 on (c, d), and hence z(x; s) < 0 for x Φ s. As
the difference of two solutions of L(z) — — 1 is a solution of (2.1), in
view of condition (I) it follows that if a < sx < s2 < b then there is a
unique value £ = ξ(s19 s2) such that ^(§; sx) = 2:(|; s2), and

(4.3) sx < |(s x, s2) < s2, ^'(Ks!, s2); s2 - z'(ξ(s19 s,); s,) > 0 .

Consequently, if for α < sx < s2 < 6 we define wSiS2(x) as
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wSls.p) = z(x, sL), sL ^ x ^ ξ(s19 s2),

= 2(ίC, S2), f f e , S2) ̂  X ̂  S2 ,

we have that wSιH(x) e ΓQ(S19 S2) and

(4.4) k(8lf s2) = r ( | ( S l , sa))[wί lβa(?(s1, s2)
+) ~ w'8ι8Jiξ(8lf s2)")] > 0

Now if 2/(cc) is a solution of (2.1) then I(wSι8.)9 y; slf s2) = 0, and as
wSιH(x) — w'SiH(x) = 0 at a; = sΛ, (α: = 1, 2), an integration by parts yields
the relation

0 = y(x)[r(x)w'88(x) + q(x)w88£x)i - *yL(w88) dx ,

which may be written as

(4.5) y(ξ(8lf s2)) = [fc(slf s2)]-χ Γ2 i/(ί) dt , a < st < s2 < 6.
J

If #„(#) is any solution of (2.1) that is different from zero on (s19 s2),
then

(4.6) k(819 s2) = [^(Ks,, s,))]-^ 2 i/0(ί) dί

in particular, uniformly for subintervals [s19 s2] one may choose yQ(x) as
the function appearing in Lemma 2.1.

Now if u(x) is sub-(L) on (α, 6), and α < | < 6, there is a solution
y(x) of (2.1) such that y(ξ) — u(ξ)9 y(x) ̂  u(x) on (α, &); moreover, if
u(x) is strictly sub-(L) on (α, 6) then #(ίc) < u(aj) for a; Φ ξ. This fact
is a ready consequence of the corresponding result for convex functions
and Lemma 2.1; it may be established also by the argument used by
Bonsall [3] to prove the Corollary to his Theorem 1. Consequently, if
s1 < ξ < s2 then

(4.7) [2y(t)dt^ \'*u(t)dt,

and the strict inequality holds in (4.7) provided u(x) is strictly sub-(L).
From (4.5) it then follows that if u(x) is sub-(L) on (α, b) then

(4.8) u(ξ(s19 s2)) ̂  [k(s19 s ^ - 1 ^ u(t) d t , a<s1<s2<b9

and the strict inequality holds in (4.8) provided u(x) is strictly sub-(L)
on (α, 6). It is to be commented that an alternate proof of (4.8) for
sub-(L) functions u(x) is afforded by the fact that wSγH{x) e Γo(sly s2),
so that I{wSιH, u; s19 s2) ̂  0 by Theorem 3.1, and (4.8) results from an
integration by parts similar to that used above to establish (4.5).

In order to show that (4.8) actually characterizes sub-(L) functions,
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one needs to prove that if a < xQ < b then there exist values slt s2

arbitrarily close to x0 and such that ξ(slf s2) = x0. Now for z(x; s) the
solution of (4.2), and a < x0 < 6, it follows readily that z(x0; s) is nega-
tive monotone increasing on a < s < x0, and negative monotone decreas-
ing on xQ < s < 6. Consequently, if δ > 0 is such that

(4.9) z(x0; x0 — δ) > Km z(x0; s)
->&

then for 0 < h ^ δ there is a unique value s2 = s2(h, xQ) > x0 such that
z(x0; s2) — z(x0; xQ — h) a n d x0 — ξ(x0 — h, s2{h, fc0)); moreover, s2(h, x0) -> x0

as h-> 0. If [c, c£] is a compact subinterval of (α, 6) then clearly the
value of δ satisfying (4.9) may be chosen uniformly for c r£ xQ ^ d.

By indirect argument it will be shown that u(x) is sub-(L) on (a, b)
whenever u(x) is continuous on this interval and the inequality

(4.10) u(x) ^ [k(x - h, s2(h, x))]'1^"^ u(t) dt , a < x < 6,

holds for all Λ, > 0 such that

(4.11) «(OJ; x — h) > l i m φ ; ; s) .

Suppose that u = tto(a;) is continuous on (α, 6) and such that (4.10) holds for
all h > 0 satisfying (4.11), while uo(x) is not sub-(L) on (α, 6). Then there
exists a subinterval [c, ώ] such that 2/($) = y(x; c, uo(c); d, uQ(d)) satisfies
y(c) = uo(c), y(d) = uo(d), y(x) < uo(x) on (c, d). As (4.5) holds for ?/(x),
the function u(x) — uo(x) — y(x) is continuous on (α, b) and satisfies (4.10)
with all h > 0 for which (4.11) holds, while %(c) = 0 = u(d), u(x) > 0 on
(c, d). If 2/o(αO is a solution of (2.1) which is positive on [c, d] then
the maximum M of u(x)lyQ(x) on [c, d] occurs only at interior points of
this interval, and hence there exists a point x0 e (c, d) such that
u(χo)lyo(χo) = ^ while u(x)lyo(x) ^ M on subintervals [sx, s2] with sx <
x0 < s2. If /̂  > 0 is such that x0 — h ^ c and s2(fe, #0) ^ >̂ then on
[x0 — fe, s2(fe, ^o)] we have u(x)jyo(x) g Af, u(x)lyQ(x) ί Λf, and consequent-
ly, in view of (4.10),

(4.12) u(x0) < [k(xQ - h, s2(h, x^M^*'*** yo(t) dt .
jxQ-h

As ξ(x0 — h, s2(h, x0)) = ^0J however, from (4.6) it follows that the right-
hand member of (4.12) is equal to u(x0), and we have the contradiction
u(x0) < u(x0). Consequently, if u = ^0(^) is a continuous function such
that (4.10) holds for all h > 0 satisfying (4.11) then uo(x) is sub-(L) on
(α, b). If the strict inequality in (4.10) holds for all h > 0 satisfying
(4.11), then since (4.5) is satisfied by all solutions y(x) of (2.1) it follows
that there is no subinterval on which u(x) is a solution of (2.1), so that
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u(x) is strictly sub-(L) on (a, h). We have established, therefore, the
following result.

THEOREM 4.1. / / (2.1) satisfies condition (I) on (α, 6), then a
necessary and sufficient condition for u(x) to be {strictly} sub-(L) on
{a, b) is that u(x) be continuous on this interval and the inequality
(4.10) holds {in the strict sense) for all h > 0 satisfying (4.11).

It is to be remarked that for the above proof of the sufficient
condition in Theorem 4.1 one need not require that (4.10) hold for all
h > 0 satisfying (4.11), but merely that for each x e (a, b) there is a
sequence of such values h approaching zero and for which (4.10) holds.

If L(y) = y", then z(x; s) = - (x - s)2/2, ξ(sly s2) = (sλ + s2)/2, s2(h, xQ) =

x0 + h, k(x0 — h, x0 + h) = 2h, and (4.10) reduces to (4.1).
If m > 0, and L(y) = y" + m2y, then L(y) = 0 satisfies condition (I)

on any interval xx < x < xx + π/m. The corresponding z(x; s) is equal
to [cos m(x — s) — l]/m2 and

ξ(slf s2) = (s± + sa)/2, s2(h, x0) = x0 + h, k(x0 - h, x0 + h) = (2/m) sin mh ,

and u(x) is sub-(L) on a subinterval (alf bλ) of xλ < x < ccj + π/m if and
only if tc(α ) is continuous and

$ X + lh

u(t) dt ,

for all h > 0 such that αx + /t < x < δx — h.
Correspondingly, if m > 0 and L(̂ /) = /̂" — m2yf then L(τ/) = 0

satisfies condition (I) on (— oo, oo). The associated z(x; s) is equal to
[1 — cosh m{x — s)]/m2 and ξ(slf s2) = (sx + s2)/2, sa(λ, α?0) = x0 + >̂
Λ(ίCo ~ h, xQ + h) — (2/m) sinh mfe, and u(x) is sub-(L) on an interval
(alf 6i) if and only if %(») is continuous and

u(x) ^ [m/(2 sinh mh)]\ " tt(ί) dί , aλ < x < b19
jx-h

for all h > 0 satisfying aλ + h < x <bλ — h.
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