CONNECTIVITY OF TOPOLOGICAL LATTICES

ELDON DYER AND ALLEN SHIELDS

In this note we show that compact connected topological lattices have strong acyclicity properties, both globally and locally. This yields a proof of a conjecture of A. D. Wallace [6] in the finite dimensional case.

A topological lattice is a topological space (Hausdorff) upon which is imposed a lattice structure compatible with the topology. More explicitly, the topological space M is a topological lattice if there are maps

(1)
$$\bigwedge : M \times M \to M \text{ and } \bigvee : M \times M \to M$$

which define a lattice structure on M. This means that for $x, y, z \in M$

(2)
$$\bigwedge(x, x) = x \text{ and } \bigvee(x, x) = x$$
,

(3)
$$\bigwedge(x, y) = \bigwedge(y, x) \text{ and } \bigvee(x, y) = \bigvee(y, x)$$
,

(4)
$$\bigwedge(x, \Lambda(y, z)) = \bigwedge(\Lambda(x, y), z) \text{ and}$$
$$\bigvee(x, \bigvee(y, z)) = \bigvee(\bigvee(x, y), z), \text{ and}$$

(5)
$$\bigwedge(x, \bigvee(x, y)) = x \text{ and } \bigvee(x, \bigwedge(x, y)) = x.$$

It is customary to write $x \wedge y$ in place of $\bigwedge(x, y)$ and $x \vee y$ in place of $\bigvee(x, y)$. Relation (5) implies that $x \wedge y = x$ if and only if $x \vee y = y$. We shall say that $x \leq y$ if and only if $x \wedge y = x$. It is easily seen that the relation $x \leq y$ induces a *partial ordering* on M. The element $1 \in M$ is a *unit* in M provided $m \leq 1$ for all $m \in M$. Similarly, an element $0 \in M$ is a zero in M if $0 \leq m$ for all $m \in M$. Clearly, if such elements exist they are unique.

We shall need several elementary lemmas on topological lattices. Lemmas 2 and 4 were proved in [1], however for completeness we prove them here. Lemma 1 was proven by A. D. Wallace [7].

LEMMA 1. If M is a compact topological lattice, then it has a unit and a zero.

LEMMA 2. If M is a topological lattice, then

(a) if U is a neighborhood of $x \in M$, there is a neighborhood V of x such that if $y, z \in V$, then $y \lor z \in U$ and $y \land z \in U$, and

(b) if $y \leq x$ and U_x is a neighborhood of x, there are neighbor-

Received July 8, 1958

hoods V_x of x and V_y of y such that if $x' \in V_x$ and $y' \in V_y$, then $x' \lor y' \in U_x$.

To prove (a) we observe that $\bigwedge^{-1}(U) \cap \bigvee^{-1}(U)$ is a neighborhood of $(x, x) \in M \times M$ and that there there is a neighborhood V of x such that $V \times V \subset \bigwedge^{-1}(U) \cap \bigvee^{-1}(U)$. Then if y and z lie in V, (y, z) lies in this intersection, and so $y \vee z \in U, y \wedge z \in U$.

In (b) $\bigvee^{-1}(U_x)$ is a neighborhood of $(x, y) \in M \times M$ and there are neighborhoods $V_x \times V_y \subset \bigvee^{-1}(U_x)$. Clearly these neighborhoods have the asserted properties.

LEMMA 3. If M is a compact topological lattice and U is a neighborhood of $x \in M$, there is a neighborhood W of x such that if $y, z \in W$ and $m \in M$, then $(m \land y) \lor z \in U$.

For $m \in M$ let V(m) and N(m) be neighborhoods of x and $x \wedge m$ as in Lemma 2(b). Let P(m) and Q(m) be neighborhoods of m and x such that $P(m) \times Q(m) \subset \bigwedge^{-1}(N(m))$ and let $R(m) = V(m) \cap Q(m)$. Then if $m' \in P(m)$ and $y, z \in R(m), m' \wedge y \in N(m)$ and $(m' \wedge y) \vee z \in U$. Since Mis compact, there is a finite set $[m_i]_1^n$ of points of M such that $\bigcup_1^n P(m_i) =$ M. Let $W = \bigcap_1^n R(m_i)$. Then W is the required neighborhood of x.

For $x, y \in M, x \leq y$, we define

Such sets $C_{x,y}$ will be called *convex sets*. It is clear that if M is a compact topological lattice, then its convex subsets are also compact topological lattices in their natural lattice and topological structures.

LEMMA 4. If M is a compact topological lattice and U is a neighborhood of x, then there is a nighborhood V of x such that if $y \in V$, then $C_{y,y \lor x} \cup C_{x,y \lor x} \subset U$.

Let W be a neighborhood of x as in Lemma 3 and V be a neighborhood of x for W as in Lemma 2(a). Then if $y \in V, y \lor x \in W$. If $y \leq z \leq y \lor x$, then $z = (z \land \{y \lor x\}) \lor y \in U$ and if $x \leq z \leq y \lor x$, then $z = (z \land \{y \lor x\}) \lor x \in U$.

A space X is acyclic if $H^*(X) = 0$, where $H^*()$ denotes the reduced cohomology ring; X is clc if for each $x \in X$ and closed neighborhood U of x, there is a closed neighborhood V of x, $V \subset U$, such that the homomorphism of reduced groups $H^*(U) \to H^*(V)$ induced by inclusion is trivial.

Before proceeding to the proof of Theorem 1 we recall a well-known generalization of the fact that homotopic maps induce the same homomorphisms of cohomology. THEOREM. If X and Y are compact, N is compact and connected, n_1, n_2 are two points of N, f, g: $X \to Y$, and F: $X \times N \to Y$ are given such that $F | X \times n_1 = f$ and $F | X \times n_2 = g$, then $f^* = g^* : H^*(Y) \to H^*(X)$.

THEOREM 1. If the compact topological lattice M is connected, then it is acyclic and clc.

The fact that M is acyclic was first proven by A. D. Wallace [8]. We give here a slightly different proof.

Let $\hat{M} = (M \times 1) \cup (1 \times M) \subset M \times M$. Since M is connected and $1 \times 1 \in (M \times 1) \cap (1 \times M)$, \hat{M} is connected. For $x, y \in M$ define

$$f_{x,y}: \hat{M} \to C_{y,y \lor x} \cup C_{x,y \lor x}$$

by

$$f_{x,y}(m, 1) = (m \land \{y \lor x\}) \lor y \text{ and } f_{x,y}(1, m) = (m \land \{y \lor x\}) \lor x$$
.

Note that

$$(1 \land \{y \lor x\}) \lor y = y \lor x = (1 \land \{y \lor x\}) \lor x .$$

Define $G: M \times \hat{M} \to M$ by $G(m, \hat{m}) = f_{0,m}(\hat{m})$. Then

$$G(m, (0, 1)) = f_{0,m}(0, 1) = (0 \land \{m \lor 0\}) \lor m = m$$

and

$$G(m, (1, 0)) = f_{0,m}(1, 0) = (0 \lor \{m \lor 0\}) \land 0 = 0$$

If $i: M \to M$ is the identity and $j: M \to 0 \stackrel{\subset}{\to} M$, then $i = G | M \times (0, 1)$ and $j = G | M \times (1, 0)$. Hence $i^* = j^*$. But i^* is the identity isomorphism of $H^*(M)$, and j^* is trivial. Hence, M is acyclic.

For a closed neighborhood U of $x \in M$, let V be a closed neighborhood of x as in Lemma 4. Define $F: V \times \hat{M} \to U$ by

$$F(v, \hat{m}) = f_{x,v}(\hat{m}) \subset C_{v,v \lor x} \cup C_{x,v \lor x} \subset U$$
.

Note that $F | V \times (0, 1)$ is the inclusion map of V into U and that $F | V \times (0, 1)$ is the trivial map of V onto x. It follows as before that the inclusion map induces the trivial cohomology homomorphism, and hence, that M is clc.

In this connection we remark that Lee Anderson [1] has shown that a locally compact connected lattice is locally connected.

An immediate consequence of Theorem 1 and results of E. G. Begle [2] is the following.

COROLLARY 1. If M is a finite dimensional, compact connected topological lattice, then M has the fixed point property.

A slightly stronger statement is also true; namely, if M is such a lattice and f is an upper semi-continuous mapping of M into the set of its convex subsets, then some element of M lies in its image.

THEOREM 2. If the compact metric topological lattice M is connected, then it is contractible and locally contractible.

Since M is clc°, it is locally connected. Thus, \hat{M} is a compact, connected, locally connected metric space. It follows that there is a mapping $h: I \to \hat{M}$ such that $h(0) = (0, 1) \in \hat{M}$ and $h(1) = (1, 0) \in \hat{M}$. Here I denotes the unit interval.

Define $H: M \times I \to M$ by H(m, t) = G(m, h). Then H is the contracting homotopy sought. For $V \subset U$ as in the proof of Theorem 1, define $J: V \times I \to U$ by J(v, t) = F(v, h(t)). Then J is a contraction of V to x within U.

A consequence of this theorem and standard results on absolute neighborhood retracts (see, for example, [5] Propositions 12.2b, 16.4, 19.2) is the following.

COROLLARY 2. If M is a finite dimensional, compact metric, connected topological lattice, then it is an absolute retract.

Any convex subset of a compact connected topological lattice has these same properties itself, and is thus acyclic and clc. Furthermore, the intersection of finitely many convex subsets is a convex subset. We shall show that if M satisfies certain additional conditions, it has a neighborhood basis of convex subsets.

A lattice M is said to be distributive if for $x, y, z \in M$

$$(7) \qquad (x \lor y) \land z = (x \land z) \lor (y \land z) .$$

A lattice M is said to be of *breadth* b if for each finite set $[x_i]$ of more than b elements of M, there is a subset $[y_i]$ of b elements such that $x_1 \wedge x_2 \wedge \cdots = y_1 \wedge y_2 \wedge \cdots \wedge y_b$, and b is the least number for which this holds. Similarly, one can define the breadth, b_1 , using joins instead of meets. It is then a simple fact that $b = b_1$ (see [3] p. 20).

THEOREM 3. If M is a compact distributive topological lattice of finite breadth and U is a neighborhood of a point $x \in M$, then there is a convex set $C_{y,z}$ that is a neighborhood of x and lies in U.

Let b denote the breadth of M, let W_1 denote a closed neighborhood of x as in Lemma 3 for the neighborhood U, and let W_2, \dots, W_{2b} denote neighborhoods of x such that for $2 \leq i \leq 2b$, if $y, z \in W_i$ then $y \lor z \in W_{i-1}$ and $y \land z \in W_{i-1}$. Let R denote the union of the ranges of all lattice polynomials over the domain W_{2b} . By Theorem 12, p. 145 of [3], any such polynomial can be written in the form

$$\bigwedge_{h=1}^{r} \left[\bigvee_{k=1}^{n(h)} x_{i(h,k)} \right] \, .$$

Since each $\bigvee x_{i(h,k)}$ is the join of not more than b elements of W_{2b} , every such element lies in W_b . Hence, any element in the range of a lattice polynomial over W_{2b} is the meet of not more than b elements of W_b and so lies in W_1 . Thus, $R \subset W_1$. Since R is a sublattice of M, the closure \overline{R} of R is a sublattice of M, and $\overline{R} \subset W_1$. \overline{R} is a compact topological lattice and by Lemma 1 has a unit a and a zero b. By Lemma 3, $C_{b,a} \subset U$. $C_{b,a}$ is a neighborhood of x since $W_{2b} \subset R \subset \overline{R} \subset C_{b,a}$.

In closing we would like to note the following conjectures.

Suppose M is a compact, metric, connected, distributive topological lattice. Then

(i) M admits sufficiently many lattice homomorphisms onto the unit interval to separate points;

- (ii) M is an absolute retract;
- (iii) dim M = breadth of M; and
- (iv) if dim M = n, M is homeomorphic to a subset of an n-cell.

D. E. Edmondson has announced [4] an example of a compact, metric connected two dimensional lattice that is modular but not distributive, and that cannot be imbedded in the plane. Lee Anderson has a proof (unpublished) that breadth $M \leq \dim M$. Therefore in Theorem 3 the hypothesis that M has finite breadth may be replaced by the hypothesis that M is finite dimensional.

References

- 1. Lee Anderson, *Topological lattices*, Tulane University dissertation 1956, to appear, Trans. Amer. Math. Soc.
- 2. E. G. Begle, A fixed point theorem, Ann. of Math., 51 (1950), 544-550.
- 3. Garrett Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, 25, New York 1948.
- 4. D. E. Edmondson, A modular topological lattice, Abstract 540-10, Notices, Amer. Math. Soc., 5 (1958), No. 1, p. 92.
- 5. Solomon Lefschetz, *Topics in topology*, Ann. of Math. Studies, **10**, Princeton University press, 1942.

^{6.} A. D. Wallace, Research Problem No. 9, Bull. Amer. Math. Soc., 61 (1955), 93.

E. DYER AND A. SHIELDS

- 7. A note on mobs, Anais Acad. Brasil. Ci. 24 (1952), 329-334.
- 8. Cohomology, dimension and mobs, Summa Brasiliensis Math. 3 (1953), 43-55.

UNIVERSITY OF CHICAGO AND UNIVERSITY OF MICHIGAN

448