
ON STRICTLY SEMI-SIMPLE BANACH ALGEBRAS

EDITH H. LUCHINS

L Introduction, Define the strict radical of an algebra to be the
intersection of just those of its two-sided ideals which are regular maxi-
mal right ideals. Call the algebra strictly semi-simple (sss) if its strict
radical is the zero ideal. This note proves that the strict radical of a
real Banach algebra B contains the set of topologically nilpotent ele-
ments of B. Also, it gives a condition which is both necessary and
sufficient for B to be sss.

II. Preliminaries, For any ring or algebra A let T(A) denote the
set of all those two-sided ideals in A which are regular maximal right
ideals. The intersection of the elements of T(A) is the strict radical
of A. A is strictly semi-simple (sss) if its strict radical is the zero
ideal.

LEMMA 1. Let I be a two-sided ideal in the algebra (ring) A.
Then the following are equivalent:

(a) I e T(A), that is, I is a regular maximal right ideal.
(b) I is a regular maximal left ideal.
(c) A\l is a division algebra (division ring).

Proof. Use is made of the theorem [4, Theorem 24.6.1] that a
division algebra has no proper right or left ideals and that an algebra
with no proper right ideals either is trivial or is a division algebra.

If (a) holds, then A/1 has no proper right ideals. Now Ajl is not
trivial since if j is a left unit element of A modulo I, j' j' = j' Φ 0
(where x' denotes the image of x e A under the canonical homomorphism
of A onto A11). The cited theorem shows A\I is a division algebra.
Thus (a) implies (c) and, similarly, (b) implies (c). Moreover, if (a)
holds, then jr is a left identity for Ajl and hence an identity for it, so
that I is regular with j as its associated unit element. If IcL, La
left ideal in A, then Ljl is a left ideal in A/I, and an improper ideal
by the cited theorem, so that L = / or A and 7 is a regular maximal
left ideal. Thus (a) implies (b).

Suppose (c) holds and ef is a unit of A\l. Then I is regular with
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e as its associated unit element. If IczJ, J a right ideal in A, Jjl is
a right improper ideal in A/1 so that J = I or A and I is a regular
maximal right ideal. Thus (c) implies (a).

Theorem 1 relates the strict radical of A to the Jacobson radical
[5] and to the Segal [9] or Brown-McCoy radical [2], which is the inter-
section of the regular maximal two-sided ideals in A. A is called
strongly semi-simple (semi-simple) if the Segal (Jacobson) radical is the
zero ideal.

A satisfies Property M if each of its regular maximal right ideals
is a two-sided ideal.

THEOREM 1. The strict radical contains the Segal and Jacobson
radicals so that if A is sss then it is necessarily strongly semi-simple
and semi-simple. These radicals coincide if Property M is satisfied.

Proof. Let W be the set of all regular maximal two-sided ideals
and Wr the set of all regular maximal right ideals in A. If Ie T(A)
then Ajl is a division algebra by Lemma 1 so that I e W. Therefore
the strict radical contains the Segal radical which contains the Jacobson
radical. Now, if Property M holds, I e Wr implies Ie T(A) which
shows the Jacobson radical contains the strict radical and hence all these
radicals coincide.

EXAMPLES. 1. An example of an algebra which is semi-simple and
strongly semi-simple but not sss is furnished by the algebra of all 2 by
2 matrices, which is radical in the sense of the strict radical.

2. Arens' J3Q*-algebra [1] are examples of Banach algebras which
are sss and satisfy Property M. Indeed, Arens establishes that such
algebras are semi-simple and have the property that every closed ideal—
and, a fortiori, every regular maximal right ideal—is two-sided.

3. Let C(X, D) be the ring of all continuous functions on X with
values in D, where X is a compact Γ0-space and D a division ring that
admits a continuous function f(x) such that xf(x) + yf(y) = 0 implies
that x = y = 0. Kaplansky [6, p. 179] notes that such a function f(x)
cannot exist in a ring of characteristic 2 (take x = y) but exists in every
ring of characteristic different from 2 that he has examined. The
maximal right (or left) ideals in C(X, D) are two-sided [6, p. 180], so
that C(X, D) satisfies Property M and, since it is semi-simple, it is
necessarily sss.

4. If a ring A is strongly regular (that is, if for every ae A there
exists xe A such that a2x = a) then A is semi-simple and every ideal in
it is two-sided [2, pp. 462-4]. Hence a strongly regular ring satisfies
Property M and is sss.
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ΠL Necessary and sufficient condition for a Banach algebra to be
sss* Henceforth the algebras considered are over the real field and the
homomorphisms considered are algebraic (real-linear). Let Q denote the
quaternions, H(A, Q) the set of nonzero homomorphisms of the algebra
A into Q, \q\ the absolute value of the quaternion q, and C(X, Q) the
algebra of quaternion-valued functions, continuous on and vanishing at
the infinite point of a locally compact Hausdorff space X.

LEMMA 2. An algebra A is mapped onto the reals, onto a field
ίsomorphίc to the complexes, or onto the quaternions by any heH(A, Q)
and the kernel of h belongs to T(A). If A is a Banach algebra each
member of T(A) is the kernel of some member of H(A, Q).

Proof. Let h(A) denote the image of A under h. For any u,v e h(A)

(1) \u v\ = \u\-\v\.

Under the norm \u\f h(A) is a normed algebra. A normed algebra in
which the norm satisfies property (1) is isomorphic to either the reals,
complexes, or quaternions [7, Theorem II]. Hence Alh~\0) is a division
algebra and fe-1(0)6 T(A) by Lemma 1.

Let A be a Banach algebra and le T(A). Then Ajl is a division
algebra by Lemma 1 and a Banach algebra since / is closed. A normed
division algebra is isomorphic to the reals, complexes, or quaternions
[7, Theorem I]. Hence I is the kernel of some heH(A,Q).

THEOREM 2. Any subalgebra A of C(X,Q) is sss.

Proof. Let / e A, f Φ 0. Then there is an xeX such that f(x)Φθ.
Let I — {geA: g(x) — 0}. Then A\I is naturally isomorphic to a sub-
algebra of Q. Hence I e T(A) by Lemma 2. But / 0 /. Therefore A
is sss.

THEOREM 3. // a Banach algebra B is sss, then B is isomorphic
with a subalgebra of some C(X, Q).

Proof. Let X = H(B, Q). There is a natural homomorphism of B
into C(X, Q): f'-» φ where <p(x) = x(f). It remains only to show that
the homomorphism is 1 — 1. Let f e B, f Φ 0. Since B is sss there is
an / e T(B) such that f φ I. By Lemma 2, / = x~\0) for some xe X.
Hence <p(x) Φ 0.

COROLLARY 1. An algebra isomorphic to a subalgebra of a sss
Banach algebra is itself sss. Hence any subalgebra, whether closed or
not, of a sss Banach algebra is itself sss.
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IV* The strict radical of a Banach algebra contains the set of topo-
logically nilpotent elements* An element x of a normed algebra is called
topologically nilpotent if r(x) = 0 where r(x) = lim ||xnH1/n = sup \β\:

βe spectrum of x [8, pp. 617-618].

THEOREM 4. Let N be the set of topologically nilpotent elements
of a Banach algebra B and S the strict radical of B. Let J' be the
Jacobson radical of any subalgebra of B. Then J'aNaS.

Proof. That J'aN is known [8, Lemma 1.2]. If it is shown that
every he H(B, Q) maps xe N into the zero element, then it follows
from Lemma 2 that x belongs to every member of T(B) and therefore
to S. The spectrum of h(x) contains the spectrum of x; hence r[fc(x)] = 0
since r(x) — 0. Since a topologically nilpotent element is singular [4,
p. 121], h(x) = 0. Hence Na S.

COROLLARY 2. If a Banach algebra is sss then zero is its only
topologically nilpotent element.

COROLLARY 3. Let N and S be defined as in Theorem 4 and let
J be the Jacobson radical of B. Then J — S if and only if N = S.
If B satisfies Property M, then J — N — S.

Proof. Theorem 4 yields Corollary 2 as an immediate consequence
and also shows that if J = S, then J — N = S. If N = S, N is an
ideal composed of topologically nilpotent elements and therefore Ncz J
since J is the union of such ideals [8, p. 617]; hence J = N. If Prop-
erty M is satisfied then J = S by Theorem 1 so that J = N = S.
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