VARIATIONS ON A THEME OF CHEVALLEY

ROBERT STEINBERG

1. Introduction. In this paper we use the methods of C. Chevalley
to construct some simple groups and to gain for them the structural
theorems of [3]. Among the groups obtained there are two new families
of finite simple groups!, not to be found in the list of E. Artin [1].
Whether the infinite groups constructed are new has not been settled yet.

Section 5 contains statements of the main results of [3]. In §§2,
3, 4 and 7, we define analogues of certain real forms of the Lie groups
of type A,, D, and FE; (in the usual notation), and extend to them
the structural properties of the groups of Chevalley. Sections 6 and 9
treat some identifications, and § 8 deals with the question of simplicity.
In §§ 10 and 11, using the extra symmetry inherent in a Lie algebra of
type D,, we consider two modifications of the first construction which
are, perhaps, of more interest since they produce groups which have no
analogue in the classical complex-real case: in fact, a basic ingredient of
each of these variants is a field automorphism of order 3. In Sections
12 and 13, it is proved that new finite simple groups are obtained!, and
their orders are given. Section 14 deals with an application to the theory
of group representations, and § 15 with some concluding observations.

The notation is cumulative. We denote by | S| the cardinality of
the set S, by K* the multiplicative group of the field K, and by C the
complex field. An introduction to the standard Lie algebra terminology
together with statements of the principal results in the classical theory
can be found in [3, p. 15-19]. (Proofs are available in [8] or [10]).

2. Roots and reflections. We first introduce some notations. Rela-
tive to a Cartan decomposition of a simple complex Lie algebra of rank
l, let E be the real space generated by the roots, made into an Euclidean
space in the usual way, and normalized as in [3, p. 17-18]. Relative to
an ordering < of the additive group generated by the roots, let I be
the set of positive roots, and a(1), a(2), ---, a(l) the fundamental roots.
For each root r = X7, a(t), set Xz, = ht r, the height of . The order-
ing < can always be chosen so that it r < ht s implies » <s (see
[3, p. 20, I. 35-40]); suppose this is done. Assume now the existence
of an automorphism ¢ of E of order 2 such that ¢/l = [I. This restricts
the type of algebra to A,, D, (I = 4) or E; (see [3, p. 18]), and hence
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implies that all roots have the same length. We also denote or by 7.
Clearly ¢ permutes the fundamental roots. Thus At » = ki » for each root
r. Finally, let W be the Weyl group, W' the subgroup of elements
commuting with o, and for each w € W denote by m(w) the number of
roots » for which » > 0 and wr < 0.

Consider now subsets S of IT of the following three types:

(1) S consists of one root », which is self-conjugate ( = ), and
which can not be written as a sum of a conjugate pair of roots;

(2) S consists of a conjugate pair 7, # such that » 4+ 7 is not a
root;

(8) S consists of three roots of the form », #, » + 7.

Note that in case (2) one has » | 7 because htr = ht7 implies that
r — 7 is not a root. Shortly we prove the important fact:

2.1 LEMMA. If [I' denotes the collection of sets of types (1), (2)
and (3) above, then II' is a partition of II.

In any case, the fundamental sets of II'*-those which contain funda-
mental roots - are disjoint because the fundamental roots are linearly
independent. If w, denotes the reflection in the hyperplane orthogonal
to r, we set w, = w,, w,W; or w,.; (= w,wyw,) according as S is of type
(1), (2) or (3) above. Note that w, e W™

2.2 LEMMA. For each fundamental S e II', w, maps S onto -S and
permutes the positive roots not in S. Hence n(w,) = | S|.

Proof. Since n(w,) = 1 for each fundamental root a [8, p. 19-01,
Lemma 1], and since w, can be written as a product of | S| such reflec-
tions, it follows that n(w,) < |S|. By direct verification one sees that
w,S = — S. Hence the lemma is proved.

2.3 LEMMA. The group W' is generated by the w, corresponding
to fundamental S e II'.

Proof. Using induction on n(w), we show that each w e W' is a
product of elements of the given form. If n(w)=0, w=1, the statement
is clearly true. If n(w) >0, w # 1, there is a fundamental root a such
that @ > 0 and wa < 0. Since @ > 0 and wa = wa < 0, it follows that
r>0, wr <0 for each root r in the set S e II' which contains a.
Hence n(ww;*) = n(w) — n(w,) by 2.2, and the induction hypothesis can
be applied to ww;! to complete the proof.

2.4 LEMMA. W s a normal subgroup of the group generated by W
and o.

Proof. One has ow,0~' = w; for each root r. Since ¢ permutes
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the roots, and the root reflections generate W, one gets s Wo ' = W,
and hence 2.4.

2.5 LEMMA. The element w, of W defined by w,ll = — II is in
wh.

Proof. By 2.4, ow,o" ' € W. Since ow,0 '/ = — II, one concludes
that ow,0™! = w, and that w, ¢ W".

2.6 LEMMA. FEach S e II' is congruent under W' to a fundamental
set.

Proof. Write the element w, of 2.5 in the form w,= w, +-- wyw,
guaranteed by 2.8. Since S > 0 and w,S < 0, there is an index ¢ such
that w,_, -+ w,S >0 and w, --- w,S < 0. If T e II' corresponds to w,,
it follows from 2.2 that w,.,---w,S < T, and clearly equality must
hold.

By using 2.6 and examinining the fundamental root systems for
groups of type A, D, and E; (see [3, p. 18] or [8, p. 13-08]), one sees
that a set in II' of type (8) can occur only in the case A, (I even).
This turns out to be the most troublesome case in the sequel. Note
however that sets of types (1) and (3) do not occur simultaneously.

Proof of 2.1. This follows from 2.6 and the fact that the funda-
mental sets of /I' are non-overlapping.

We now associate with W' a reflection group. Let E*+ and E-
respectively denote the positive and negative subspaces of E under o,
and for each w e W' let @ and W' denote the restrictions of w and
W' to E+. Also denote by S the vector r, r+ 7 or r -+ 7 in the respec-
tive cases (1), (2) or (3) of 2.1.

2.7 LEMMA. The restriction of W' to W' is faithful. W' is a
reflection group of type Ciqsnyy Bi-1 or F, in the respective cases that
W is of type A, D, or E; and, to within a change of scale, {§|S e I}
18 a corresponding system of positive root vectors.

Proof. First if w e W*, @ =1, then w maps each positive root
onto another one. Hence w = 1, and the restriction is faithful. Those
S which correspond to the fundamental S e /7' form a new fundamental
root system (to within a change of scale) of the listed type, as one sees
by considering the separate cases (see [3, p. 18]). Becuse of 2.3 and 2.6,
the proof is complete if it can be shown that,#for each fundamental
S e II', w, is the reflection in the hyperplane 6rthogonal to S. If
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|S|=2and S= {a, @}, then w, has —1 as a characteristic value of
multiplicity 2. Since wy(a + @) = — (@ + @), w(e —a) = — (@ — @), ¢ +
ae K+, and a—a € E-, it follows that @, has —1 as a characteristic
value of multiplicity 1, and then that 4, is the required reflection.
If |S|=1or |S| =3, the result follows from the definitions.

2.8 COROLLARY. Any two sets of the same type in the partition
2.1 are congruent under W?.

Proof. Since sets of types (1) and (3) do not occur simultaneously,
and since W' is transitive on its root vectors of a given length, 2.8
follows from 2.7.

A new ordering < of the positive roots is now introduced. First if
R, S e II', then R < S means that min » €¢ R < min s € S. Then if
r, s € Il, define » < s to mean that either » and s belong to distinct
sets R and S of /I''and R < S, or » and s belong to the same set of
IT" and r < s,

2.9 LEMMA. The roots in each set S of II* occur comsecutively in
the ordering of the roots of Il relative to <. If r, s and r -+ s are
positive roots, them r 4+ s > min (r, s).

Proof. The first statement follows from the definition. Since <
respects heights, the second assertion is true if » + s has minimum
height in the set S of //' containing it. Thus one may assume that
there is a root ¢ such that » +s=1¢ -+ ¢, »+t, » + t, and that W is of
type A, (I even). Then each positive root is a sum of a string of dis-
tinct fundamental roots, and the strings corresponding to » and s are
necessarily of different lengths. Thus Att = ht t > min (ht », ht s).
Since < respects heights, this implies that » -+ s > min (¢, Z) > min (7, s).

3. Construction of an involution. Supposc that g is a simple
complex Lie algebra with a generating system (X,, X_,, H,, r ¢ 1)
chosen to satisfy the conditions of Theorem 1 of [3]. Assume also that
g is restricted to type A,, D, (I = 4) or E; so that the results of § 2 can
be applied. Set r(H,) = r(s). Then, all roots being of the same length,
it follows that:

3-1 X’)‘XS = M‘er+s; M-s = 0; + 1; r, s € n .

For the same reason 7(s) = s(r) and #(r) = 2. By the uniqueness theorem
for a simple Lie algebra with a given root structure (see [8, p. 11-04]
or [10, p. 94]), there exists an automorphism g, of g such that o,H, =
H; and o0,X,=¢X;, ¢, € C*, re Il or —II, with ¢, =1 for each
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fundamental root a. Then each ¢_, = 1, and by induction on the height
one gets each ¢, = + 1. Next let K be a field on which an automor-
phism ¢ of order 2 acts, let K, be the fixed field, and write ok =k, k ¢ K.
Then following the procedure of [3, p. 32], one can transfer the base
field of g from C to K, and thus gain a Lie algebra g, over K and a
semi-automorphism ¢ of g, such that ¢(kH,) = kH: and o(kX,)= + kX:,
ke K, e Il or —II. Note [3, p. 32] that the field is not transferred

for roots (or weights) and that the expression 7(s) retains its original
meaning.

3.2 LEMMA. The order of o is 2. By appropriate sign changes of
the X, one can arrange things so that in the equations o X, = k. Xz, r € II,
one has:

@ ki=k;

o) if 7+, then k. =1;

() vf r=r, then k. vs 1 or —1 according as r belongs to an
S e I1' of 1 or 3 elements.

Proof. One has ¢°X, = X,, 0°X_, = X_, for each fundamental root
a. Thus 0> =1, and this implies (a). If 7, 7 is a conjugate pair in /7,
if <7, and if %k, = — 1, replace X, by —X,. Then (b) holds. If
| S| =3 1in (c), there is a root s such that »r = s 4+ s, and one gets (c)
by applying o to the equation X, X; = kX,. If | S| =1, assume it » > 1.
Then there is either a self-conjugate fundamental root a such that » — a
is a root, or a conjugate pair of orthogonal fundamental roots b, b such
that » — b, » — b and » — b — b are all roots. One then applies o to
the equation X, . X,=1§X, or (X,.,;X,)X; = k,X,, respectively, and
completes the proof of (¢) by induction on the height.

We assume henceforth that the normalization indicated by 3.2 has
been made and that the corresponding treatment has been given,to the
negative roots, so that one has once again the equations of structure of
Theorem 1 of [3] (in particular, X, X ., = H,).

4. Some nilpotent groups. As in [3], we set x,(t) = exp (t ad X,),
t e K, r e II, denote by X, the one-parameter group {z,(f)|t € K}, and
by 1 the group generated by all X,, r € II.

4.1 LEMMA. For », s e Il and t, t, € K, one has the commutator
relation (2.(t), 2,(t)) = %, .(N,t.l,).

Proof. This follows from [3, p. 33, [. 22] and the fact that all
roots have the same length.
A straightforward computation yields:

4.2 cexp(tad X,) o' = exp(tad o X,) .
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4.3 LEMMA. Let 3 be a subset of Il satisfying the condition
4.4 r,selX, rtsell imply r+sel.

Then each x € U, the group generated by all X, r € X, can be
written uniquely in the form x = |[x.(t,), the product being over the
roots of X arranged in increasing order relative to < (see § 2).

Proof. Using the formulas 4.1 repeatedly, one sees that the set of
elements of the given form is closed under multiplication; thus each
2 € Us has an expression of the given form. Uniqueness is proved by
induction on | ¥|. If |Y| =1 and Y = {7}, this follows from z,.(t)X_, =
X_,+tH, — t*X, (see [3, p. 36, [. 15]). If |3 | > 1, let » be the least
element of ¥ (relative to <), and set 3’ = Y — ». Let 2 € Us be written
as ¢ = 2,(t)x, and © = x.(t,)x, with ¢, ¢ K and x; € U... Then z,(t, — ¢,) =
zxy'. Since z.(t, — t)X_, = X_, + (t, — t)H, — (¢, — t,)*X,, since (¢, — t,)
€ Uy, and since r can not be written as a sum of roots larger than 7»
by 2.9, it follows that the coefficient of H,, namely ¢, — ¢,, must be 0.
Thus 2z, = 2,, and the induction hypothesis ecan be applied to X’ to
complete the proof.

The result 4.3 can be applied in the cases Y = /T and X =S e [
Because of 2.9, one gets:

4.5 COROLLARY. Fach x € U can be written uniquely in the form
x = [z, x, € U, the product being over the sets S of II' arranged in
inereasing order.

Denote now by W, U etc. the subgroups of elements of U, U,, ete.
commuting with o.

4.6 LEMMA. If x e U is written in the form 4.5, then x € U if
and only if each x,eN'. A mecessary and suflicient condition for x,ell;
to be in U' is that, in the cases (1), (2) or (3) of 2.1, x, has the respec-
tive form (1) x,t),t=t, () z{t)x; (), v=_1, or (3) z(t)x; (v)x,.;(w),
v=1t w+ w= Nit.

Proof. If z € ' commutes with g, one has x = oxo~! = [[(o2,07Y).
Since ox,0' e 1 by 4.2, one gets ox,0°' = x, by the uniqueness in 4.5.
Thus each z, € 1. The converse is clear. In the cases listed in the
second statement, one has

(1) ow(t)o = 2; (),

(2) ox,(t)e; W) ! = z,(v)x-(t), and

(3) ox,(t)r; ()2, .; (W)o" = 2,(0)%; ()2, (— w + Nztv) by 3.2, 4.1
and 4.2. The required results now follow from 4.3.

4.7 LEMMA. Let II be the union of the disjoint sets 3 and 3',
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each invariant under g, and each satisfying 4.4. Then W' = UL UL and
1 1
> ﬂ uzl == 1

Proof. By [3, p. 41, Lemma 11], one can write # € U' uniquely in
the form = = yy', y € Uy, ' € Us,. The proof that ¥ and ¥’ are in W
is the same as that for the first part of 4.6.

If ¥ denotes the group generated by all %X, r < 0, then one can
define B!, B, ete., and gain for these groups corresponding results.

5. Main results of Chevalley. For each simple complex Lie algebra
g (not necessarily one for which ¢ exists), consider the groups U1 and ¥
and also the group G (denoted in [3] by G’) which they generate. For
each w € W, if Y consists of the roots » for which » > 0 and wr < 0,
we set Uy = U, (denoted in [3] by UJ). Let P, and P, respectively,
denote the additive groups generated by the roots and by the weights.
Corresponding to each character y of P, into K*, there is an automor-
phism & = h(y) of g defined by hX, = y(r)X,, r € Il or — [I. Let
(denoted in [3] by ') be the group generated by those automorphisms
which correspond to characters which can be extended to P. For
h(x) € , one has

5.1 ha, () = a,(7(r)t) .

The main results of [3] are as follows:

5.2 G contains 9.

5.3 Corresponding to each w € W there is w(w) € G such that
ow)X, = ¢,X,,, o(w)H, = H,,, ¢, € K*, r € Il or —II. The union of
the sets Dw(w) is a group W and the map w — Hw(w) is an isomorphism
of W on /9.

Parenthetically, we remark that here one has:

5.4 oWw)Xo(w)=%,, .

5.5 G is the union of the sets UDw(w)l,, w € W. These sets are
disjoint and each element of G has a unique expression of the indicated
form.

5.6 G is simple if one excludes the case (1) | K| =2 and g of type
A, B,or G, and (2) | K| =3 and g of type A,.

Before proving corresponding results for the group G' generated by
' and B, we identify G* in the case that g is of type A..

6. Some unitary groups. Consider the form
I+1

6.1 fle, B) = S (—Dia,pB,

1

on a space of ! dimensions over K. Let U, (f) denote the correspond-
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ing unimodular unitary group and C,.(f) its center. Then one has:
6.2 If g is of type A, G' = U (f)]Crai(f).

Proof. If g is of type A, one can identify g, with 8[,,,(K), the
algebra of (I + 1)th order matrices of trace 0, in such a way that, for
each fundamental root a(i), X,., € qx corresponds to I, ;.,, the matrix
with 1 in the (7, ¢ 4 1) position and 0 elsewhere [7, p. 393]. If m =
((—1)'8; 14,—,) is the matrix corresponding to f, one can then verify that
o is the product of the transformations Y — mYm™* (matrix multiplica-
tion) and Y — — Y (¢t = transpose). According to a recent identification
of R. Ree [7], U and %, respectively, consist of the superdiagonal ma-
trices (0 below and 1 on the diagonal) and the subdiagonal matrices,
acting on 8[,,, via inner automorphisms, so that the group G of Cheval-
ley is in this case the projective unimodular group. Now it follows
from material in [4, p. 66-69] that U,.,(f) is generated by its superdia-
gonal and subdiagonal elements and that C,.,(f) consists of scalar
matrices. Thus to prove 6.2 it is enough to prove:

6.3 Let x be a superdiagonal matrix. Then x ¢ W if and only if
e Un(f).

A simple calculation using the concrete form of ¢ given above shows
that 20 = ox if and only if Z'm-‘xm commutes with each Y € 8(,,.
This is equivalent to xmz* = km, k ¢ K. If x is superdiagonal, k& must
be 1, because the (1, I + 1) entries of the matrices xma* and m are
both —1. Thus 6.3 and 6.2 are proved.

It is to be observed that the form j has index [(I + 1)/2].

7. Structure of G!. Recall that G' is the group generated by W
and B'. For each w ¢ W, set U}, =11' N U,. For each S e /1!, let G!
be the group generated by 11! and Bi. Denote by X' the group of those
characters of P, into K* which can be extended to characters y of P
which are selfconjugate in the sense that x(a@) = y(a) for all @ € P, and
by ©' the corresponding subgroup of . For S e II%, set D= H' N G,.
Finally, for each root » and each k ¢ K*, denote by ¥, . the character
on P, defined by y,:(s) = k*™.

It is assumed until further notice that q is not of type A, (I even).

We aim to prove:

7.1 LEMMA. For each w ¢ W* Hw(w) N G* is not empty.
Once this is established, it can (and will) be assumed that w(w) e G*
for each w e W*. Then:

7.2 THEOREM. G*' is the union of the sets WDw(w)l, w e W

w)r

The sets are disjoint and each element of G' has a unique expression
of the indicated form.
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The steps of the proof are quite analogous to those in the proof of
5.5 in view of the following:

7.3 LEMMA. Assume S e II*'. Then (1) of S = {r}, there is a ho-
momorphism ¢, of SL(K,), the unimodular group, onto G} such that

(5 1) =20 o(3 1) =00, 2§ 1) = bl
and
v 2 §) = o) (mod 9);

) if S={r, r}, there is a homomorphism ¢, of SL,(K) onto G} such
that

#{ 1) = w0 @, oy 1) = w-iws 0, 2G 3-)
= W(Lrdre) »
and

(,02(_01 (1)> = w(w,w;) (mod ) .

Proof. The existence of ¢, is established in [3, p. 29, p. 36]. Since
X, and X¥_, commute elementwise with ¥X; and X_;, it is clear that ¢, also
exists.

Proof of 7.1. By 7.3, Dw(w,) N G' is non-empty for each S e [I'.
Thus 7.1 follows from 2.3.

Now we choose w(w) € G* for each w e W', and denote by T the
union of the sets H'w(w). Then the analogue of 5.3 holds.

7.4 LEMMA. G*' contains D'

Proof. G' contains all h(y) € ' such that y is of the form y,,,

d=a, k=kFk, or ¥,,07 by 7.3. These characters generate X' (see [3,
p. 48, Lemma 2]). Thus G' D H.

7.5 LEMMA. For each S € II*, G| is the the union of the sets UD}
and NDiw(w ).

Proof. Because of 7.3, this follows from the corresponding proper-
ties of the groups SL,(K;) and SL,K) (see [3, p. 34, Lemma 2]).

7.6 LEMMA. G! is generated by the groups 1 and Vi which cor-
respond to fundamental sets S e II'.
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Proof. This follows from 7.1, 5.4 and 4.5.
7.7 LEMMA. G'= 1.

Proof. This follows from 7.6, 7.5, 7.1 and 4.7 as in [3, p. 40,
Lemma 10].

Proof of 7.2. That G* is the union of the given sets follows from
7.7 and 4.7 as in [3, p. 42, Theorem 2]. The disjointness and uniqueness
follow from 5.5.

7.8 COROLLARY. D'= 9 N G.
Proof. Because of 7.2, this is clear.
7.9 COROLLARY. W' is the normalizer of W' in G

Proof. The normalizer contains WO' by 5.1, and equality follows
from 7.2.

One also concludes from the preceding results:

7.10 COROLLARY. The sets of 7.2 are the double cosets of G* relative
to WO

7.11 COROLLARY. If K 1is a finite field of characteristic p, then
W and B are p-Sylow subgroups of G*.

In regard to 7.11, one sees from 4.5 and 4.6 that, if | K| = ¢* and
| 71| = N, then |1I'| = ¢”.

We now remove the restriction on g and remark that the results of
this section remain valid even if g is of type A, (I even). The key
point here is that, if Se /I* and | S| = 3, then there exists a homomor-
phism of Uy(f) (see 6.1) onto G} with properties like those of ¢, and
@, in 7.3. We omit the proof which can be made to depend on the
representation of G' by unitary matrices given in § 6.

8. Proof of simplicity. Our aim here is to prove:

8.1 THEOREM. If K, has at least 5 elements, them G' is simple.

The simplicity of the group SL, over its center is assumed to be
known. It is further assumed that g is not of type A, (I even) and
that I = 8. The proof to be given can be adapted with minor modifica-
tions to the missing groups, which are in any case adequately covered
by 6.2 and [4, p. 70, Theorem 5].
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8.2 LEMMA. Assume R, T e II', R+ T, and that r, t are elements
of R, T, respectively. Then there is y € X' such that y(r) =1, x(t) + 1.

Proof. Let R (or more simply R) denote » or r 4+ # in the cases
¥ =17 or r +# r, respectively, and then set Y, = %rx OF Xar = Yo X%
accordingly. Treat ¢ and T similarly. If R(T) = 0, set ¥ = Yr.» k€ K7,
kB+1 If RT)= +1, orif R(T)= +2and |R|=|T|=2, set y =
Yrx: Xzi", ke Kf, K+ 1. In the other cases of R(T)= + 2, set
X = XowXiwXni's £ € K&, k' #+ 1. Finally if R(T) = + 4, set ¥ = YoxXi
k= TkJk, k, e K, k, # + k. One can check that these cases are exhaus-
tive and that x(r) = 1 and x(¢) # 1 in each case.

8.3 LEMMA. If we W' and w1, there s h € ©' such that
o(w)h # ha(w).

Proof. We first show that therc exist y € X* and # e /I such that
x(wr) £ y(r). If there is an R € II* such that wR # + R, then y and
r exist by 8.2. If wR = + R for all R e II', then, since w # 1, one
has wR= — R for all R e II'. Since [ = 3, one can readily choose
r,t el so that » | 7 t=1t and »(t)<0. If ke K¥, k*+ 1, then
L = Yo.r and r have the required property. If h = h()), a simple calcula-
tion now shows that X, hag different images under w(w)h and ho(w).

Assume now that H is a normal subgroup of G' and that | H| > 1.

8.4 LEMMA. |H N WH| > 1.

Proof. By 7.2 there is x € H such that « = 1 and x = uh,w(w)
with w e W, h, e © and we WL 1If w=+1, then by 8.3 there is
h e ' such that w(w)h #= ho(w). Then y = hah~'2~' ¢ H N WD, and
we assert that y ## 1. Indeed, if ¥y = 1, then

x = hah™' = huh~'(hh,o(w)h~"'w(w) Ho(w) ,

and by 7.2 one gets ho(w)h'w(w)* = 1, a contradiction. Thus the as-
gertion and the lemma are proved.

8.5 LEMMA. |H N 1| > 1.

Proof. By 8.4, there is x ¢ H N 'O such that x # 1. Write
x=uh, u € W, h e 9, and suppose h = 1. Then there is a fundamental
root r such that hX, =c¢X,, ce K, ¢+ 1. If r € S e I, let y be the
commutator of « with x,(1) or «,(1)x; (1) according as [ S| =1 or 2. Then
y € HN U, and it remains to show that y = 1. If y = 1, then, for the
case | S| =1, one has z,(1) = wha (Dh'u* = ux,(c)u~'. Now it follows
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easily from 4.1 that the subgroup U, of U generated by those X, for
which 4t » > 1 contains the commutator subgroup of I. Thus z.(1 — ¢) =
x,(1)x.(c)"* e U,, whence 1 — ¢ = 0 by 4.3. This contradiction establishes
y # 1. The case | S| = 2 can be treated similarly.

8.6 LEMMA. For some Re II', |HN Uk| > 1.

Proof. Among all x € H N U with « # 1, choose one which maxi-
mizes the minimum S e IT' for which 2z, #= 1 in the representation 4.5.
If this minimum is R, we show x = x,. Assuming the contrary, one
can write ® = x 0,0, With x, # 1, x, # 1, and x, denoting the remain-
ing terms in 4.5. By 8.2, 5.1 and 4.6, there is h € ' such that
hxgh™ = x, and hxyh'+# x,. Thus hxh~'+ 2z by 4.5. But then y =
xtheh £ 1, y e HN W, and y provides a contradiction to the choice
of «.

Using 8.6, one can deduce as in [3, p. 62, Lemma 15]:
8.7T LEMMA. If |HNW;|>1 for R e II', then H D 1.

Proof of 8.1. As in 8.3 choose (fundamental) roots 7, ¢t such that
r 17 t=t and r(t) < 0. Since » | 7, this implies that » +¢, » + ¢
and r 4+ » + t are all roots. Set R = {r, r}, T = {t}, U= {r +t, r + 1],
V=1{r+7r+1t} ;1) =2,z (1), 2,(1) = x,(1), ete.. Then by 4.1 (used
several times), one gets:

3.3 (®x(1), 2,(1)) = 2o(N, )2, (N, N, ;) -

By 8.7, 5.4 and 2.8, either xz (1) or x,(1) is in H; hence so is their
commutator. For the same reason one of the elements on the right of
8.8 is in H; hence so is the other. Thus, by 8.7, 5.4, 3.1 and 2.8, H
contains all 11}, hence also 1I' by 4.5. Similarly H contains 8!, whence
H = G Thus G* is simple.

9. Some identifications. If g is of type A, then G' has been
identified in §6 as a projective unitary group in [ + 1 dimensions.
Similarly, if g is of type D, (I = 4), then using the representation of G
given by Ree [7], one can show that G' is isomorphic to a projective
orthogonal group corresponding to a form in 2] variables which has index
1 —1 relative to K, and index ! relative to K. The details in the
complex-real case can be found in [2, p. 422]. If g is of type E, then,
again in the complex-real case, one can identify G' with a real form of
E;, the one characterized by Cartan [2, p. 493] by the fact that its
Killing form, when written as a sum of real squares, contains a surplus
of 2 positive terms. If g is of type E, and K is finite, we show in § 12
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that new groups are obtained!, not isomorphic to any appearing in the
list of finite simple groups given by Artin [1].

10. Second variation for D.. A root system for D, has a fundamental
basis consisting of roots a, b, ¢, d of the same length such that b, ¢, d
are mutually orthogonal and each makes an angle of 27/3 with a. Let
T be the automorphism of order 3 of the underlying Euclidean space
defined by a, b, ¢, d > a, ¢, d, b, and let W* be the subgroup of elements
of W commuting with z. One can then obtain the analogues of the
results of § 2 without essential change in the proofs. For example: W*
is generated by the elements w, and w,w,w, and is of type G,. The
roots are partitioned into sets of the types (1) S = {r}, 7r =, and (2)
S = {r, tr, 2r}. Any 2 sets of the same type are congruent under W*.
One then introduces a field K on which an automorphism 7 of order 3
acts, and defines a semi-automorphism 7 of g, by 7(kX,) = (tk)X.,. Then
1* and B* are the subgroups of 1 and B, respectively, made up of
elements commuting with ¢ and G* is the group they generate. The
whole previous developement goes through. It turns out that in the
proof of simplicity it is enough to assume that the fixed field K, has at
least 4 elements. In §12, it is shown that once again new finite groups'
are obtained.

11. Third variation for D,. Assume now that K is a field admit-
ting automorphisms ¢ and © which are of orders 2 and 3 respectively,
and which generate a group isomorphic to S,, the symmetric group on 3
objects. Define corresponding semi-automorphisms ¢ and 7 of the Lie
algebra gr of type D, as in 8§83 and 10. Then set 1® = 1' N 113, VW =
B N B, and let G° be the group generated by 11° and 8. Again every-
thing goes through. It need only be remarked that the present construc-
tion is possible only if K is infinite, and that all groups of type G° are
simple.

12. Some new groups. The list L of known finite simple groups
consists of the cyclic, alternating and Mathieu groups, and the ‘‘Lie
groups’’, namely the groups G of Chevalley over 4, (I = 1), B, (I = 2),
C,(1=3), D, (Il =4), E, E, E, F,and G,, the groups G* over A4, (I = 2),
D, (I z4) and E;, and the groups G* over D,, all constructed on a finite
field. By the type of one of these latter groups we mean a combination
consisting of the general mode of construction (G or G' or G?), the
underlying complex Lie algebra g, and the field K. We adopt the nota-
tion: E'y(r) is the group of type G' over E; on a field of r elements.
Our aim is to prove:

12.1 THEOREM. If G is one of the groups Eiq*) or Dig*), then G
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18 mot isomorphic to a cyclic, alternating or Mathiew group, and two
representations of G as Lie groups necessarily have the same type.

In other words the groups FEi(¢?) and D3¢d) are new' and distinct
among themselves. We need some preliminary results. Let G be a Lie
group over a field K of q, ¢* or ¢* elements in the cases G, G or G?,
respectively, and set W= W, W' or W? accordingly. The Poincare
sequence of G shall mean the list of numbers Q" (w € W) arranged in
non-decreasing order. Thus the first term is 1 and the last term is ¢,
the integer N being the number of positive roots of g (see 2.5, 4.5 and
4.6).

12.2 LEMMA. The Poincare sequence of Aiq®), Diq%), Eiq*) or

T+l 4 (1Y
Di(q® 1is obtained by writing the respective polynomial Hiﬁ—((ll))—i_'
1 — (—

: -1 -1 P4+l -1 -1 #41 "1
@+ D1l -1 t—1 t+1 t—=1 t-1 t+1 t=1°
Ct+DE+DE+ "+ 1) as a sum of non-decreasing powers of t and
then replacing t by q in the indiwidual terms.

To avoid interruption of the present development we give the proof
in the next section. We also need the polynomials for the groups of
Chevalley. As one sees from considerations in [3, p. 44, p. 64], these
polynomials take the form [[[(*® — 1)/(t — 1)], the a(?) being given in
[3, p. 64]. Since ¢"™ = |1, | by 4.6 and 4.7, one can use 12.2 in
conjunction with 7.2 and the definition of ' to compute |G'|. In the
same way, one can find |G?*|. Thus:

r

12.3 LEMMA. If w is the g.c.d. of 3 and q + 1, the orders of
EYq’) and Di¢’) are w7'¢*(¢® —1)(¢° + 1)(¢° — 1)(¢° — 1)(¢" + D)(¢"” — 1)
and ¢*(¢* — 1)(¢° — 1)(@® + ¢* + 1), respectively.

The orders of the other Lie groups can be found in [1]. It is
interesting to note that, if in the expressions in 12.2 and 12.3 which
relate to the group Ei(¢?) one replaces all plus signs by minus signs,
then one obtains the corresponding properties of Ey(q). A similar pheno-
menon occurs for each of the groups Aj(q®) and Di(¢?.

12.4 LEMMA. The Poincare sequence of a finite Lie group G is
determined by the abstract group and the characteristic p of the base
field K. The type of a finite Lie group is determined by its Poincare
sequence except that B,(q) and Cyq) have the same sequence, as do A(q°)
and Ayq) also.

Proof. If G is of type G, then, to within an inner automorphism,
G and p determine U as a p-Sylow subgroup, then 11 as the normalizer
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of U, and finally the numbers |11 N #Uz~'| as « runs through a system
of representatives of the double coset decomposition of G relative to 9.
These latter numbers are just the terms of the Poincaré sequence by the
analogue of 7.10, since |U N w(w)Uw(w)*| = ¢"®@™ by 4.3. A similar
proof of the first statement holds for groups of type G' or G*. One
proves the second statement by inspection of the Poincaré sequences for
the various Lie groups.

By checking their orders, one sees that A,(¢°) and A)(q¢) can not be
isomorphic. Thus the two statements of 12.4 can be combined to yield:

12.5. The type of a finite Lie group is determined by the abstract
group and the characteristic of the base field except that B,(q) and Cy(q)
may be isomorphic.

This result has been obtained previously (for the previously known
finite simple Lie groups) by Artin [1] and Dieudonné [5, p. 71-75] by
different, more detailed methods. Artin actually draws the conclusion
under the weak assumption that only \Gl and p are known.

One also concludes from 12.4 the well-known fact that A,4) and
Ay(2), both of order 20160, are not isomorphic.

An inspection of the results of 12.3 yields:

12.6 LEMMA. Let G be either E(¢*) or Di(q%) over a field of charac-
teristic p, and let Q be the largest power of p which divides |G|. Let
Q' be any prime power which divides |Gl Then @ >|Gland Q = Q.

Proof of 12.1. Clearly G is not cyclic. Since |G | > 10°and @° > IG’ l,
it follows that G is not an alternating group (see [1]). D8) does not
have the order of a Mathieu group and all other values of |G| are too
large. G is not isomorphic to either of the groups A,(p,) with p, =
2" — 1 = prime, or A,(2°) with 2° 4+ 1 = prime, since in each case one has
a prime p, such that p, divides IG] and p > IG |, and this is readily
seen to be impossible by 12.3. But except for these two types, every
simple finite Lie group verifies 12.6 (see [1] where the other groups are con-
sidered). Thus any representation of G as a Lie group must be over
a field of characteristic p. An application of 12.4 completes the proof.

13. Proof of 12.2. By 2.2, 2.3 and 2.6, n(w) = >, | S|, summed
over those S e /I' for which wS < 0. By 2.7, one can compute n(w)
within the framework of W' and its root system, but each root is to be
counted with the right multiplicity (1, 2 or 3). Assume first that the

group under consideration is FEl(¢?). Then W' is of type F, and, in
terms of coordinates relative to an orthonormal basis, its roots can be
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taken as + x;, (+ 2, + @, + x; + x,)/2, each of multiplicity 1, and =+ x; + =,
(t # 7), each of multiplicity 2 (see [8, p. 13-08]). The inequalities
Xy — Xy — Xy — 2, >0, 2, — 2, >0, 2, — 2, >0, and 2, > 0 determine a
fundamental region F' of Wt by [10, p. 160]. The last 3 inequalities
determine a region L whose intersection with the unit sphere is lune-
shaped with (1,0,0,0) as one of its vertices. The subgroup V of W!
leaving (1, 0, 0, 0) fixed is of type C, and has L as a fundamental region.
Let P(t) be the polynomial sought, let P,(t) be the corresponding poly-
nomial for the group V, and let Py(t) be 3 ¢*™ the sum being over
those w ¢ W' for which wF < L. A simple geometric argument shows
that P= P,P,, We next find P,. The point a = (16, 8,4, 2) isin F. It
has 24 transforms in L corresponding to the 24 elements w ¢ W* for
which wF < L. These are a, b = (15,5,3,9), ¢ = (18,11,7,1) and the
points in L obtained from these by coordinate permutations. One can
now find n(w) for each of the 24 elements above. For example, if w
maps @ on b, then the roots positive at @ and negative at b are
(¢, — ©, — 3 — ,)/2, of multiplicity 1, and «x, — «, and %, — x,, each of
multiplicity 2. Hence n(w) = 5. Thus P, is determined, and the original
problem of rank 4 is reduced to one of rank 3. A similar reduction to
rank 2 is possible, whence P can be determined. If one starts with
Ai(@®) or Di(q®) instead, the same inductive procedure can be carried
through, and for Dj(¢*) the polynomial P can be found rather quickly by
enumerating n(w) for the 12 elements of W2 The results are those
listed in 12.2.

14. Prime power representations. In [9], 14 assumptions on a finite
group are made, and then some properties concerning the representa-
tations of the group are deduced. It is then verified that the groups of
Chevalley satisfy the basic assumptions. The verification for G* or G? is
virtually the same as for G because of the structure theorems of the
present paper. Thus one gains the results of [9] (in particular Theorem
4) simultaneously for all known finite simple Lie groups.

15. Concluding remarks. We first note that it is possible to cover
somewhat more ground than was indicated in the main development
given here by allowing certain degeneracies to occur. For example, if
o on E is of order 2, if ¢ on K is of order 1, and if g is of type A, or
A, _,, then the construction of §§3, 4 and 5 yields a group of type B,
or C,, respectively. Thus B,, C, and also A4,, may be regarded as dege-
nerate cases of A}. Similarly D; degenerates to B,_; and D;; E! to F,
and E;; and D} to G, B, D, D! and D It is easily verified that no
other groups can be obtained by the present method of combining auto-
morphisms of £ and of K in various ways'.
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In regard to the construction given for G*, it is to be noted that
gk, the set of fixed points of ¢, is the Lie algebra (over K;) of G' in
many cases. We could have defined G' on gy in view of the easily proved
facts that an automorphism x of g commutes with ¢ if and only if
2ak = g%, and that, in this case, the restriction of x to g% is 1 only if
2 = 1; but this would have led to a much more complicated development.
It is also to be noted that one can not define G* as the subgroup G° of
G made up of elements which commute with ¢. The difference, roughly
speaking, lies in $: a self-conjugate character on P, may be extendable
to a character on P but not to a self-conjugate one, as is proved by the
following example. Let g be of type A, and let w and a = 2w be
fundamental weight and root, respectively. Then jy defined by y(a) =
K, k*e K¥, k + k, has the given property. One sees rather easily, howe-
ver, that G°/G* is always isomorphic to a subgroup of P/P..

The proof of simplicity given in §8 is considerably shorter than the
one given in [3], but this is at the expense of the assumption that K
has enough elements: left open is the question of simplicity for the
groups Fi(q®) with ¢ <4, and D¥¢°) with ¢ <3. The answer quite
likely requires rather detailed methods such as those of [3].

More important, perhaps, and probably more difficult is the identi-
fication of the infinite groups constructed. An infinite analogue of 12.4
would go a long way in this direction. Finally, it seems likely that there
is some sort of description of D? and D: by Cayley numbers.
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