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1. Introduction. There are a number of theorems in the literature
of the following type: if a topological space is acyclic in the sense of
containing no simple closed curve, and if other appropriate conditions
are satisfied then the space has the fixed point property, that is, each
continuous function / of the space into itself admits a solution of the
equation x=f(x). For example, if the space is compact metric and
locally connected (i.e., a dendrite) then it has the fixed point property.
There are many generalizations of this theorem. Appropriate to this
discussion are of those of Borsuk [1], Plunkett [2], Wallace [3], the author
[5] and [6], and Young [8]. A common characteristic of these general-
izations is their requirement, explicit or implicit, of rather strong
unicoherence conditions. But it is clear that many relatively simple
acyclic spaces possessing the fixed point property are not unicoherent.
As an example consider the following sets in the Cartesian plane:

A = {(x, y) : 0 < x < 1, y = sin (πjx)} ,

B= {(0,y):-2<y<l} ,

C= {(x, - 2 ) : 0 <x < 1} ,

D= {(1,2/): - 2 < i / < 0} .

The continuum M — A[j B U C U D is not unicoherent but it is arcwise
connected, acyclic, and has the fixed point property. It is the purpose
of this note to formulate and prove a fairly general result which
includes this and related examples. In so doing we shall generalize the
theorems of Borsuk and Young cited above. As in our earlier papers the
methods used here are order-theoretic in character. Section 2 is devoted
to the partial order stucture of the spaces to be considered, and may
be regarded as an addendum to [4], [6] and [7].

2. Chained spaces• Throughout all spaces to be considered are
Hausdorff. By a topological chain or, more simply, a chain, we mean a
continuum ( = compact connected set) which has exactly two non-cutpoints.
These two points are, of course, endpoints and a chain is simply the
natural analogue of an arc in spaces which are not assumed to be
metric. A space is topologically chained or chained provided each two
distinct points lie in some chain. Obviously each two distinct points of
a chained space are the endpoints of some chain. If a space has the
property that each two distinct points are the endpoints of at most one
chain, then it is said to be acyclic. In this case the unique chain whose
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endpoints are x and y is denoted [x, y\. It is convenient to define
\x, x~\ to be the set whose only element is x.

Acyclic chained spaces have an inherent partial order structure
which facilitates their study. By a partial order on a set we mean a
binary, reflexive, transitive relation ^ between elements of the set which,
in addition, satisfies the rule

x <̂  y and y r£ x implies x — y.

If x <; y but x φ y we write x < y, and if P is a partially ordered set
we define

L(x) = {y € P:y^x} , M(x) = {y e P: x ^ y} .

In order to characterize acyclic chained spaces we recall a related
theorem from [7]. A dendritic space is a connected and locally connected
space in which each two distinct points can be separated by the omission
of some third point.

THEOREM 1. A necessary and sufficient condition that a locally
connected space be dendritic is that it admit a partial order satisfying

( i ) L(x) and M(x) are closed sets for each point x,
(ii) if x < y then there exists z such that x < z and z < y,
(iii) for each x and y the set L(x) Π L(y) is nonempty, compact and

simply ordered,
(iv) for each x the set M(x) —• x is open.
Although many chained spaces are not locally connected (e.g., the

space M of § 1) they can be made locally connected by properly altering
the topology. This change of topology preserves the original chain
structure of the space, and functions which are continuous in the orginal
topology remain continuous in the new one. This technique appears to
have originated with Young [8]. If X is a Hausdorff space let us say
that a chain component of X is any subset of X which is maximal with
respect to being chained. The chain topology is that topology which
results from taking the chain components of open sets of the given
topology as a basis for the chain topology. It is easily seen (and was
proved in [8]) that any space is locally connected in its chain topology.

LEMMA 1. An acyclic chained space is dendritic with respect to
its chain topology.

Proof. Let x and y be distinct points of the acyclic chained space
X and let z e [x, y\ — x U y. Since X is acyclic no chain in 1 - 2 con-
tains both x and y, and therefore z separates x and y in the chain
topology. Since X is connected and locally connected in the chain topology
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it is dendritic.
From Theorem 1 and Lemma 1 we infer that each acyclic chained

space is endowed with an intrinsic partial order structure which can
aptly be called the chain cutpoint ordering. It can be described in
the following way (compare with [7]). Select an element e and define
x fg y if and only if x e [e,y]. We now prove that the chain cutpoint
ordering characterizes the acyclic spaces.

THEOREM 2. A necessary and sufficient condition that the Hausdorff
space X be acyclic and chained is that it be dendritic in its chain
topology.

Proof. The necessity was established in Lemma 1. To prove the
sufficiency of the condition let X be a space which is dendritic in its
chain topology. By Theorem 1 X admits a partial order which satisfies
(i) — (iv) relative to the chain topology. If x and y are distinct points
of X then by (ii) and (iii) they are contained in a continum L(x) U L(y)
and by Theorem 3 of [7] that continum is a tree. Since a tree is chained,
so is X. If two distinct chains C1 and C2 have common endpoints, let
Aλ be a component of d — C2, x and y the endpoints of Alf and A2 the
minimal subchain of C2 which joins x and y. Obviously no point can
separate x and y in the chain topology, for it would have to lie in
A1 Π A2 — 0. Since this is a contradiction we conclude that X is acyclic.

3Φ A condition on rays* Let X be a space and e e x. A ray of
X tvith endpoint e is the union of a maximal nest of chains which have
e as a common endpoint. Thus, in a Euclidean space a half line emanating
from the origin is a ray in this sense. In the example of § 1 the set A
is a ray of M with endpoint (1,0).

If R is a ray with endpoint e in the space X and x e R, let A(R,x)
be the closure of (R ~ [e, x]) U x, We then define

KR = f| {A(R, x) : x e R} .

In a Euclidean space a ray R consisting of a half line emanating from
the origin has KR = 0. However, in the example of § 1 the set A has
KA equal to a closed line segment.

The crux of our fixed point argument is the following. If / : X—> X
is continuous where X is acyclic and chained, we examine the points x
such that x ^f(x). Either there is a " last" such point in a restricted
order-theoretic sense, in which case that point is fixed by a continuity
argument, or else such points form a ray R. Then we can show that
f(KR) c KR1 so that the fixed point property follows provided each KR

has the fixed point property.
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We begin by formalizing this condition on rays.

(FΛ) If R is a ray with endpoint a then KR has the fixed point
property.

In the example of § 1 let a = (1, — 2). Then there are two rays
with endpoint α, B[jC and A{]D. Since KBϋ0 is a point and KAUD

is a line segment the space M satisfies (Fa).

THEOREM 3. If X is an arcwise connected space in which the union
of any nest of arcs is contained in an arc then X is acyclic and X
satisfies (Fa) for each a e X.

Proof. Since the union of any nest of arcs is contained in an arc,
X is acyclic and if R is a ray then R is evidently an arc so that KR

is a point.
The substance of Young's fixed point theorem [8] is that the spaces

of Theorem 3 have the fixed point property hence, Theorem 5 below
is truly a generalization.

THEOREM 4. If X is an arcwise connected, hereditarily unicoherent
continuum then X satisfies (Fa) for each a e X.

Proof. We note that each subcontinuum of X is arcwise connected,
for if x and y are elements of the subcontinuum Y and [x,y\— Y is
not empty then [x, y] U Y would not be unicoherent. Now if R is a
ray of X then KR, being the intersection of a nest of continua, is a
continuum and hence is itself arcwise connected and hereditarily unicoher-
ent. Borsuk's theorem [1] asserts that such sets have the fixed point
property.

This result demonstrates that all continua statisfying the hypothesis
of Borsuk's fixed point theorem are included in Theorem 5.

If A and B are subsets of a partially ordered set with A c B then
A is cofinal in B provided for each b e B there exists a(b) e A such
that b ^ α(6).

THEOREM 5. Let X be a topologically chained acyclic space and
suppose there exists e e X such that (Fe) is satisfied. Then X has
the fixed point property.

Proof. We give X the chain cutpoint ordering with minimal element
e and let / : X—>X be a continuous function. Consider the family S/7

of all pairs (S, S') satisfying the following six conditions :
( i ) S is a nonempty simply ordered subset of X,
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(ii) S and S' are connected,
(iii) S' is cofinal in S,
(iv) e e S ,
(v) x ^f(x) for each x e S,
(vi) S U f(S') is simply ordered.

Obviously the pair (e, e) is a member of £f. We can partially order
&> by defining (Sy, S'y) < (Sδ, S'δ) if and only if Sy c S, and Sδ U f(S'y)
is simply ordered. If ^r = {(Sy, S'y)} is a < — simple subfamily of ^
and S = U {Sγ}, S' = U {S;} then it is clear that (S, S') e ^ and that
(S, SO is a -< — upper bound of ^//\ Thus Zorn's lemma can be applied;
let (So, S;) be a -< — maximal member of ^ .

If x0 = sup So exists we assert that #0 g /(a?0). For suppose there
is t e So such that /(α?0) is not a successor of t. We may assume
£ <f(t) if Γ = [ί, &0] then /(Γ) is a tree and t separates f(t) and/(x0)
in f(T). If Wis the component of f(T) - t which contains f(x0) then W
is a neighborhood of /(x0) in the relative topology of f(T) and hence
there is q e So, t < q < x0 such that /(g) 6 W. But this implies that
f(q) is not a successor of q, a contradiction. Therefore, ί ^ /(aj0) for
each t e So and hence α?0 ̂  /(^0) If ô < /(#o) let [/ be a connected
neighborhood of /(a?0) relative to the chain topology such that £7 c X — x0.
Then there exists x± e X — U such that ίc0 < x1 < /(x0)

 a ^d /([̂ o> ^J)
c Z7. But then each point p e [x0, xλ] satisfies p ^ f{p) letting Sx — So

U [x0, OJJ, S; = α?!, it is apparent that (So, Sr

0) < (S19 S[) in contradiction
of the maximality of So. Hence x0 = f(x0).

On the other hand if SQ has no supremum it is a ray R with end-
point e and it remains only to show that f{KR) c KR. By (vi) and the
fact that So = R is a ray we have f(S'o) c R. Moreover, A(R, x) c SJ
for each x e S'o and hence KR c S'o. Therefore, f{KR) c 57 Now
suppose /(?/) e R — KR for some y e KR. Let F be a neighborhood of
/(?/) such that F and KR are disjoint; then V and yl(iϋ, a;) are disjoint
for some x e R and there exists a e R — \e, x] such that f(a) e V.
Moreover, it is clear by (ii) and (iii) that a may be so chosen that a
e So and hence /(a) e A(R, x), SL contradiction. Therefore, f{KR) c KR

and the proof is complete.

REFERENCES

1. K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. CI III, 2 (1954), 17-20.

2. R. L. Plunkett, A fixed point theorem for continuous multivalued transformations,

Proc. Amer. Math. Soc, 7 (1956), 160-3.

3. A. D. Wallace, A fixed point theorem for trees, Bull. Amer. Math. Soc, 47 (1941),

757-60.

4. L. E. Ward, Jr., A note on dendrites and trees, Proc. Amer. Math. Soc, 5 (1954),

992-4.



1278 L. E. WARD, JR.

5. , Mobs, trees and fixed points, Proc. Amer. Math. Soc, 8 (1957), 798-804.
6. , A fixed point theorem for multi-valued functions, Pacific J. Math., 8(1958),
921-927.
7_ f Qn dendritic sets, Duke Math. J., 25 (1958), 505-14.
8. G. S. Young, The introduction of local connectivity by change of topology, Amer. J.
Math., 68 (1946), 479-94.

U. S. NAVAL ORDNANCE TEST STATION

CHINA LAKE, CALIFORNIA

UNIVERSITY OF OREGON




