AN ALGEBRAIC CRITERION FOR IMMERSION

BARRETT O’NEILL

Let R be the curvature tensor of a simply connected d-dimensional
(d > 4) Riemannian manifold M. T. Y. Thomas [2] has proved that if
the rank of R is not too small, there exist conditions expressed in terms
of polynomials in the coordinates of R which are satisfied if and only if
M can be immersed in the Euclidean space R**'. The proof is existential;
the polynomials are not all given explicitly. Using the notion of Grass-
mann algebra we shall find a single, rather simple condition on R
necessary and sufficient for the existence of an immersion i: M — M(K)
with second fundamental form of rank at least four, where M(K) is
a complete (d + 1)-dimensional Riemannian manifold of constant curva-
ture K. If coordinates are introduced this condition can be expressed
algebraically in terms of polynomial equations and inequalities in the
coordinates of RB. The case K = 0 yields an explicit variant of Thomas’
result.

1. A differential criterion for immersion. Following [1] we fix
the following notation for the structural elements associated with a d-
dimensional C~ Riemannian manifold M: F(M), the bundle of frames on
M: R,, right-multiplication of F(M) by a € O(d), the group of d x d
orthogonal matrices; @, the 1-form of the Riemannian connection. Thus
@ = (@) is a vertical equivariant 1-form on F(M) with values in the
Lie algebra of d x d skew-symmetric matrices. (We assume throughout
that 1 < 4,4,k <d.) Let w = (w;) be the usual horizontal equivariant
Rvalued 1-form on F(M) defined by w,(x) = {dn(x), f,», where x is in
the tangent space F(M); to F(M) at f = (f., -+, fs) and 7 is the natural
projection. The curvature form @ = (@;,) is by definition D¢, the hori-
zontal part of de. In the case of 1-forms or 1-vectors we write xy,
rather than x A y, for the Grassmann product.

THEOREM 1. Let M be a simply connected d-dimensional Riemannian
manifold, M a complete (d + 1)-dimensional Riemannian manifold of
constant curvature K. Then M can be immersed in M if and only if
there exists a horizontal equivariant R*valued 1-form o = (0;) on F(M)
such that

20w, =0
(1) &, = 0,0, + Kw,w, (Gauss equation)
Do; =0 (Codazzi equation) .
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Proof. Suppose there exists an immersion i: M — M. Since M is
simply connected, there is a unit normal vector field on the immersed
manifold, N being a differentiable (= C~) map from M to the tangent
of M. Then the formula \w(m, f,, -+, fa) = (i(m), di(f.), -+ -, di(fs), N(m))
defines a differentiable map «: F(M) — F(M). (Denote by E,, @, --- the
structural elements of J.) Note that o R, = R,o if a € O(d) C
O(d + 1). This fact plus the uniqueness of the Riemannian connection
of M are used in the proof that

wi=@,;0d\[f
(2) O=ad+1°d‘1b‘
Piy = Pygodip .

Furthermore, the R%valued 1-form defined by (8) ¢; = ®;.4+, © Y satisfies
the conditions stated in the theorem. This form is, of course, one ex-
pression for the second fundamental form of the immersed manifold.

Conversely, given a form ¢ on F(M) with the stated properties we
must produce an immersion i: M — M. To do this we first find a dif-
ferentiable map @: F(M)— F(M) satisfying the differential equations
(2) and (3). Consider the 1-forms @; — ®;, Wa+1, Piy — Piss Po.arr — T4 ON
F(M) x F(M), where we use the same notation for a form on one fac-
tor and that form pulled back to the product manifold by a projection.
We want to apply the Frobenius theorem to these forms. Taking account
of the structural equations one sees that its hypothesis holds provided
20w, = 0; dpy; = —2,04P4; + 0,0, + Kw,w;; and do, = —2,9,0,. But
these conditions follow from the corresponding equations in (1)—in the
case of the last one because for ¢ (or any other R%valued horizontal
equivariant 1-form on F(M) we have do; = — 39,0, + Do;,. Then if
(9,9) € F(M) x F(M), an integral manifold through (g, g) given by the
Frobenius theorem is the graph of a differentiable function ' defined
on a neighborhood U of g € F(M), carrying g to g, and satisfying (2)
and (3). Subject to these conditions ¢’ is unique, except for the size
of its domain. Further, one can show that ¢’ commutes with right-
multiplication in the sense that, where meaningful, ¢’ o R, and B, o ¢’
agree. This fact permits us to extend the local solution +' by right-
multiplication (in an obvious way) to a solution ¢: z-%(V) — F(M), where
V =n(U) € M. Thus there exists a unique differentiable map j: V— M
such that jox =7 o4 on 7~%(V). We claim that j is an immersion:
In fact, suppose f € F(M) projects to m € V, and let (f) =7f € F(M).
Now if y e F(M), projects to x € M, we have

<z, [ = oly) = Ddy(y)) = Lda(dy(y)), £
= <dj(®), i), and {dj(x), farr) = Dasr(dP(®)) =0 .
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This proves j: V— M is an immersion; similarly one checks that its
second fundamental form is ¢|z~%(V). But an immersion is controlled
by its second fundamental form; explicitly in the case at hand, if j’ is
another such immersion of V in M with j(m) = j(m) and dj,, = dj’, for
some one m € V, then 7 = 5. This uniqueness property, the simple
connectedness of M, and the special character of M are the essential
points in a proof (which we omit) that out of local immersions as above
a global immersion i: M — M can be constructed of which ¢ is the
second fundamental form. '

2. The Gauss equation. Of the conditions (1) imposed on ¢, the
crucial one is the Gauss equation. Under the usual translation [1] of
horizontal equivariant objects on F(M) into objects on M, the curva-
ture form becomes a function which to each x,y € M,, assigns a linear
transformation R,,: M,,— M,,. Then then equation (R,,(u), v> ={R,.(xYy), uvy
defines the curvature tramsformation R, as a linear operator on the
Grassmann space A*M,. The function m — R,, is for our purposes the
most convenient form of the curvature tensor R of M. The form o
translates to a function S on M with S,, a linear operator on M,, and
the Gauss equation becomes R =S A S+ K, where K denotes scalar
multiplication by the constant curvature K of M.

Reversing the process, suppose that S is a differentiable field of
linear operators on the tangent spaces of M such that R=S A S + K.
Let o be the horizontal, equivariant R%valued 1-form on F(M) corres-
ponding to S. Then @,, = 0,0, + Kw,w;. The other two conditions on
o follow automatically if the rank of R — K, that is, the minimum rank
of R, — K for m € M, is not too small. Explicitly:

LEMMA 1. (notation as above) Let R=SAS+ K. If rank (R—K) >
3, then 20,0, =0. If rank (R — K) > 4, then Do, = 0.

Proof. By asymmetry of R, shared by K, we have & {S(x)S(u), yv) =
0, where & denotes the sum over the cyclic permutations of wx, u, y.
Eliminating v we get S{({S(¥), x> — {y, S(z)>)S(w)} = 0. But since rank
SAS >3, the same is true for S, and it follows that {S(y), > =
<y, S(x)>. But the symmetry of S is equivalent to X.0,w, = 0.

To prove the second assertion (due essentially to T. Y. Thomas),
we apply D to the equation @, = 0,0, + Kw,w,. Since Dw =0 and
D¢ = 0 (Bianchi identity) we get Da, A ¢, = 6, A Do,. The rank con-
dition implies rank S > 4, hence rank ¢ > 4. Thus the result is a con-
sequence of the following.

LEMMA 2. Let %, ++-,2, € V, a finite-dimensional real vector space,
and let w,, «++, w, ¢ A*V. If 2, Aw, =w; Az, for all 1<14,j<d,
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and the vectors x,, «-+, %, span a subspace of dimension > 4, then
w1= eo e :wd:0°

Proof. We may suppose that z,, x,, z;, ¢, are the first four elements
of a basis e, e, -+ for V. Let P = {1, 2, 3, 4}, and fix an index p € P.
By a standard Grassmann argument one can show that there is a y, e V
such that w, = y,e,. Then e, A w, = w, A e, implies (¥, + ¥,)e,¢, =0
for all ¢ € P. Thus 2y, = (¥, + ¥,) + (¥, + ¥.) — (¥, + ¥,) is in the sub-
space spanned by e, ¢, ¢,, where ¢ and » are any elements of P such
that p, g, r are all different. It follows that y, is a multiple of e,, and
thus w, = 0. But if ¢ > 4, then ¢, A w, = w, A e, =0 for all p e P,
so that w, = 0 also.

Summarizing, if M and M are as in Theorem 1 and rank (R — K)>
4, then M can be immersed in M if and only if R — K is decom-
posable, i.e. expressible as S A S with S a differentiable field of linear
operators on the tangent spaces of M.

In the following section we consider the purely Grassmannian ques-
tion of the decomposability of R, — K at a single point of M.

3. Decomposability. Let V and W be finite-dimensional real vec-
tor spaces, and let T: A*V — A*W be a linear transformation. To
determine whether 7' is decomposable we use the following definition:
Three bivectors are crossed if any two, but not all three, are collinear,
(a set of bivectors being called collinear if all have a common non-zero
divisor, i.e. all are decomposable and the planes of the non-zero ones
have a line in common.) One easily proves:

LEMMA 3. Bivectors w,, w,, w; are crossed if and only if there
exist linearly independent vectors x,y, z and non-zero numbers K, L, M
such that

w, = K xy
(4) w,=L xz
w, =M yz .

If w,, w,, w, are crossed, then in any expression (4) the sign of the pro-
duct KLM is always the same. (In fact, the vectors «x, y, 2 are unique
up to non-zero scalar multiplication, so we need only check that chang-
ing the signs of any subset of {x,y, 2} does not change the sign of
KLM.) In case KLM > 0 we say that w,, w,, w, are coherently crossed.
Note that if T is decomposable then T carries coherently crossed bivec-
tors to bivectors which are either coherently crossed or coplanar. Our
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aim is to prove the converse when rank T > 4. (We do not need the
easy cases of lower rank.)

LEMMA 4. The following conditions on T are equivalent:
(a) T carries decomposable bivectors to decomposable bivectors.
(b) T carries two collinear bivectors to two collinear bivectors.
() T(xy) A T(uv) € N*W 1is skew-symmetric in its arguments.

LEMMA 5. If rank T >4 and T carries crossed to crossed or co-
planar bivectors, then R carries collinear to collinear bivectors.

Proof. It is sufficient to prove collinearity is preserved in the case
of three bivectors. Thus we must show that T'(ee,), T(e.e;), T(ee,) are
collinear. Now any two of these bivectors are collinear, hence all three
are either crossed or collinear. We assume the former and get a con-
tradiction. If they are crossed there is a unique subspace U of W, with
dimension 3, such that the bivectors are in AU < AW, We may also
assume that e, e,, e,, e, are linearly independent for otherwise we can
reduce to the case of two collinear bivectors. Thus these vectors are
part of a basis for V.

Case 1. There is an index ¢ such that T(ee,) ¢ A*U.

Consider T(e.e,), T(e.e.), T(e(e, + d¢;)), where & is an arbitrarily small
non-zero number. Now the last of these three bivectors is not in 42U,
while the union of the planes of the first two spans U. Hence all
three are not in the second Grassmann product of any 3-dimensional
subspace of W. Thus they are not crossed. On the other hand, any
two are collinear, so all three are collinear. But this is a contradiction,
for an arbitrarily samll change in the crossed bivectors T'(e.e,), T(e.e;),
T'(e,e,) cannot produce collinear bivectors.

Case 11. For all 1, T(ee;) € A*U.

We prove the contradiction rank T < 8 by showing that T(e,e,) € 4*U
for all p,q. If T(ee,) and T(ee,) are independent, then by hypothesis,
T(e,e,) is crossed with these two bivectors, hence is in A*U. If they
are dependent and 7(ee,) + 0, then by hypothesis T(ee,) and T(e,e,)
are coplanar and 7'(e,e,) € A*U. Finally, if T(ee,) = 0, then by Lemma 5
0 = T(ee,) A Tlee)) = T(ee,) N\ T(e,e,) for r =2,3,4. But since T'(ee,),
T(e.e;), T(ee,) are crossed one easily deduces from these equations that
T(e,e,) € A*U.

THEOREM 2. Let T: NV — AW be a linear tramsformation of
rank > 4. Then there exists a linear transformation S: V— W such
that T=SAS if and only if T carries coherently crossed to coherently
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crossed or coplanar bivectors.

Proof. We may choose a basis ¢, ---,e, for V such that T is
never zero on the corresponding canonical basis for 4*V. Fix an index
1<1<d. By the preceding lemma there is a non-zero vector u, €¢ W
such that u, divides each T(ee,),7 =1, -+-,d. Furthermore this vector
is unique up to scalar multiplication. To see this we need only show
that these Dbivectors T(e;e;) are not all coplanar. But if they were,
then T(ee,), T(e:e.), T(e,e:), since not crossed, would have to be coplanar
for all 7, k, implying rank T < 1.

Now let 4, 7 be different indices. We claim that T(ee;) = K;uu;,
In fact, since there is an index % such that the bivectors 7T(ee;) and
T(e.e,) are not coplanar, they are crossed with T(e,e;). By Lemma 3
and the divisibility properties of u;, u,, u,, it follows that these crossed
bivectors may be written as Ku,u,, Luu,, Muu, respectively.

By changing the signs of u,, -+-, u, where necessary, we shall now
arrange to have the number K;, (7 < j) all positive. We can certainly
get all K;; > 0 in this way. Consider T(ee,), T(e.¢,), T(ese;). 1f the first
two bivectors are not coplanar, then all three are coherently crossed,
hence the product K, K,K;,, and consequently K,, are positive. If
T(ee;) and T(ee,) are coplanar, we argue as follows: Since rank 7 > 1
there is an index k (say k > j) such that u, is not in the plane spanned
by w;, %, u;. Thus T(ee;) and T(ee,) are not coplanar, so K;, > 0.
Similarly K,, > 0. And since u;, u;, u, are independent, it follows that
K, > 0.

To complete the proof it will suffice to find numbers A, <++, Ay such
that for any ¢ < j we have K, = \,\,. For then the equation T'(e;e;) =
K,uu; becomes T(ee;) = (Mu,)(Mu,), and by definding S: V— W to be
the linear transformation such that S(e;) = Mu, we get T'=S A S.

Call a set 14, 4, k of indices a triple if 1 < 5 <k and wu,;, u;, U, are
independent. For each triple consider the equations K;; = A\, Kiy =
Mhe Ky = A\,  Since the K’s are positive there is a unique positive
solution X\;, Aj, \;. Since each index ¢ is in at least one triple we get
at least one such value for \,., We must show that the values obtained
from two different triples containing 7 are the same. We need only
consider triples of the form 4, j, p and 1, j, ¢, for it will be clear from
the proof in this case that the position of 4 in a triple is immaterial
and that the case where five indices are involved may be reduced to
the present one using rank 7' > 4. We know that

T(eie,) = Mnuu, T(ee,) = ppthih,
T(ese,) = Mohyusuy T(eseq) = fyptathsUy -
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First consider the case in which the vectors wu,, u,, u,, u, are linearly
independent. By Lemma 4, T(ee,) A T(ee,) = —T(ese,) A T(ese,), but
since wu,uu, = 0 this implies N, = pn,. But also M\ = 1y, and
since the numbers in the last two equations are all positive we get
N = tt,. Now suppose u;, u;u,, %, are dependent, hence span a 3-di-
mensional subspace. Since rank 7' > 4 there must exist an index » (say
r > p, q) such that w,, u;, u,, , and wu,u;u, u, are each linearly in-
dependent. Thus the values of \, determined by <, 7, » and %, 7, p are
the same as that determined by 4, 7, r.

This shows the existence of S such that 7'=S A S; uniqueness up
to sign is implicit in the proof, for the only ultimate element of choice
is in the orientation of u,, i.e. the use of u, rather than —u,. )

4, Coordinate criteria for decomposability. With notation as in
the preceding section, fix bases e, +--, ¢, for V and f,, ---, f; for W.
Let T, = T(eie;) = SucpTijupfafs- What conditions on T, are necessary
and sufficient for T to be decomposable, or alternatively (if rank T > 4)
for T to carry coherently crossed to coherently crossed or coplanar bi-
vectors? Necessary is that T carry decomposable to decomposable bi-
vectors, and this is easily proved equivalent to

(5) T«,;j/\T]d:Tkj/\Tu foralllgi,j,k,lgd

This condition as well as the condition rank T >4 are standardly ex-
pressible in terms of polynomials in T,,.

LEMMA 6. Suppose that any two of the bivectors a,b,c € N*W are
collinear, and let a = X, gAusfufs, stmilar expressions for b, c. Then
a, b, c are coherently crossed if and only if there exist indices 1 < a <
B < v <d such that

Aaﬂ Aw‘)’ Aﬁv
d(aBy) = |Bug Byy Bgy | >0
Cwﬂ Ca'v CBV

Proof. The bivectors a, b, ¢ are either crossed or collinear. We
show:

(1) if crossed, then for some «, 3, v we have 4(aBv) + 0,

(2) if coherently crossed, then each such non-zero determinant is
positive,

(3) if collinear, then each such determinant is zero.

For «, B,v let x — Z be the natural projection of W onto the sub-
space U spanned by f,, fg fv; same notation for the induced projection
of A*W onto A?U. In the first two cases above we can write a, b, ¢ in
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the form of (4), hence a = Kxy, b = LZz,¢ = Myz. For (1), since x, ¥y, 2z
independent there are indices «, B, ¥ such that 7,%, Z are independent,
hence @, b, ¢ are independent, and the result follows. For (2), suppose
Ad(aBy) + 0. Using the above notation we have KLM > 0. Notice that
any two canonical bases (lexicographic order) for A’U have the same
orientation. Thus 4(aBy) > 0. The proof of (3) is similar.

A further necessary condition for decomposability of T is that T,
T, T;c be coherently crossed or coplanar. Assuming (1), this is equiv-
alent to
(6) If 1<i<j<k<d, then either T, T, T, are coplanar or there
exist indices 1 < @ < 8 < v < d such that

Tiij Tijm'Y Tmav
Tikwﬁ Tz‘kaw TikBY >0°
Tikali Tjktw TjkBY

If the basis e, ++-, ¢, is such that all T}, = 0, then (5) and (6) are
necessary and sufficient for the decomposability of 7', for Lemma 5 and
Theorem 2 use no more than this. For an arbitrary basis, however,
they are not enough, as one can see from simple examples. We must
add, say

(7) If T,, =T, =0, then either T,, =0, or, for all », T;,, =0.

Now one can prove the following lemma by reducing to the case in
which all T, # 0.

LEMMA 7. Let T: N*V— AW be a linear tramsformation with
rank T >4. Then T is decomposable if and only if, relative to ar-
bitrary canonical bases for N*V and A*W, conditions (5), (6), (7) hold.

5. Summary. Again let R be the curvature transformation of the
simply connected manifold M. For simplicity we discuss the case
M = R*'. Assume that (at each point) rank R >4 and R carries co-
herently crossed to coherently crossed or coplanar bivectors. Itis clear
that the proof of Theorem 2 applies simultaneously to all R, with n
any point of a convex neighborhood C of m € M. One need only use
the simple connectedness of C to choose the orientations of the various
choices of u, consistently. We thus obtain a differentiable field of linear
operators S such that R = S A S, first locally, then as usual, globally.
When rank R >3 we can still prove R decomposable, but the Codazzi
equation may fail; thus our criterion for immersion, while always sufficient,
is necessary only in the case of immersions for which the second funda-
mental form S has rank at least four. Call such an immersion 4-regular.
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This same argument, with R — K in place of K, proves

THEOREM 3. Let M be a simply connected d-dimensional manifold
(d > 4) with curvature transformation R. Let M(K) be a complete
(d + 1)-dimensional manifold of constant curvature K. Then M has
a 4-regular immersion in M(K) if and only if rank (R — K) > 4 and
R — K carries coherently crossed to coherently crossed or coplanar bi-
vectors, i.e. conditions (5), (6), (7) hold at eaeh point of M.

For a given M one may ask for the set .27~ of numbers K such
that M has a regular immersion in an M(K). Consider two cases:

(i) If R does not preserve decomposability, say R(xy)’ + 0, then M
is not immersible in R**' and .5 contains at most the number K deter-
mined by the necessary condition R(xy) = S(x)S(y) + Kaxy. We check as
above whether K e 2

(ii) If R preserves decomposability, so that (5) holds, .7 may well
be infinite. By studying conditions (6), (7) one ean characterize .7 in
terms of polynomials in an unknown K and the coordinates of R.
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