
VARIATIONS ON A THEME OF CHEVALLEY

ROBERT STEINBERG

1. Introduction. In this paper we use the methods of C. Che valley
to construct some simple groups and to gain for them the structural
theorems of [3]. Among the groups obtained there are two new families
of finite simple groups1, not to be found in the list of E. Artin [1].
Whether the infinite groups constructed are new has not been settled yet.

Section 5 contains statements of the main results of [3]. In §§ 2,
3, 4 and 7, we define analogues of certain real forms of the Lie groups
of type Alf Ώτ and E6 (in the usual notation), and extend to them
the structural properties of the groups of Che valley. Sections 6 and 9
treat some identifications, and § 8 deals with the question of simplicity.
In §§ 10 and 11, using the extra symmetry inherent in a Lie algebra of
type Diy we consider two modifications of the first construction which
are, perhaps, of more interest since they produce groups which have no
analogue in the classical complex-real case: in fact, a basic ingredient of
each of these variants is a field automorphism of order 3. In Sections
12 and 13, it is proved that new finite simple groups are obtained1, and
their orders are given. Section 14 deals with an application to the theory
of group representations, and § 15 with some concluding observations.

The notation is cumulative. We denote by | S | the cardinality of
the set S, by K* the multiplicative group of the field K, and by C the
complex field. An introduction to the standard Lie algebra terminology
together with statements of the principal results in the classical theory
can be found in [3, p. 15-19]. (Proofs are available in [8] or [10]).

2. Roots and reflections* We first introduce some notations. Rela-
tive to a Cartan decomposition of a simple complex Lie algebra of rank
I, let E be the real space generated by the roots, made into an Euclidean
space in the usual way, and normalized as in [3, p. 17-18]. Relative to
an ordering •< of the additive group generated by the roots, let Π be
the set of positive roots, and α(l), α(2), •••, a(l) the fundamental roots.
For each root r = Σzt a(i), set Σzt — ht r, the height of r. The order-
ing -< can always be chosen so that ht r < ht s implies r < s (see
[3, p. 20, I. 35-40]); suppose this is done. Assume now the existence
of an automorphism a of E of order 2 such that all = IT. This restricts
the type of algebra to Al9 Όx (I ^ 4) or E6 (see [3, p. 18]), and hence
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1 Since the preparation of this paper, the author has learned that these groups have

also been discovered by D. Hertzig [6], who has shown that they complete the list of finite
simple algebraic groups.
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implies that all roots have the same length. We also denote or by r.
Clearly σ permutes the fundamental roots. Thus htr — htr for each root
r. Finally, let W be the Weyl group, W1 the subgroup of elements
commuting with σ, and for each w e W denote by n(w) the number of
roots r for which r > 0 and wr < 0.

Consider now subsets S of 77 of the following three types:
( 1 ) S consists of one root r, which is self-con jugate (r = r), and

which can not be written as a sum of a conjugate pair of roots;
( 2 ) S consists of a conjugate pair r, r such that r + r is not a

root;
( 3 ) S consists of three roots of the form r, r, r + r.
Note that in case (2) one has r _[_ r because htr = htr implies that

r — r is not a root. Shortly we prove the important fact:

2.1 LEMMA. If Π1 denotes the collection of sets of types (1), (2)
and (3) above, then Πι is a partition of 77.

In any case, the fundamental sets of 771 - those which contain funda-
mental roots - are disjoint because the fundamental roots are linearly
independent. If wr denotes the reflection in the hyperplane orthogonal
to r, we set ws = wr, wrw~r or wr+-r(— wrw?wr) according as S is of type
(1), (2) or (3) above. Note that ws e W\

2.2 LEMMA. For each fundamental S e Π\ ws maps S onto -S and
permutes the positive roots not in S. Hence n(ws) = \S\.

Proof. Since n(wa) = 1 for each fundamental root a [8, p. 19-01,
Lemma 1], and since ws can be written as a product of [ S \ such reflec-
tions, it follows that n(ws) ^ | S |. By direct verification one sees that
wsS = — S. Hence the lemma is proved.

2.3 LEMMA. The group W1 is generated by the ws corresponding
to fundamental S e 771.

Proof. Using induction on n(w), we show that each w e W1 is a
product of elements of the given form. If n(w) = 0, w = l, the statement
is clearly true. If n(w) > 0, w φ 1, there is a fundamental root a such
that a > 0 and wa < 0. Since ά > 0 and wa = wa < 0, it follows that
r > 0, wr < 0 for each root r in the set S e Π1 which contains a.
Hence niwWs1) = n(w) — n(ws) by 2.2, and the induction hypothesis can
be applied to wwj1 to complete the proof.

2.4 LEMMA. W is a normal subgroup of the group generated by W

and σ.

Proof. One has σwrσ~ι — w for each root r. Since σ permutes
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the roots, and the root reflections generate W, one gets σWσ~ι = W,
and hence 2.4.

2.5 LEMMA. The element w0 of W defined by woίl — — Π is in
W\

Proof. By 2.4, σw^σ~λ e W. Since σw^J'1!! — — II, one concludes
that OWQU'1 •=• w0 and that wQ e W1.

2.6 LEMMA. Sαcfe S e Π1 is congruent under W1 to a fundamental
set.

Proof. Write the element w0 of 2.5 in the form w0 = wk w2w1

guaranteed by 2.3. Since S > 0 and w0S < 0, there is an index i such
that w%-λ wxS >- 0 and w$ Ίί^S -< 0. lί T e Π1 corresponds to Wj,
it follows from 2.2 that wi-1 wλS <= Γ, and clearly equality must
hold.

By using 2.6 and examinining the fundamental root systems for
groups of type Al} DL and Eβ (see [3, p. 18] or [8, p. 13-08]), one sees
that a set in W of type (3) can occur only in the case Aτ (I even).
This turns out to be the most troublesome case in the sequel. Note
however that sets of types (1) and (3) do not occur simultaneously.

Proof of 2.1. This follows from 2.6 and the fact that the funda-
mental sets of Π1 are non-overlapping.

We now associate with W1 a reflection group. Let E+ and Ir-

respectively denote the positive and negative subspaces of E under σ,

and for each w e W1 let w and W1 denote the restrictions of w and

W1 to E+. Also denote by S the vector r, r + r or r + r in the respec-

tive cases (1), (2) or (3) of 2.1.

2.7 LEMMA. The restriction of Wι to W1 is faithful. W1 is a
reflection group of type C [ α + 1)/ 2 ], Bt-X or F4 in the respective cases that
W is of type Al9 Dt or E6, and, to within a change of scale, {S \ S e Π1}
is a corresponding system of positive root vectors.

Proof. First if w e W1, w = 1, then w maps each positive root
onto another one. Hence w — 1, and the restriction is faithful. Those
S which correspond to the fundamental S e Π1 form a new fundamental
root system (to within a change of scale) of the listed type, as one sees
by considering the separate cases (see [3, p. 18]). Becuse of 2.3 and 2.6,
the proof is complete if it can be shown that,ffor each fundamental
S e Π1, ibs is the reflection in the hyperplane orthogonal to S. If
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I S I = 2 and S= {α, a}, then ws has —1 as a characteristic value of
multiplicity 2. Since ws(a + a) — — (α + a), ws(a — a) — — (a — a), a +
a 6 E+, and a — a e E~, it follows that w, has — 1 as a characteristic
value of multiplicity 1, and then that ws is the required reflection.
If I S I — 1 or I S I = 3, the result follows from the definitions.

2.8 COROLLARY. Any two sets of the same type in the partition
2.1 are congruent under W1.

Proof. Since sets of types (1) and (3) do not occur simultaneously,

and since W1 is transitive on its root vectors of a given length, 2.8

follows from 2.7.
A new ordering < of the positive roots is now introduced. First if

R, S e Π1, then R < S means that min r e R < min s e S. Then if
r, s e 77, define r < s to mean that either r and s belong to distinct
sets R and S of IP -and R < S, or r and s belong to the same set of
Π1 and r < s,

2.9 LEMMA. The roots in each set S of IP occur consecutively in
the ordering of the roots of Π relative to < . If r, s and r -{- s are
positive roots, then r + s > min (r, s).

Proof. The first statement follows from the definition. Since <
respects heights, the second assertion is true if r + s has minimum
height in the set S of Π1 containing it. Thus one may assume that
there is a root t such that r + s = t + t, r Φ t, r Φ t, and that W is of
type Aτ (I even). Then each positive root is a sum of a string of dis-
tinct fundamental roots, and the strings corresponding to r and s are
necessarily of different lengths. Thus htt = ht~t > min (ht r, ht s).
Since •< respects heights, this implies that r + s > min (t, ϊ) > min (r, s).

3. Construction of an involution. Suppose that (] is a simple
complex Lie algebra with a generating system (Xr, X_r, Hn r e II)
chosen to satisfy the conditions of Theorem 1 of [3j. Assume also that
g is restricted to type Al9 Dι (I Ξ> 4) or EQ so that the results of § 2 can
be applied. Set r(Hs) — r(s). Then, all roots being of the same length,
it follows that:

3.1 XrXs = Nr8Xr+8 JNΓr. = 0, ± 1; r, s e Π .

For the same reason r(s) = s(r) and r(r) - 2. By the uniqueness theorem
for a simple Lie algebra with a given root structure (see [8, p. 11-04]
or [10, p. 94]), there exists an automorphism σ0 of cj such that σ0Hr =
H- and σσXr = crXϊ, cr e C*, r e Π or —77, with ca = 1 for each
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fundamental root a. Then each c_α = 1, and by induction on the height
one gets each cr — ± 1 . Next let K be a field on which an automor-
phism σ of order 2 acts, let KQ be the fixed field, and write σk = k, k e K.
Then following the procedure of [3, p. 32], one can transfer the base
field of g from C to K, and thus gain a Lie algebra qκ over K and a
semi-automorphism σ of g^ such that σ(kHr) — kH;. and σ(kXr) = ± kX-,
k e K, re Π o r — 77. Note [3, p. 32] that the field is not transferred
for roots (or weights) and that the expression r(s) retains its original
meaning.

3.2 LEMMA. The order of a is 2. By appropriate sign changes of
the Xr one can arrange things so that in the equations σXr = krXγ, r e 77,
one has:

(a) k;. = kr;
(b) if r Φ r, then kr = 1;
(c) if r = r, t/ien /cr ΐs 1 or —1 according as r belongs to an

S 6 Π1 of 1 or 3 elements.

Proof. One has tf2Xα = Xα, tf2^-α = X~a for each fundamental root
α. Thus o"2 = 1, and this implies (a). If r, r is a conjugate pair in 77,
if r < r, and if &,,. = - 1, replace Xr by - X r . Then (b) holds. If
I S I — 3 in (c), there is a root s such that r = s + s, and one gets (c)
by applying tf to the equation XSX~S = kXr. If | S \ = 1, assume ht r > 1.
Then there is either a self-con jugate fundamental root a such that r — a
is a root, or a conjugate pair of orthogonal fundamental roots b, b such
that r — b, r — b and r — b — b are all roots. One then applies σ to
the equation Xr-aXa = fcjXr or (X^^^X^X^ = fc2Xr, respectively, and
completes the proof of (c) by induction on the height.

We assume henceforth that the normalization indicated by 3.2 has
been made and that the corresponding treatment has been given,to the
negative roots, so that one has once again the equations of structure of
Theorem 1 of [3] (in particular, XrX_r = Hr).

4. Some nilpotent groups. As in [3], we set xr(t) = exp (ί ad XΊ),
t 6 K, r e 77, denote by Hr the one-parameter group {xr(t) \t e K], and
by II the group generated by all ϊ r , re 77.

4.1 LEMMA. For r, s e 77 and tu t2 e K, one has the commutator

relation {xr(tύ,

Proof. This follows from [3, p. 33, I. 22] and the fact that all
roots have the same length.

A straightforward computation yields:

4.2 σ exp (t ad Xr) σ'1 = exp (t ad a Xr) .
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4.3 LEMMA. Let Σ be a subset of Π satisfying the condition

4.4 r, s e Σ, r + s e Π imply r + s e Σ.

Then each x e U2, the group generated by all %n r e Σ, can be
written uniquely in the form x = IIxr(tr)> the product being over the
roots of Σ arranged in increasing order relative to < {see § 2).

Proof. Using the formulas 4.1 repeatedly, one sees that the set of
elements of the given form is closed under multiplication; thus each
x e U2 has an expression of the given form. Uniqueness is proved by
induction on | Σ \. If | Σ | = 1 and Σ = {r}, this follows from xr(t)X~r =
X-r + tHr - VXr (see [3, p. 36, I. 15]). If \Σ \ > 1, let r be the least
element of Σ (relative to <), and set Σf = Σ — r. Let x e U2 be written
as x — ccr(ίi)fl?i and x = xr(t2)x2 with tί e K and xi e ΓU. Then xr(t2 — Q =
xλx2

λ. Since xr(t2 — t^)X_r = X_r + (t2 — tL)Hr — (ί2 — Q2Xr, since xr(t2 — tτ)

e U^, and since r can not be written as a sum of roots larger than r
by 2.9, it follows that the coefficient of Hr, namely ί2 — ίx, must be 0.
Thus xλ = ff2, and the induction hypothesis can be applied to Σf to
complete the proof.

The result 4.3 can be applied in the cases Σ = II and Σ — S e IP.
Because of 2.9, one gets:

4.5 COROLLARY. Each x e U can be written uniquely in the form
x = γ\xs, xs e Us, the product being over the sets S of Π1 arranged in
increasing order.

Denote now by IT, UJ, etc. the subgroups of elements of II, Us, etc.
commuting with σ.

4.6 LEMMA. If x e U is written in the form 4.5, then x e U1 if
and only if each xs e tt1. A necessary and sufficient condition for xs e Us

to be in U1 is that, in the cases (1), (2) or (3) of 2.1, xs has the respec-
tive form (1) xr(t),t = t, (2) xr(t)χ-(v), v =Ί, or (3) xr(t)xr(v)xr+-(w)f

V — 1, W + W — Nrrtt.

Proof. If x G U1 commutes with σ, one has x = σxσ*1 = W{σxsσ~Ύ).
Since σxsσ~ι e Us by 4.2, one gets GXSO~X = xs by the uniqueness in 4.5.
Thus each xs e IX1. The converse is clear. In the cases listed in the
second statement, one has

( 1 ) σα;r(ί)ίτ-1 = a;;(ί)>

( 2 ) σxr{t)χ-(v)σ-1 — xr(v)x^(t), and

( 3 ) σx^t)χ-{v)xr+j\w)σ-Ύ = xXv)Xr{t)xr+-\—w + N^tv) by 3.2, 4.1
and 4.2. The required results now follow from 4.3.

4.7 LEMMA. Let Π be the union of the disjoint sets Σ and Σf,
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each invariant under o, and each satisfying 4.4. Then It1 = U\ U|, and
VL\ Π U£, = 1.

Proof. By [3, p. 41, Lemma 11], one can write x e U1 uniquely in
the form x = yy\ y e U s, y' e Ua,. The proof that y and y' are in U1

is the same as that for the first part of 4.6.
If 33 denotes the group generated by all 3cr, r < 0, then one can

define 931, 23S, etc., and gain for these groups corresponding results.

5 Main results of Chevalley. For each simple complex Lie algebra
g (not necessarily one for which a exists), consider the groups U and 33
and also the group G (denoted in [3] by G') which they generate. For
each w e W, if Σ consists of the roots r for which r > 0 and wr < 0,
we set U s = ltw (denoted in [3] by It"). Let Pr and P, respectively,
denote the additive groups generated by the roots and by the weights.
Corresponding to each character χ of Pr into K*, there is an automor-
phism h = h(χ) of QK defined by hXr = χ(r)Xr, r e Π or — //. Let ξ)
(denoted in [3] by £>') be the group generated by those automorphisms
which correspond to characters which can be extended to P. For

&> one has

5.1 hxMh-1 = xr(X(r)t) .

The main results of [3] are as follows:

5.2 G contains ξ>.

5.3 Corresponding to each w e W there is ω(w) e G such that
ω(w)Xr = crXwr, ω(w)Hr = Hwr, cr e K*, r e Π or - / / . The union of
the sets §ω(w) is a group SB and the map w -> §α)(t(;) is an isomorphism
of W on 2B/φ.

Parenthetically, we remark that here one has:

5.4 ω(w)Tίrω{w)-1 = %wr .

5.5 G is the union of the sets VLίgω(w)VLw, w e W. These sets are
disjoint and each element of G has a unique expression of the indicated
form.

5.6 G is simple if one excludes the case (1) | ίΓ | = 2 and g of type

Alf B2 or G2, and (2) | K \ = 3 and g of type Ax.
Before proving corresponding results for the group G1 generated by

U1 and S31, we identify G1 in the case that g is of type At.

6. Some unitary groups. Consider the form

6.1 f(a, /3) = Σ ( - l ) i α , A
1

on a space of I dimensions over K. Let Uι+i(f) denote the correspond-
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ing unimodular unitary group and C ι+1(/) its center. Then one has:

6.2 // Q is of type Al9 G1 = ?7I+1(/)/C ϊ+1(/).

Proof. If g is of type Alf one can identify c\κ with §ll+1(K), the
algebra of (I + l)th order matrices of trace 0, in such a way that, for
each fundamental root α(i), Xau) e g* corresponds to i?M+i, the matrix
with 1 in the (ΐ, i + 1) position and 0 elsewhere [7, p. 393]. If m —
((—l)*δifZ+2_j) is the matrix corresponding to /, one can then verify that
a is the product of the transformations Y-> mYm'1 (matrix multiplica-
tion) and Y-> — Yι {t — transpose). According to a recent identification
of R. Ree [7], U and 33, respectively, consist of the superdiagonal ma-
trices (0 below and 1 on the diagonal) and the subdiagonal matrices,
acting on §>lι+1 via inner automorphisms, so that the group G of Cheval-
ley is in this case the projective unimodular group. Now it follows
from material in [4, p. 66-69] that Ul¥1{f) is generated by its superdia-
gonal and subdiagonal elements and that Cι+1(f) consists of scalar
matrices. Thus to prove 6.2 it is enough to prove:

6.3 Let x be a superdiagonal matrix. Then x e IV if and only if

x e uι+1(f).
A simple calculation using the concrete form of a given above shows

that xσ — σx if and only if xtm~ιxm commutes with each Y e $iί+1.
This is equivalent to xmx1 — km, k e K. If x is superdiagonal, k must
be 1, because the (1, I + 1) entries of the matrices xmxΰ and m are
both - 1 . Thus 6.3 and 6.2 are proved.

It is to be observed that the form / has index [(i + l)/2].

7. Structure of G\ Recall that G1 is the group generated by IT1

and S31. For each w e W\ set Hi, - It1 Π Uw. For each S e Il\ let G\
be the group generated by U] and $ ]

s. Denote by X 1 the group of those
characters of Pr into iΓ* which can be extended to characters χ of P
which are selfconjugate in the sense that χ(ά) = χ(a) for all a e P, and
by ξ)1 the corresponding subgroup of ξ>. For S e Π\ set ξ>J = ξ)1 Π G8.
Finally, for each root r and each k e if*, denote by χrtk the character
on Pr defined by χΓffc(s) = &s(r).

It is assumed until further notice that g is not of type AL (I even).
We aim to prove:

7.1 LEMMA. For each w e W1, &ω(w) Π G1 is not empty.
Once this is established, it can (and will) be assumed that ω(w) e G1

for each w e W1. Then:

7.2 THEOREM. G1 is the union of the sets IΓ&V/Xw)!̂ , w e W\
The sets are disjoint and each element of G1 has a unique expression
of the indicated form.
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The steps of the proof are quite analogous to those in the proof of
5.5 in view of the following:

7.3 LEMMA. Assume S e II1. Then (1) ίfS= {r}, there is a ho-
momorphism φλ of SL2(K0), the unimodular group, onto Gl such that

\0 1/ r ' \t 1/

and

(2) if S = [r, r}, there is a homomorphism φ2 of SL2(K) onto G\ such
that

φ { l ί ) = xτ(t)χ-r{t), Ψ2Q J) = X-r(t)X--r(t), <

= MZr.fcZr,*) ,

and

\-l o) — ω(wrw-r) (mod £>) .

Proof. The existence of φx is established in [3, p. 29, p. 36]. Since
ϊ r and 3Lr commute elementwise with ϊ- and X_̂ , it is clear that φ2 also
exists.

Proof of 7.1. By 7.3, !gω(w8) Π G1 is non-empty for each S e Π\
Thus 7.1 follows from 2.3.

Now we choose ω(w) e G1 for each w e W1, and denote by 2B1 the
union of the sets &ω(w). Then the analogue of 5.3 holds.

7.4 LEMMA. G1 contains φ1.

Proof. G1 contains all /̂ (χ) e &1 such that χ is of the form χOtk9

a — a, k = fc, or χajXa,7 by 7.3. These characters generate X 1 (see [3,

p. 48, Lemma 2]). Thus G1 z> £>\

7.5 LEMMA. For each S e II1, G\ is the the union of the sets Ul&l
and VLltQlωiWsϊVL].

Proof. Because of 7.3, this follows from the corresponding proper-
ties of the groups SL2(K0) and SL2(K) (see [3, p. 34, Lemma 2]).

7.6 LEMMA. G1 is generated by the groups \l\ and Ws which cor-
respond to fundamental sets S e II1.
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Proof. This follows from 7.1, 5.4 and 4.5.

7.7 LEMMA. Gι = UWU1.

Proof. This follows from 7.6, 7.5, 7.1 and 4.7 as in [3, p. 40,
Lemma 10].

Proof of 7.2. That G1 is the union of the given sets follows from
7.7 and 4.7 as in [3, p. 42, Theorem 2]. The disjointness and uniqueness
follow from 5.5.

7.8 COROLLARY, φ1 =.$ n G\

Proof. Because of 7.2, this is clear.

7.9 COROLLARY. IΓξ)1 is the normalizer of U1 in G\

Proof. The normalizer contains U1^1 by 5.1, and equality follows
from 7.2.

One also concludes from the preceding results:

7.10 COROLLARY. The sets of 7.2 are the double cosets of G1 relative
to Uψ.

7.11 COROLLARY. If K is a finite field of characteristic p, then
U1 and Ϊ51 are p-Sylow subgroups of G1.

In regard to 7.11, one sees from 4.5 and 4.6 that, if \K\ = q2 and
I Π I = N, then | U11 = qN.

We now remove the restriction on g and remark that the results of
this section remain valid even if g is of type At (I even). The key
point here is that, if S e IP and | S \ = 3, then there exists a homomor-
phism of U3(f) (see 6.1) onto G\ with properties like those of q\ and
φ2 in 7.3. We omit the proof which can be made to depend on the
representation of G1 by unitary matrices given in § 6.

8 Proof of simplicity. Our aim here is to prove:

8.1 THEOREM. // Ko has at least 5 elements, then G1 is simple.
The simplicity of the group SL2 over its center is assumed to be

known. It is further assumed that g is not of type Aι (I even) and
that I > 3. The proof to be given can be adapted with minor modifica-
tions to the missing groups, which are in any case adequately covered
by 6.2 and [4, p. 70, Theorem 5].
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8.2 LEMMA. Assume R, T e IP, R Φ T, and that r, t are elements
of R, T, respectively. Then there is χ e X1 such that χ(r) = 1, χ(t) Φ 1.

Proof. Let R (or more simply R) denote r or r + r in the cases
r = r or r Φ r, respectively, and then set χBtk = χr>Λ or χΛifc = χr,fcZr,*
accordingly. Treat ί and Γ similarly. If R{T) = 0, set χ = χΓ(fc> keKt,
k2 Φ 1. If i2(Γ) = ± 1, or if Λ(Γ) = ± 2 and | Λ | = | T [ = 2, set χ =
XT^XRT^

 k e κ*> k*Φl. In the other cases of i2(Γ) = ± 2 , set
X = Zί.lz^ZS ί", & _e Kt, k2 Φ l Finally if 22(Γ) = ± 4, set χ = Zt.^.ί»
fc = fej/fci, fci e K, kλΦ ± klβ One can check that these cases are exhaus-
tive and that χ(r) — 1 and χ(t) Φ 1 in each case.

8.3 LEMMA. If w e Wι and w Φ 1, there is h e φ 1 ŝ c/̂  ίfeαί
ω(w)h φ hω(w).

Proof. We first show that there exist χ e X1 and r e II such that
χ(wr) ^ χ(r). If there is an R e IP such that wR Φ ± R, then χ and
r exist by 8.2. If wR — ± R for all R e Π1, then, since w φ 1, one
has wiί = — ϋ! for all i2 e /71. Since ϊ ^ 3, one can readily choose
r, ί 6 77 so that r 1 r, ί = t and r(ί) < 0. If k e JK:0*, /C2 Φ 1, then
χ = χttk and r have the required property. If h — h(χ), a simple calcula-
tion now shows that Xr has different images under ω(w)h and hω(w).

Assume now that if is a normal subgroup of G1 and that \H\ > 1.

8.4 LEMMA. \H Γ\ VLψ\ > 1.

Proof. By 7.2 there is x e H such that x φ 1 and # = uhλω(w)
with u € U1, hx e φ1 and w e VΓ1. If w Φ I, then by 8.3 there is
h 6 ξ)1 such that ω(w)h Φ hω(w). Then ?/ = hxh~λx~λ e H Π IΓξ)1, and
we assert that y φ 1. Indeed, if ?/ = 1, then

a? = hxh'1 — huh'1(hh1ω(w)h~ιω(wY1)ω(w) ,

and by 7.2 one gets hω(w)h'1ω(w)-1 = 1, a contradiction. Thus the as-
sertion and the lemma are proved.

8.5 LEMMA. 1 H n U11 > 1.

Proof. By 8.4, there is x e H n Xt1^1 such that α =£ 1. Write
a; = πfe, u € XI1, fee 'ξ)1, and suppose h Φ 1. Then there is a fundamental
root r such that feXr = cXr, c e K, c Φ 1. If r e S e Π\ let y be the
commutator of x with $r(l) or ajr(l)aj; (1) according as | S \ — 1 or 2. Then
y 6 i ϊ Π Xt\ and it remains to show that y Φ 1. If 2/ = 1, then, for the
case I S | = 1, one has xr(l) = uhx^h^w1 = uxr(c)u~\ Now it follows
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easily from 4.1 that the subgroup U2 of 11 generated by those %r for
which ht r > 1 contains the commutator subgroup of U. Thus xr(l — c) =
α;r(l)xr(c)"1 6 U2, whence 1 — c = 0 by 4.3. This contradiction establishes
y Φ 1. The case | S | = 2 can be treated similarly.

8.6 LEMMA. For some R e Π\ \ H Π UX

R \ > 1.

Proof. Among all a? 6 H Π II1 with x Φ 1, choose one which maxi-
mizes the minimum S e Π1 for which xs Φ 1 in the representation 4.5.
If this minimum is R, we show x — xR. Assuming the contrary, one
can write x — xRxτx1 with xR Φ 1, xτ φ 1, and xλ denoting the remain-
ing terms in 4.5. By 8.2, 5.1 and 4.6, there is h e ξ)1 such that
hxRlfb"x = xR and hxrh"1 Φ xτ. Thus hxh"1 Φ x by 4.5. But then y =
x^hxh'1 Φ 1, y e H C\ Vί\ and /̂ provides a contradiction to the choice
of x.

Using 8.6, one can deduce as in [3, p. 62, Lemma 15]:

8.7 LEMMA. If \H f] UR\ > 1 for R e Il\ then H 3 IX},.

Proof of 8.1. As in 8.3 choose (fundamental) roots r, t such that
r _L r, £ = ί and r(£) < 0. Since r J_ r, this implies that r + t, r + t
and r + r + t are all roots. Set i? = {r, r}, Γ = {ί] , U= {r + t,r + t),
V= {r + r + t}, xR(l) = x r ( l K ( l ) , a?Γ(l) = xt(l), etc.. Then by 4.1 (used
several times), one gets:

8.8 (xR(l), xτ(l)) = xσ(Nrt)xy(NrlNrtr+t)

By 8.7, 5.4 and 2.8, either α;Λ(l) or xτ(l) is in i/; hence so is their
commutator. For the same reason one of the elements on the right of
8.8 is in H; hence so is the other. Thus, by 8.7, 5.4, 3.1 and 2.8, H
contains all 1X£, hence also IX1 by 4.5. Similarly H contains S31, whence
H = G\ Thus G1 is simple.

9. Some identifications. If (\ is of type Al9 then G1 has been
identified in § 6 as a protective unitary group in I + 1 dimensions.
Similarly, if g is of type Dz (I Ξ> 4), then using the representation of G
given by Ree [7], one can show that G1 is isomorphic to a protective
orthogonal group corresponding to a form in 21 variables which has index
I — 1 relative to Ko and index I relative to K. The details in the
complex-real case can be found in [2, p. 422]. If g is of type Eβ, then,
again in the complex-real case, one can identify G1 with a real form of
E6, the one characterized by Cartan [2, p. 493] by the fact that its
Killing form, when written as a sum of real squares, contains a surplus
of 2 positive terms. If g is of type E6 and K is finite, we show in § 12
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that new groups are obtained1, not isomorphic to any appearing in the
list of finite simple groups given by Artin [1].

10. Second variation for D4. A root system for JD4 has a fundamental
basis consisting of roots a, b, c, d of the same length such that 6, c, d
are mutually orthogonal and each makes an angle of 27r/3 with α. Let
τ be the automorphism of order 3 of the underlying Euclidean space
defined by α, 6, c, d -> α, c, d, 6, and let W2 be the subgroup of elements
of W commuting with τ. One can then obtain the analogues of the
results of § 2 without essential change in the proofs. For example: W2

is generated by the elements wa and wbwcwd, and is of type G2. The
roots are partitioned into sets of the types (1) S — {r}, τr = r, and (2)
S — {r, τr, τ2r}. Any 2 sets of the same type are congruent under W2.
One then introduces a field K on which an automorphism τ of order 3
acts, and defines a semi-automorphism τ of QK by r(kXr) = (τk)Xτr. Then
IX2 and 332 are the subgroups of IX and 93, respectively, made up of
elements commuting with r and G2 is the group they generate. The
whole previous developement goes through. It turns out that in the
proof of simplicity it is enough to assume that the fixed field Ko has at
least 4 elements. In § 12, it is shown that once again new finite groups1

are obtained.

l l Third variation for D4. Assume now that K is a field admit-
ting automorphisms σ and r which are of orders 2 and 3 respectively,
and which generate a group isomorphic to S3, the symmetric group on 3
objects. Define corresponding semi-automorphisms a and τ of the Lie
algebra §κ of type D, as in §§ 3 and 10. Then set IX3 = U1 n U2, W =
W Π S32, and let G3 be the group generated by XX3 and SB3. Again every-
thing goes through. It need only be remarked that the present construc-
tion is possible only if K is infinite, and that all groups of type G3 are
simple.

12, Some new groups. The list L of known finite simple groups
consists of the cyclic, alternating and Mathieu groups, and the "Lie
groups", namely the groups G of Chevalley over A, (I ̂  1), Bx (I ̂  2),
C% (I ̂  3), A (I ̂  4), E6, E7, E8, F, and G2, the groups G1 over At (I ̂  2),
Dι (I ̂  4) and EQ, and the groups G2 over JD4, all constructed on a finite
field. By the type of one of these latter groups we mean a combination
consisting of the general mode of construction (G or G1 or G2), the
underlying complex Lie algebra g, and the field K. We adopt the nota-
tion: EQ(T) is the group of type G1 over E6 on a field of r elements.
Our aim is to prove:

12.1 THEOREM. // G is one of the groups El(q2) or D2

4(qd), then G
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is not isomorphic to a cyclic, alternating or Mathieu group, and two

representations of G as Lie groups necessarily have the same type.

In other words the groups E\(q2) and Dl(ql) are new1 and distinct
among themselves. We need some preliminary results. Let G be a Lie
group over a field K of q, q2 or g3 elements in the cases G, G1 or G2,
respectively, and set W — W, W1 or W2 accordingly. The Poincare
sequence of G shall mean the list of numbers qnCw:>(w e W) arranged in
non-decreasing order. Thus the first term is 1 and the last term is qN,
the integer N being the number of positive roots of c\ (see 2.5, 4.5 and
4.6).

12.2 LEMMA. The Poincare sequence of A](q2), D\(q2), E\(qΣ) or

Dl(q3) is obtained by writing the respective polynomial Π —
—>

t- (-iy
l-l f2ί _ 1 f2 __ 1 fδ I I fβ 1 / 8 — 1 /9 i "1 /12 1

(%ι _L \) TT i L z L . L ^ λ . ι ~ L . -i i_ . τ "Γ" λ . ι ~~ L or
J1ϊ t-1' t-1 ί + 1 ί - 1 t-1 ί + 1 ί - 1

(ί + 1) (ί3 + 1) (ί8 + ί4 + 1) as a sum of non-decreasing powers of t and
then replacing t by q in the individual terms.

To avoid interruption of the present development we give the proof
in the next section. We also need the polynomials for the groups of
Chevalley. As one sees from considerations in [3, p. 44, p. 64], these
polynomials take the form Π[(*αC<) — l)/(£ ~ 1)]> the a{i) being given in
[3, p. 64]. Since qn(-w^ = 1 Ui, | by 4.6 and 4.7, one can use 12.2 in
conjunction with 7.2 and the definition of ξ)1 to compute | G11. In the
same way, one can find \G2\. ' Thus:

12.3 LEMMA. // u is the g. c. d. of 3 and q + 1, the orders of
E\{q2) and D\{q") are w'q^q2 -l)(q5 + l)(q6 - l)(g8 - l)(q> + l)(q12 - 1)
and q12(q2 — l)(g6 — l)(g8 + q4 + 1), respectively.

The orders of the other Lie groups can be found in [1]. It is
interesting to note that, if in the expressions in 12.2 and 12.3 which
relate to the group E\(q2) one replaces all plus signs by minus signs,
then one obtains the corresponding properties of EQ(q). A similar pheno-
menon occurs for each of the groups A\(q2) and D\(q2).

12.4 LEMMA. The Poincare sequence of a finite Lie group G is
determined by the abstract group and the characteristic p of the base
field K. The type of a finite Lie group is determined by its Poincare
sequence except thai Bz{q) and Ct(q) have the same sequence, as do A^q3)
and A\{q) also.

Proof. If G is of type G, then, to within an inner automorphism,
G and p determine II as a p-Sylow subgroup, then Uξ) as the normalizer
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of 11, and finally the numbers 1IX Π xVLx~ι \ as x runs through a system
of representatives of the double coset decomposition of G relative to Uξ>.
These latter numbers are just the terms of the Poincare sequence by the
analogue of 7.10, since | IX n φ)Uoi(w)- 1 1 = qn(-w^ by 4.3. A similar
proof of the first statement holds for groups of type G1 or G2. One
proves the second statement by inspection of the Poincare sequences for
the various Lie groups.

By checking their orders, one sees that Aλ(q2) and A\(q) can not be
isomorphic. Thus the two statements of 12.4 can be combined to yield:

12.5. The type of a finite Lie group is determined by the abstract
group and the characteristic of the base field except that Bz(q) and C^q)
may be isomorphic.

This result has been obtained previously (for the previously known
finite simple Lie groups) by Artin [1] and Dieudonne [5, p. 71-75] by
different, more detailed methods. Artin actually draws the conclusion
under the weak assumption that only | G | and p are known.

One also concludes from 12.4 the well-known fact that A2(4) and
A3(2), both of order 20160, are not isomorphic.

An inspection of the results of 12.3 yields:

12.6 LEMMA. Let G be either E\{q2) or D\{qz) over a field of charac-

teristic p, and let Q be the largest power of p which divides \G\. Let

Qf be any prime power which divides \G \. Then Q3 > | G | and Q Ξ> Q'.

Proof of 12.1. Clearly G is not cyclic. Since | G | > 108 and Q3 > | G |,

it follows that G is not an alternating group (see [1]). Dl(8) does not

have the order of a Mathieu group and all other values of | G | are too

large. G is not isomorphic to either of the groups Ax(p^ with pi =

2r — 1 = prime, or Affi) with 2s + 1 = prime, since in each case one has

a prime p2 such that p2 divides | G [ and p\ > \ G |, and this is readily

seen to be impossible by 12.3. But except for these two types, every

simple finite Lie group verifies 12.6 (see [1] where the other groups are con-

sidered). Thus any representation of G as a Lie group must be over

a field of characteristic p. An application of 12.4 completes the proof.

13. Proof of 12.2. By 2.2, 2.3 and 2.6, n(w) = Σ | S |, summed

over those S e Π1 for which wS < 0. By 2.7, one can compute n(w)

within the framework of W1 and its root system, but each root is to be

counted with the right multiplicity (1, 2 or 3). Assume first that the

group under consideration is E\{q2). Then W1 is of type F4 and, in

terms of coordinates relative to an orthonormal basis, its roots can be
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taken as ± xif (± xλ ± x2 ± x3 ± x4)/2, each of multiplicity 1, and ± xt ± x}

(i ψ j)9 each of multiplicity 2 (see [8, p. 13-08]). The inequalities
x1 — x2 — x3 — x4 > 0, x2 — x3 > 0, x3 — x4 > 0, and x4 > 0 determine a
fundamental region F of ΐ^ 1 by [10, p. 160]. The last 3 inequalities
determine a region L whose intersection with the unit sphere is lune-
shaped with (1, 0, 0, 0) as one of its vertices. The subgroup V of W1

leaving (1, 0, 0, 0) fixed is of type C3 and has L as a fundamental region.
Let P(t) be the polynomial sought, let Pτ{t) be the corresponding poly-
nomial for the group V, and let P2(t) be Σ*n(M°> the sum being over
those w e W1 for which wF c L. A simple geometric argument shows
that P = P1P2. We next find P2. The point a = (16, 8, 4, 2) is in F. It
has 24 transforms in L corresponding to the 24 elements w e W1 for
which wF c L. These are α, & = (15, 5, 3, 9), c = (13, 11, 7, 1) and the
points in L obtained from these by coordinate permutations. One can
now find n(w) for each of the 24 elements above. For example, if w
maps a on bf then the roots positive at a and negative at b are
(xx — x2 — x3 — x4)/2, of multiplicity 1, and x2 — x4 and x3 — x4, each of
multiplicity 2. Hence n(w) — 5. Thus P2 is determined, and the original
problem of rank 4 is reduced to one of rank 3. A similar reduction to
rank 2 is possible, whence P can be determined. If one starts with
A\(q2) or D](q2) instead, the same inductive procedure can be carried
through, and for Dl(q*) the polynomial P can be found rather quickly by
enumerating n(w) for the 12 elements of W\ The results are those
listed in 12.2.

14. Prime power representations. In [9], 14 assumptions on a finite
group are made, and then some properties concerning the representa-
tations of the group are deduced. It is then verified that the groups of
Chevalley satisfy the basic assumptions. The verification for G1 or G2 is
virtually the same as for G because of the structure theorems of the
present paper. Thus one gains the results of [9] (in particular Theorem
4) simultaneously for all known finite simple Lie groups.

15. Concluding remarks. We first note that it is possible to cover
somewhat more ground than was indicated in the main development
given here by allowing certain degeneracies to occur. For example, if
σ on E is of order 2, if σ on K is of order 1, and if g is of type A2l or
A2l-19 then the construction of §§ 3, 4 and 5 yields a group of type Bι

or Cu respectively. Thus Bly Cτ and also Am may be regarded as dege-
nerate cases of A)n. Similarly D] degenerates to Bι^1 and Ότ\ E\ to F4

and E6; and D\ to G2J B3, D4, D\ and D\. It is easily verified that no
other groups can be obtained by the present method of combining auto-
morphisms of E and of K in various ways1.
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In regard to the construction given for G\ it is to be noted that
QK, the set of fixed points of σ, is the Lie algebra (over Ko) of G1 in
many cases. We could have defined G1 on g^ in view of the easily proved
facts that an automorphism x of g^ commutes with a if and only if
x§ι

κ = tγKf and that, in this case, the restriction of x to gV is 1 only if
x = 1; but this would have led to a much more complicated development.
It is also to be noted that one can not define G1 as the subgroup Gσ of
G made up of elements which commute with σ. The difference, roughly
speaking, lies in ξ>: a self-con jugate character on Pr may be extendable
to a character on P but not to a self-con jugate one, as is proved by the
following example. Let g be of type Alf and let w and a = 2w be
fundamental weight and root, respectively. Then χ defined by χ(a) =
k2, k2eKt, k φ k, has the given property. One sees rather easily, howe-
ver, that GσjGτ is always isomorphic to a subgroup of P/Pr.

The proof of simplicity given in §8 is considerably shorter than the
one given in [3], but this is at the expense of the assumption that K
has enough elements: left open is the question of simplicity for the
groups E\(q2) with q <£ 4, and Dl(q*) with q <g 3. The answer quite
likely requires rather detailed methods such as those of [3].

More important, perhaps, and probably more difficult is the identi-
fication of the infinite groups constructed. An infinite analogue of 12.4
would go a long way in this direction. Finally, it seems likely that there
is some sort of description of D\ and D\ by Cay ley numbers.
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