BOOLEAN ALGEBRAS OF PROJECTIONS OF
FINITE MULTIPLICITY

S. R. FOGUEL

Introduction. The multiplicity theory in Banach spaces has been
developed recently by Dieudonne [2] and Bade [1]. In [6] we studied
the algebra of bounded operators, in a given Hilbert space, that commute
with all projections of a given Boolean algebra of self adjoint projec-
tions. By using Bade’s paper [1], we propose to generalize these results
to Banach spaces. The notation of [1] will be used. Let X be a com-
plex Banach space. Let the Boolean algebra of projections be given as
follows:

On the compact Hausdorff space £, let a measure E(-) be defined
for every Borel set, such that:

1. For every Borel set @, F(a) is a projection on X.

2. For every xze X, the vector valued set function F(-)z is countable
additive.

3. If a and B are Borel sets then

E(EpB) = E(@np) .

4. There exists a constant M such that | E(a) < M| for every Borel set a.
5. The Boolean algebra of projections F(-) is complete. (See [1] for
definition of completeness.)

In [1] the space 2 was defined to be the Stone space of the Boolean
algebra. In the above form it is easier to find examples. Bade’s results
remain true for this slightly generalized version.

Throughout the paper we assume that the Boolean algebra has uni-
form multiplicity n, n < . (Definition 3.2 of [1]). Thus the following
is proved in [1]:

There exist n vectors x,%, ---,2, and 7 bounded functionals
aF, xF, -+-, ¥ such that:

1. X = \n/ sp(E (a)x;, « a Borel set)

i=1
2. Let afE(-)x, = pt(+). The measures p,i =1, ---, n are equivalent.
3. For every Borel set e, t1;(¢) = 0 and p(e) = 0 and only if FE(e) = 0.
4. 1If i+ j then z}E(e)x, = 0.
5. For every xe X there exists n functions fi(®), ---, f.(w) defined on

Q such that:
a. fi(w)e L2, ).
b. For every Borel set e,
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2¥E(e)x = S’fi((u)/zi(da)) .

c. Let e, = {a)llf,.,(a))l <mi=1,.- n},
then

2 = lim 3" X FA@)E(dw)z, .

m—oo i=1

d. The transformation 7' from X to 7., L(yt,) given by

fi(w)
Tx =

Fulw)

is continuous. The functions f,(w), - - -, f.(w) are uniquely defined
by 2, up to sets of measure zero.
These results are proved in 5.1 and 5.2 of [1]. Instead of writing
fl(w) fl((')) |
Tx = ( ) let us use the notation x ~< )
Fulw) Ful)

Let A be the algebra of bounded operators on X, which commute
with all the projections E(«). The purpose of this paper is to study 9.
Representation of the Algebra 2

Let Ae?, and let
a;,(w)
Ax, ~ ) 1=1,---,m.
0, (o)

Denote this correspondence by A ~ (@, (w)). The functions «a, ;(w) satisfy
by 5.b.

2.1 crE(e) Az, = o AE (e)t, = Spai,j(a))ﬂ.l(dw)
and ,
a;,4(w) e L(p)
Equation 2.1 defines the pru(nc)tions a; (w) uuiquely (a.e.).
(@

Now let xe¢ X and « ~< ) If e is a Borel set on which the

Ful®)

functions fi(®), a; (®) are bounded then:
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B =3 Sefi(w)E(d@xz

i=1

and
AE(@n = E@Ac = 5 | fi@)B(do)(Ar)
= 3| fl@E o E@AY) .
But
E@ds, = 5| a,(@Edwm,
Hence |

B4z = S fi(a))E(dw)(&aj,,.,(x)E(dx)x,) .

=i,jsn
From condition 3 of the introduction it follows that
B@Ar = 3, S‘aj,i(w) Fl@)E(dw)z,

— élg (lil a,,i(w)fi(w)>E(dw)x, .

e \i=

Therefore

51 E(e)Aw = S(z a, (o) fi(w)>,uj(da)) .

This equation means

Si(@)
Aw~(ai,;(w))( : )

Fulw)

REMARK. Equation 5.b. of the introduction was proved here, for
only some Borel sets. But we know that

gl(w))

gn(.cv)

for some functions g,(w), ---, g.(w). The above argument shows that

Si(w) 9:()
(ai,;(w))( . )z( . )a.e.

Fl@)  \gw)

Ax ~
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THEOREM 2.1. For every operator Ae N there corresponds a matrix
of measurable functions a,;(w), 1 <1, j < n, such that:
1. a,; (®)e L(y,).

2. If
e
o
Fulo)
then

fi)

Ax ~ (@, (@)
i)

3. If o matrixz of functions, (b, (w)), satisfies condition 2 then
a; (w) = b; (w) a.e.
The matrixz of the sum or product of two operators is the sum or
product of the matrices. If A~ exists and is bounded then

AT~ (g (@)

The functions a,; (@) are determined by equation 2.1.

Proof. The existence of a representing matrix was proved above.
The other parts of the theorem follow from the uniqueness assertion
given in condition 3.

COROLLARY. Let Ae. If Be and AB = I(BA = 1I) then BA =
I(AB = 1).
Proof. If AB = I then
(a;, (@)D, s(®)) = (5, a.e.
Hence
(b:,;(@)(a; s @) = (3, ) a.e.
Thus by Theorem 2.1 BA = I.

THEOREM 2.2. Let A,, Ae . If the sequence {A,} converges
strongly to A then sequence of functions {a{"(w)} converges 1in
measure to a; (), for each 1 =14,5 <n. (It does not matter with re-
spect to what measure, because the measures are finite and equivalent).
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Conversely, the sequence {A,} comverges strongly to A if:
1. The sequence {a{™} converges in measure to a, ,(®).
2. The sequence {|A,|} is bounded.

3. Jollam@)| <K 1<i,j<n m=12 ...} = 0.
K=1

Proof. 1If for each xe X

lim 4,2 = Ax

m—co

then for every Borel set e

| @) - a, @)mdo)
= ‘xEkE(e)(Amxj - Ax])l é MlAmxj - ijl - O
m — oo
where M does not depend on e. Thus the sequence {a{")(w)} converges
in measure to a; ().
On the other hand, if conditions 1, 2 and 3 are satisfied and e is a
Borel set, on which the functions a{™(w) are uniformly bounded, then

n

A E(e)x; = ZS a(w)E (dw)zx,

and by the Lebesque Theorem, [5] 1V.10.10

lim A, E(e)z, = ZS a, (w)Edw)s, .
m—roo Jj=1 e
Now, by condition 38, the set of linear combinations of FE(e)x,,
1<% <mn and e as defined above, is dense. Thus the sequence {A4,x}
has a limit for # in a dense subset of X, and by condition 2 it has a
limit for every xe X. Let A be the strong limit of {4,} then

n

AR (e)x, = ZS a, (0)E(dw)r, .

Jj=1

Thus the matrix of A is (a; ,(w)). (See Remark before Theorem 2.1).
In order to develop further the theory, let us borrow the following
results from [6].

LEmMMA 2.1. Let (a,,(®)) be a matriz of measurable finite func-
tions. There exists a decomposition of the form

2.2 (@.,(@) = 3 z(@)(0) + N(©)

where 2(w), +--, 2,(w) are measurable functions and & (w), ---, (W),
N(w) are matrices of measurable functions satisfying:
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() = eo), if i # § then s(@) @) = 0, Xe@) = (.) -
Also
c(@)N(0) = N()(o), (N(@) =0.

Moreover, there exist n Borel sets [3,, ---, 8, whose union s 2 such
that on B; the nmumbers z(w), ---, z,(w) are different while z,,(w) =
« = 2z,(w) = 0.
The proof is given in Lemma 3.1, 3.2 and Theorem 3.1 of [6].

THEOREM 2.3. Let Ae . There exists a sequence of Borel sets,
{a,,} such that:

1. The sequence {a,} increases to Q.

2. The operator AE(«,) 1s spectral. (For definition of spectral
operators see [3]).

Thus A is a strong limil of a sequence of spectral operators.

Proof. Let A~ (a; (w)) = S, zy(w)e(w) + N(w), where the right
side of the equation is defined in Lemma 2.1. Let a be a Borel set
such that

a. On the set a the functions z,(w) are bounded.

b. If y.(w) is the characteristic function of «, then y.(w)s.(w) and

1@)N(w) are representing matrices of the operators E, , and
N, respectively in .
Then, by Theorem 2.1,

2.3 AE(a) = ?3 (in(w)E(dw))Ei,w 4 N,

where E,;, are disjoint projections and N, is a nilpotent of order n com-
muting with them.

Thus, for such «, the operator AE(«a) is spectral, and the resolution
of the identity (see [3]) of A restricted to E(a)X is

D EE()E.

In order to prove the theorem, we have to find a sequence of Borel
sets, satisfying conditions a, b and 1. Also with no loss of generality,
we may study the operator A on E(8,)X (Lemma 2.1). Thus we may
assume that at each point w, the matrix (a,.(w)) has exactly ¢ eigenvalues.

Define

= {ollz @] = m and [20) — 2(@)| = X, 1=k <j=i].
m

On the set «, the matrix ¢,(w) can be calculated as follows:
Let Q(z) be the polynomial
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Q(z) = bo +b2+ -0 + bi(n+l)—'lz
such that:

Q(w) =1, Q@) =0, 2=j=<1
R (z)(w)) = 0, 1=7=19, 1=p=n

then
Q(a; () = e(w) [see [4] p. 188].

These equations have a unique solution b, = b,(w), which are measur-
able and bounded (on «,) functions of w. Thus

oo (@)%, (0)
= Xa, (O[bo(@) + bi(@)(@; (@) + + - + biurny-i(@;, (@) 7]

and this matrix represents the operator %, ,, in 2, where
B, = E(am)ﬂbu(w)E(da))
+AJ@E@) + -+ A b @B ) |
Similarly the matrices Xa, (@)e,(®) represent the operators K, in 2, and

by equation 2.2 the matrix Xﬂ?m(w)N (w) represents a nilpotent of order
n, N,, in A where

AE(a,) = ,iE E,,mgw 2 (@ E(dw) + N, .

COROLLARY. Let Ae be a generalized milpotent (see [3] for de-
finition) then

A" =10

Proof. By equation 2.3 and Theorem 8 of [3]

AE(ay,) = N, .
Hence for every xe X
E(a,)A" =0
therefore
A" =0.

LEMMA 2.2, Let Ae. If A~ (a,,(w)) and z(®), k=1,2, ---,n
are the functions defined in equation 2.2 then
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lz,(w)| = |Ala.e.

Proof. Let us assume, to the contrary, that for some ¢ and ¢ >0
the set

v = {ollz(o)| = |A] + ¢}

is not of measure zero. Let {«,} be the sequence defined in Theorem
2.3, for some mE(vyNna,)+# 0. Now, on vyNa, |z(w)|=|4]|+e¢>0
hence ¢,(w) + 0. Thus E(vﬂa,,l)E’,-,,am;t 0, where E,.”wm is defined in
Theorem 2.3. If the operator B is the restriction of A to E(v ﬂam)Ei,mmX
then

B = S 2(@)E(dw) + M
yna,,
where M is a nilpotent. Thus, if |p¢| < |A| then |g¢| = |z/(w)| — ¢,

wevNa,, and it € o(B). Also, if |/t| > |A| then |zt| > |B| and st ¢ a(B).
This shows that o(B) is empty which is impossible.

THEOREM 2.4. Let (a, (@) ~ Ae . If the number )\ &€ a(A) then
for some ¢ >0

dist (\, o(a; ;(w))) = e a.e.

Proof. Let xe p(A). The matrix of (\] — A)™" has the form

n gi(w) B __N(a)) L (—N(m))"”_
O TRy R ey B
Thus by Lemma 2.2

i 1 — max— 1
dist (\, o(a;, (®))) N =z (w)]

< |(M — A)ae.

THEOREM 2.5. Let (a; (@)~ Ae and let f(z) be regular in a
netghborhood of o(A). Then the matriz f((a; (w))) exists a.e. and it is
the matrixz corresponding to f(A).

Proof. Let e be a Borel subset of 2 then

SrE () f(A)e, = w,j‘E(e):-z%L FOORO, A dn

where C is a finite collection of Jordan curves surrounding o(A4). Now
RO\; A) ~ (e (@, V) = (W8, — @, ,(@))" thus
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SFE(e)f (A)x, — 2i§ FOV@EE(@©R(N, A)z)dr
YR
= 2_71550 f(,\)“cr,c_ Sw; /\)yk(dw)}dx

by equation 2.1. The functions 7, ,(w, \) can be computed by Cramer’s
rule. By Theorem 2.4 and the compactness of C there exists a positive
constant § such that if » e C then

dist (\, o(a,,;(w))) = Sa.e.

Now, if e is a Borel set on which the functions a; ,(w) are bounded,
then the functions r, ;(w, \) are measurable and bounded on e x C. For
such Borel sets ¢, we may use Fubini’s theorem to conclude that

st B@ AW, = | L r00m o, i e .

From this equation it follows that the components of the matrix of f(A4)
are given by

) o SO0, Mdr ace.
2mle
Now by the argument of Lemma 2.1 in [6] the matrix f((a; (®)))

exists a.e. and its components are, thus, given by (*).

THEOREM 2.6. Let Ae U be a compact operator. If A ~ (a;;(w)) and
(@0 @) = 3 2@)ef@) + N@)

is the decomposition given in Lemma 2.1, then there exists a sequence
{w,}, of points in w, such that:

1. E({o,}) #0

2. z(w) =0 a.e. for o+ w, v=1,2 -

3. limz,(w,) = 0.

Proof. Let 8, and «,, be the sets defined in Lemma 2.1 and Theo-
rem 2.3. It is enough to prove the theorem for points in 3;, thus we
assume that the matrix (@, (w)) has exactly ¢ eigenvalues. Define

ny = Culolla@) 2 2 k=1, i)

The operator A restricted to E'(e, )X is compact and, by Theorem 2.3.
has a bounded inverse. Thus the space E(e,, )X has a finite dimension.
Therefore there exists a finite set of points, w™?, ---, ®7?, such that
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B({wr}) # 0
and
E(en, — 10", o, 077}) = 0.

By letting m, p > « we get a sequence w, satisfying conditions 1
and 2. In order to prove 3, let us assume that for some ¢ > 0 there
are infinitely many points, ®, such that

lzlcv(wv)l = €.

The operator A is compact, hence ¢(A) has only zero as a limit point.
By theorem 2.4 z, (w,) € 6(A). Thus for some constant b # 0

2, (@) = b

for infinitely many points, w,. Let

mam:iﬁﬁmmm

where C is a circle around b which does not contain any other point of
0(A). The operator G(b; A) is a compact projection. The matrix of
G(b; A) is, according to Theorem 2.5,

G(b; (a;, ())) -
Thus
GO; AE({w,}) # 0

whenever z, (»,) = b, because the matrix of the produet is not zero at
®,. This contradicts the fact that G(b; A) is a projection into a finite
dimensional space, and thus condition 3 is proved.

ExaAMPLES. The following two examples are designed to show that
some of the theorems, proved in [6] for Hilbert spaces, are false for
Banach spaces. Notice that the examples are simble because there exist
projections on

sp{E(a)x;, a a Borel set] .

1. Let ¢ be the Lebesque measure on (0,1). Let f be a monotone
increasing function such that

fO)=1, fA)=c, fel(1).
Define

o) = | reypar) .
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The Banach space X will be L,(¢) P L,(¢,). Each xe X has the form

o= ()
o] = Slglld/x + Slg2lfdﬂ.

Let

EE = (o)

It follows that the Boolean algebra is complete and has uniform multi-

plicity 2. Let
1 (0
o= <0> B = (1>

(3 = o 1342 = ot

It A~ then A~<Z“E$§’ 382) and

alflairn = [a(g)| = |GeNalo)] = flooar

for every g,€ L,(z,). Thus

[Jas@lde = 141 sap.

Hence |a,(w)| < |Alf(w) a.e., or
@, 5(®) = b, () f(@) and |b ()| = [A] .

Similarly

e e R (P v R T

Hence
la, () f(w)| = |A] a.e.

or

(@) = %%l and |b,,(@)] < 1A .

Fvery operator in U is given, thus, by a matrix of the form:

(bl,l(w), by (@) f (w)>

b,.(w) b
f(a)) ’ 2, 2((1))
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where the functions b, ,(w) are measurable and bounded. Also, every
such matrix defines a bounded operator.

This example shows that Theorem 2.2 of [6] can not be generalized
to Banach spaces:

The two topologies on A given by the norms |A] and

max ess sup |a; ,(o)|
%, w

are not equivalent.

2. Let X=C,Pl,. Every xe X has the form

r = (xlv Yiy Loy Yoo =0y Xy Yno "')

where
11m93n_ 0, || = max |a,| + l?/ |.

Define
En(xlv Yy =20y Ly Yny "') = (O! ) 07 Lny Yns 0 "') .
The Boolean algebra, generated by FE,, has uniform multiplicity 2.
Let the projection F' be defined by

F(xu Yy =25 Ly Yny "')

%(xl F Y @ Yy s T Yy By Yy o)
The projection F' is not bounded but |F'E,| = 1. Let the operator B be
defined by

B(xv Yy 2%y Ly Ypy **°) = (ﬁl"" ‘yl'y"' y—;v—n@" —112!':;7; "')
and let A = BF. The operator A is bounded and compact, for if |x| =
I(xlr Yy =2 Xy Yy * ")l é 1 then

<x1+yl w1+y1 , ,
’ on 2n

< Tn+1 + Ynsr  Zper T Ynsr | .>’

’ on+1 ’ on+1

= [(suplx ] ersuplynl)

oc,b+?/n xn‘|‘yn 0,,.0.,.)]

G |
= 1 0.
+ 52 lyll]_z ) -
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Thus A is the uniform limit of compact operators. Now, o¢(B)=
{Tzlw n=1,2, -« } If 0 = X e 0(A) then for some x e X, Mz = Ax. Hence
= Fx and \x = M\F'x = BFx = Bx. Therefore

o(A):{O,?Zl;,n:l,Z,---}.

Let us compute G(%, A)w for ze X.

G<%; A>x = f’, G(i; A)Ekx .
Now on E. X, 0(4) = {0, %x}, hence

G(—Z%; A)Ek:v =0 for k#+n

and
G(%ﬁ; A)E = FEa .
Therefore
G(%L; A)x ~ FEg
and

ZG(-;— A)w = F(E, + -+ + E) .

The last equation shows that A is not spectral, and the preceding equa-
tion shows that Theorem 4.4 of [6] is false for Banach spaces:

There exists a compact operator A in U that is not spectral though
the projections G(&; A) are uniformly bounded.
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