
ON FUNCTIONS REPRESENTABLE AS A DIFFERENCE
OF CONVEX FUNCTIONS
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l Introduction* A function f(x) defined on a convex x-set D will
be called a d.c. function on D if there exists a pair of convex functions
Fλ(x), F2(x) on D such that f(x) is the difference

(1) f(x) = Fix) - Fix) .

In this note, "convex" function means " continuous and convex" func-
tion. D.c. functions have been considered, for example, by Alexandroff
[1]. E. G. Straus mentioned them in a lecture in Professor Beckenbach's
seminar (and used the abbreviation " d . c " ) .

When x is a real variable, so that D is a (bounded or unbounded)
interval, then f(x) is a d.c. function if and only if / has left and right
derivatives (where these are meaningful) and these derivatives are of
bounded variation on every closed bounded interval interior to D. Straus
remarked that this fact implies that if flx)9flx) are d.c. functions of
a real variable, then so are the product fix) fix), the quotient flx)lflx)
when fix) Φ 0, and the composite flflx)) under suitable conditions on
/2. He raised the question whether or not this remark can be extended
to cases where x is a variable on a more general space. The object of
this note is to give an affirmative answer to this question if x is a point
in a finite dimensional (Euclidean) space.

2. Local d.c. functions. Let f(x) be defined on a convex x-set D.
The function f(x) will be said to be d.c. at a point x0 of D if there
exists a convex neighborhood U of x0 such that f(x) is d.c. on U Π D.
When f(x) is d.c. at every point x of D, it will be said to be locally
d.c. on D.

(I) Let D be a convex set in an m-dίmensίonal Euclidean x-space
and let D be either open or closed. Let f{x) be locally d.c. on D. Then
f(x) is d.c. on D.

While the proof of (I) cannot be generalized to the case where the
m-dimensional #-space is replaced by a more general linear space, it will
be clear that (II), below remains valid if the Euclidean x-space (but not
the #-space) is replaced by a more general space.
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(II) Let x — (x1, , xm) and y = (y\ , yn). Let D and E be con-
vex sets in the x- and y-spaces, respectively; let D be either open or
closed and let E be open. Let g(y) be a d.c. function on E and let
yj = yj(x) where j = 1, , n, be d.c. functions on D such that y = y(x) e E
for xeD. Then f(x) = g{y{x)) is locally d.c. on D.

This theorem is false (even for n = m = 1) if the assumption that
E is open is omitted. In order to see this, let x and y be scalars,
g(y) = 1 - y^ ( ^ l) on E\ 0 ^ y < 1 and let y = y(x) = \x - i\ on
D: 0 < x < 1. Since f(x) = g{y{x)) = 1 — |a? — £ |1 / 2 does not have finite
left and right derivates at the interior point x = | , the function /(x) is
not d.c. at the point x = £.

It will be clear from the proof that (II) remains correct if the as-
sumption that E is open is replaced by the following assumption on E
and g(y): if x0 is any point of D and yQ = y(x0), let there exists a con-
vex ^-neighborhood V of τ/0 such that g(y) satisfies a uniform Lipschitz
condition on V Π E. (This condition is always satisfied if y0 is an interior
point of E; cf., e.g., Lemma 3 below).

COROLLARY. Let D be either an open or a closed convex set in the
(x\ •••, xm)-space. Let fι(x)ff2(%) be d.c. functions on D. Then the pro-
duct fι(x)f2(x) and, if fλ{x) Φ 0, the quotient f2(x)lfi(x) are d.c. functions
on D.

The assertion concerning the product follows from (I) and (II) by
choosing y to be a binary vector y = (y\ y2), g(y) = yτy2, E the (y\ y2)-
plane and y1 = fix), y2 = /2(x). Thus /(a) = flf(2/(a;)) =/i(a?)/a(ίc). Note that
ff(l/) = iίl/1 + y2)2 - MO/1)2 + (̂ /2)2) is a d.c. function on E.

In the assertion concerning the quotient, it can be supposed that
f2(x) Ξ= 1 and that fλ(x) > 0. Let y be a scalar, #(#) = ljy on E: y > 0
and ?/ = /x(α;) on Z). Thus (̂̂ /) is convex on E and f(x) = g(y(x)) = Vf^x).

3* Preliminary lemmas. It will be convenient to state some simple
lemmas before proceeding to the proofs of (I) and (II). The proofs of
these lemmas will be indicated for the sake of completeness.

In what follows, x = (x\ , xm) is an m-dimensional Euclidean vec-
tor and \x\ is its length. D is a convex set in the x-space.

LEMMA 1. Let D be either an open or a closed convex set having
interior points. Let x = x0 be a point of D and U a convex neighborhood
of x0. Let F(x) be a convex function on D Π U. Then there exists
a neighborhood Uλ of x0 and a function Fx{x) defined and convex on D
such that F(x) == Fλ{x) on D Π Uλ.

In order to see this, let U2 be a small sphere | x — x0 \ < r such that
F(x) is bounded on the closure of D Π U2. Let G(x) = K\x — xQ\ +
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F(x0) — 1, where K is a positive constant, chosen so large that G(x) >
F(x) + 1 > F(x) on the portion of the boundary of U2 interior to D.
Clearly G(x) < F(x) holds for x = x0, hence, for x on D Π UΊ if U± is
a suitably chosen neighborhood of x0. If x e D, define Fλ{x) to be
max (F(x), G(x)) or G(x) according as x is or is not in U2 Π D. Since
max (F(x), G(x)) is convex on U2 Π D and max (F(x), G(x)) == G(x) for x
in a vicinity (relative to D) of the boundary of U, in D, it follows that
FJX) is convex on D. Finally, Fλ{x) = max (F(x), G(x)) = F(x) for

£C 6 ί/i Π Λ

LEMMA 2. Le£ D be a closed, bounded convex set having x — 0 as
cm interior point. There exists a function h(x) defined and convex for
all x such that h(x) g 1 or h(x) > 1 according as xe D or x $ D.

In fact, h(x) can also be chosen so as to satisfy h(x) > 0 for x Φ 0
and h(cx) — ch(x) for c > 0. This function is then the supporting func-
tion of the polar convex set of D; Minkowski, cf. [2], §4. The function
h(x) is given by 0 or \x\ρ~'1(xj\x\) according as x — 0 or x Φ 0, where,
if u is a unit vector, p(u) is the distance from x — 0 to the point where
the ray x = ί%, £ > 0 meets the boundary of D.

LEMMA 3. Let D be a closed, bounded convex set having interior
points and Dλ a closed convex set interior to D. Let F(x) be a convex
function on D. Then F(x) satisfies a uniform Lipschitz condition on Dlt

In fact, if d > 0 is the distance between the boundaries of D and
A and if \F{x)\ ^ M on D, then \FixJ - F(x2)\ ^2M\xx-x2\jd for
xlf x2 6 JD1# This inequality follows from the fact that F(x) is convex on
the intersection of D and the line through xγ and x2.

4. Proof of (I). The proof will be given for the case of an open
convex set D. It will be clear from the proof and from Lemma 1 how
the proof should be modified for the case of a closed D.

To every point xQ of D, there is a neighborhood U — U(x0), say U:
\x — xo\ < r(x0), contained in D such that f(x) is d.c. on U; that is,
there exists a convex function F(x) = F(x, xQ) such that f(x) + F(x, x0)
is a convex function of x on U(xQ). In view of Lemma 1, it can be
supposed (by decreasing r(x0), if necessary) that F(x, x0) is defined and
convex on D (although, of course, / + F is convex only on U).

Let Dλ be a compact, convex subset of D. Then Dλ can be covered
by a finite number of the neighborhoods U{xγ), •••, U(xk). Put F(x) =
i^(x, » ! )+•••+ î (ίt', %k), so that F(ίc) is defined and convex on D. Since
fix) + Fix, Xj) is convex on U(xj), so is f(x) + F(a;) = fix) + F(x, x3) +
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^iΦjF(xf xt). Hence / + F is convex on A
Thus there exists a sequence of open, bounded convex sets Dl} A> •

with the properties that the closure of Ό} is contained in Dj+i, D — \JDjf

and to each Ό3 there corresponds a function Fj(x) defined and convex
on D such that f(x) + Fj(x) is convex on D3.

Introduce a sequence of closed convex sets C1, C2, such that
C1 c A c C2 c A c . In particular, ΰ = | J C J .

It will be shown that there is a function Glx) with the properties
that

(i) Gλ(x) is defined and convex on A
(ii) /(#) + Glx) is convex on D2, and
(iii) G^α) = Fix) on C1 .
If this is granted for the moment, the proof of (1) can be completed

as follows: If G19 •• ,Gfc_1 have been constructed, let Gk be a function
defined and convex on D such that / + Gk is convex on Dk+1 and Gk =
Gh-λ on Cfc. Then F(x) = limGfc(#) exists uniformly on compact subsets
of D; in fact, F(OJ) = G3{x) on Cfc for all j ^ fc. Hence, F(x) is defined
and convex on D. Since /(a?) + F(x) is convex on Cfc, k = 1, 2, , it is
convex on D\ that is, / is a d.c. function on D.

Thus, in order to complete the proof of (I), it remains to construct
a Gx(x) with the properties (i) — (iii). Let k > 0 be a constant so large
that F2(x) — k ^ Fx{x) for a? 6 C1. Without loss of generality, it can be
supposed that x = 0 is an interior point of C1. Let h(x) be the function
given by Lemma 2 when D there is replaced by C1. Put iί(x) = 0 or
H(x) — ifΓΛ($) — 1] according as xe Cι or x$ C\ where K > 0 is a con-
stant. Thus i/($) is defined and convex for all x and H(x) = 0 on C1.
In particular,

( 2 ) Fa(α?) - k + H(x) ^ ί\(a;) for xeC1 .

Choose K so large that

(3 ) Fix) -k + H(x) > Fix) on D[ ,

the boundary of A This is possible since h{x) — 1 > 0 for x $ C\
Define Gx(x) as follows:

( 4 ) Glx) = max (Fix), F2(x) ~k + H(x)) for xeD19

Glx) = Fix) -k + H(x) for x e D - A ,

where D — A is the set of points in D, not in A
Clearly, (2) and the first part of (4) imply property (iii),

( 5 ) Glx) = Fix) if x e C1 ,

and (3) implies that
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(6) G1(x) = F2(x) - k + H(x) for x on and near D[ ,

the boundary of Dλ.
By the first part of (4), Gλ(x) is convex on Dx. By the last part of

(4) and by (6), Gλ(x) is convex in a vicinity of every point of D — Dx.
Hence, Gλ(x) has property (i), that is Gλ(x) is convex on D.

Since f(x) + Fλ{x) is convex on Dx and f(x) + 2̂ 0*0 > hence f(x) +
F2(x) — h + H(x) is convex on D2 ID DU it follows that, on Dly the
function

f{x) + G,(x) = max (/ + F19f + F2 - k + H)

is convex. It also follows from the last part of (4) and from (6) that
f + Gx is convex in a vicinity of every point of D2~ Dx. Hence G1 has
property (ii), that is, / + Gλ is convex on D2. This completes the proof
of (I).

5 Proof of (II). Without loss of generality, it can be supposed that
g(y) is convex on E.

Since yj(x) is a d.c. function on D, there exists a convex function
F(x) on D such that

( 7 ) ± y\x) + F(x) are convex on D .

The function F(x) = F(x,j, ±) can be assumed to be independent of j ,
where j = 1, * ,n, and of ± for otherwise it can be replaced by

Let x — x0 be a point of JD and yQ — 2/(a;0). Lei V be a convex
neighborhood of yQ such that βf satisfies a uniform Lipschitz condition

( 8 ) igivJ-giyJl^M^-y^

on V"; cf. Lemma 3. Let U be a neighborhood of #0 such that y(x) e V
for X6 U f] D. It will be shown that

( 9 ) f{x) + SnMF(x) is convex o n f l n U ,

so that / is d.c. at x — x0.
It is clear that there is no loss of generality in assuming that g(y)

has continuous partial derivatives satisfying

(10) \dg(y)/dyj\ ^ M for j = 1, . . - , n and ye V.

For otherwise, g can be approximated by such functions.
In what follows, only x in D Π U and y e V occur. Let x = cc(s),

where s is a real variable on some interval, be an arc-length parametri-
zation of a line segment in D Π U. The assertion (9) follows if it is
shown that e(s) + 3nMF(x(s)), where e(s) =/(χ(s)) is a convex function
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of s. It is clear that e(s) has left and right derivatives (whenever these
are meaningful). Let e'(s) denote a left or a right derivate of e(s) and
F'(x(s)), yj'(x(s)) the corresponding derivates of F(x(s)), yJ(x(s)). Let
Δs > 0, then φ ) + SnMF(x(s)) is convex if and only if Δe' + 3nMΔF' ;> 0,
where Δe' = e'(s + Δs) - e'(s) and ΔFr = F'(x(s + Δs)) ~ F'(x(s)).

By the definition of e,

(11) e' =

Hence,

(12) Je'(s) - ΣΔ(dgldyi)yi'

where ^ ' = 2/J/(#(s)) and (dgldyJ)1 is the value of d(//%j at y — y(x(s + Δs)),
The usual proofs of the mean value theorem of differential calculus

(via Rollers theorem) imply the existence of a 0 = 0,, 0 < 01 < 1, such
that

(13) Δί/Δs = i/r ,

where ^ ' is a number between the left and right derivates of yj(x(s))
at the s-point s + ΘJΔS. By (13), the equation (12) can be written as

(14) Δe' - Σ(Δdgldy>){ΔyηΔs) + ^{Δdgldy^yζ - yj

β

f)

By (7),

\Δy>'\ ̂  J F ' and |^0' - j/ί'| ^ ^ - Fi £ ΔFr ,

where Fi is the right derivate of F(x(s)) at the s-point s + ^̂ z/s (< s + Δs).
Since £(#) is convex, the first term on the right of (14) in non-negative.
Hence (10) and (11) give

(15) Δe' ^ 0 - 2nMΔF' - MnΔF' ,

so that e(s) + 3nMF(x(s)) is convex. This proves (II).

6. " Minimal" convex functions* Let f(x) be d.c. on the unit
sphere \x\ < 1, so that there exist functions F(x) on \x\ < 1 such that

(16) F{x) and fix) + F(x) a re convex on \x\ < 1 .

The function F(x) can be chosen so as to satisfy the normalization

(17) F(0) = 0 and Fix) ^ 0 .

If a? is a real variable, there exists a " l e a s t " Fix), say Fmix),
satisfying (16), (17) in the sense that (16), (17) hold for F - Fm and
(16), (17) imply
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(18) Fm(x)^F(x) on \x\ < 1 .

In fact, Fm(x) can be obtained as follows: A (left or right) derivative
f'{x) of f{x) is of bounded variation on every interval 1 x \ ̂  a < 1 and
so f'{x) can be written as f'(x) = P(x) — N(x), where P(x), N(x) are
the positive, negative variation of / ' on the interval between 0 and x,
say, with the normalization N(0) = 0. In particular, P and N are non-
decreasing on \x\ < 1. In this case, Fm(x) is given by

FJx) = \XN(x)dx .
Jo

On the other hand, if x is a vector, there need not exist a least
F= Fm(x). In order to see this, let x be a binary vector and write
(x, y) instead of x. Let f(x, y) = xy. If ε > 0, F(x, y) = i(εx2 + t\έ)
satisfies (16), (17). If a least F = Fm exists, then 0 ^ ί ^ α , j/) ^ i(είc2 +
τ/2/ε). In particular, 0 <> Ĵ m(̂ » 0) ^ εα?2, and, therefore, jPm(a?, 0) = 0.
Similarly, Fm(0, y) = 0. But since Fm is convex, it follows that Fm = 0.
This contradicts the case F — Fm of (16) and so, a least F = Fm does
no exist.

Although a " least " F need not exist, it follows from Zorn's lemma
that " minimal? ? F ? s do exist.
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