ON STRICTLY SEMI-SIMPLE BANACH ALGEBRAS

EpiTH H. LUCHINS

I. Introduction. Define the strict radical of an algebra to be the
intersection of just those of its two-sided ideals which are regular maxi-
mal right ideals. Call the algebra strictly semi-simple (sss) if its strict
radical is the zero ideal. This note proves that the strict radical of a
real Banach algebra B contains the set of topologically nilpotent ele-
ments of B. Also, it gives a condition which is both necessary and
sufficient for B to be sss.

II. Preliminaries. For any ring or algebra A let T(A) denote the
set of all those two-sided ideals in A which are regular maximal right
ideals. The intersection of the elements of 7(A) is the strict radical
of A. A is strictly semi-simple (sss) if its striet radical is the zero
ideal.

LEMMA 1. Let I be a two-sided tdeal in the algebra (ring) A.
Then the following are equivalent:

(a) Ie T(A), that 1s, I s a regular maximal right ideal.

(b) I s a regular maximal left ideal.

(e) A/l is a division algebra (division ring).

Proof. Use is made of the theorem [4, Theorem 24.6.1] that a
division algebra has no proper right or left ideals and that an algebra
with no proper right ideals either is trivial or is a division algebra.

If (a) holds, then A/I has no proper right ideals. Now A/l is not
trivial since if j is a left unit element of A modulo I, /-5 =4 #0
(where 2’ denotes the image of x e A under the canonical homomorphism
of A onto A/I). The cited theorem shows A/I is a division algebra.
Thus (a) implies (c) and, similarly, (b) implies (¢). Moreover, if (a)
holds, then j’ is a left identity for A/I and hence an identity for it, so
that I is regular with 7 as its associated unit element. If IcL, L a
left ideal in A, then L/I is a left ideal in A/I, and an improper ideal
by the cited theorem, so that L =T or A and I is a regular maximal
left ideal. Thus (a) implies (b).

Suppose (c) holds and ¢’ is a unit of A/I. Then I is regular with
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e as its associated unit element. If IcJ, J a right ideal in A, J/I is
a right improper ideal in A/l so that J =1 or A and I is a regular
maximal right ideal. Thus (c) implies (a).

Theorem 1 relates the strict radical of A to the Jacobson radical
[5] and to the Segal [9] or Brown-McCoy radical [2], which is the inter-
section of the regular maximal two-sided ideals in A, A is called
strongly semi-simple (semi-simple) if the Segal (Jacobson) radical is the
zero ideal.

A satisfies Property M if each of its regular maximal right ideals
is a two-sided ideal.

THEOREM 1. The strict radical contains the Segal and Jacobson
radicals so that if A is sss then it is necessarily strongly semi-simple
and semi-simple. These radicals coincide tf Property M is satisfied.

Proof. Let W be the set of all regular maximal two-sided ideals
and W, the set of all regular maximal right ideals in A. If Ie T(A)
then A/I is a division algebra by Lemma 1 so that Ie W. Therefore
the strict radical contains the Segal radical which contains the Jacobson
radical. Now, if Property M holds, I e W, implies Ie T(A) which
shows the Jacobson radical contains the strict radical and hence all these
radicals coincide.

ExaMPLES. 1. An example of an algebra which is semi-simple and
strongly semi-simple but not sss is furnished by the algebra of all 2 by
2 matrices, which is radical in the sense of the strict radical.

2. Arens’ BQ*-algebra [1] are examples of Banach algebras which
are sss and satisfy Property M. Indeed, Arens establishes that such
algebras are semi-simple and have the property that every closed ideal—
and, a fortiori, every regular maximal right ideal—is two-sided.

3. Let C(X, D) be the ring of all continuous functions on X with
values in D, where X is a compact T}-space and D a division ring that
admits a continuous function f(r) such that xf(x) + yf(y) =0 implies
that * =y = 0. Kaplansky [6, p. 179] notes that such a function f(x)
cannot exist in a ring of characteristic 2 (take © = ) but exists in every
ring of characteristic different from 2 that he has examined. The
maximal right (or left) ideals in C(X, D) are two-sided [6, p. 180], so
that C(X, D) satisfies Property M and, since it is semi-simple, it is
necessarily sss.

4. If a ring A is strongly regular (that is, if for every ae A there
exists e A such that o = a) then A is semi-simple and every ideal in
it is two-sided [2, pp. 462-4]. Hence a strongly regular ring satisfies
Property M and is sss.
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III., Necessary and sufficient condition for a Banach algebra to be
sss. Henceforth the algebras considered are over the real field and the
homomorphisms considered are algebraic (real-linear). Let @ denote the
quaternions, H(A4, ) the set of nonzero homomorphisms of the algebra
A into @, |q| the absolute value of the quaternion ¢, and C(X, Q) the
algebra of quaternion-valued functions, continuous on and vanishing at
the infinite point of a locally compact Hausdorff space X.

LEMMA 2. An algebra A is mapped onto the reals, onto a field
isomorphic to the complexes, or onto the quaternions by any he H(A, Q)
and the kernel of h belongs to T(A). If A is a Banach algebra each
member of T(A) is the kernel of some member of H(A, Q).

Proof. Let h(A) denote the image of A under h. For any u,ve h(A4)
(1) lw- vl =lul-|v].

Under the norm |u|, #(A) is a normed algebra. A normed algebra in
which the norm satisfies property (1) is isomorphic to either the reals,
complexes, or quaternions [7, Theorem II]. Hence A/h~(0) is a division
algebra and 2*(0)e T(A) by Lemma 1.

Let A be a Banach algebra and I e T(A). Then A/l is a division
algebra by Lemma 1 and a Banach algebra since I is closed. A normed
division algebra is isomorphic to the reals, complexes, or quaternions
[7, Theorem I]. Hence I is the kernel of some he H(A, Q).

THEOREM 2. Any subalgebra A of C(X, Q) is sss.

Proof. Let fe A, f+ 0. Then there is an xe X such that f(x)=0.
Let I = {ge A: g(x) =0}. Then A/l is naturally isomorphic to a sub-
algebra of Q. Hence Ie T(A) by Lemma 2. But f & I. Therefore A
is sss.

THEOREM 3. If a Banach algebra B is sss, then B 1is isomorphic
with a subalgebra of some C(X, Q).

Proof. Let X = H(B, ). There is a natural homomorphism of B
into C(X, Q): f— @ where @(x) = 2(f). It remains only to show that
the homomorphism is 1 — 1. Let fe B, f+ 0. Since B is sss there is
an I e T(B) such that f ¢ I. By Lemma 2, I = x7*(0) for some z¢ X.
Hence o(x) + 0.

COROLLARY 1. An algebra isomorphic to a subalgebra of a sss
Banach algebra 1s itself sss. Hence any subalgebra, whether closed or
not, of a sss Banach algebra is itself sss.
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IV. The strict radical of a Banach algebra contains the set of topo-
logically nilpotent elements. An element x of a normed algebra is called
topologically nilpotent if #»(x) =0 where »(x) = lim [|z*|['* = sup|B|:
B e spectrum of x [8, pp. 617-618].

THEOREM 4. Let N be the set of topologically nilpotent elements
of a Banach algebra B and S the strict radical of B. Let J' be the
Jacobson radical of any subalgebra of B. Then J'C NCS.

Proof. That J'C N is known [8, Lemma 1.2]. If it is shown that
every he H(B, Q) maps xze N into the zero element, then it follows
from Lemma 2 that x belongs to every member of 7T(B) and therefore
to S. The spectrum of h(x) contains the spectrum of x; hence #[h(x)]=0
since r(x) = 0. Since a topologically nilpotent element is singular [4,
p. 121}, ~(x) = 0. Hence NC S.

COROLLARY 2. If a Banach algebra is sss then zero is its only
topologically nilpotent element.

COROLLARY 3. Let N and S be defined as in Theorem 4 and let
J be the Jacobson radical of B. Then J =S if and only of N=S.
If B satisfies Property M, then J = N = 8S.

Proof. Theorem 4 yields Corollary 2 as an immediate consequence
and also shows that if J=2S, then J=N=S8. If N=S,N is an
ideal composed of topologically nilpotent elements and therefore Nc J
gince J is the union of such ideals [8, p. 617]; hence J = N. If Prop-
erty M is satisfied then J = S by Theorem 1 so that J = N = S.
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