
COINCIDENCE PROBABILITIES
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1. Introduction, It was shown in [14] that if P(t) = (PtJ(t)) is the
transition probability matrix of a birth and death process, then the
determinants

3im On

where ix < i2 < < in and j \ < j2 < < j n

 a r e strictly positive when
t > 0. In this paper it is shown that these determinants have an inter-
esting probabilistic significance.

(A) Suppose that n labelled particles start out in states ίlf ,in

and execute the process simultaneously and independently. Then the
determinant (1) is equal to the probability that at time t the particles
will be found in states j l y , j n respectively without any two of them
ever having been coincident (simultaneously in the same state) in
the intervening time.

From this statement it follows that the determinant is non-negative, and
as will be seen strict positivity can be deduced from natural hypotheses,
for example if Pi j (t) > 0 for a — 1, •••, n and every t > 0.

The truth of the above statement rests chiefly on the facts that the
process is one-dimensional—its state space is linearly ordered, and that
the path functions of the process are everywhere '' continuous". Of
course the path functions are discontinuous in the ordinary sense but the
discontinuities are only of magnitude one. Thus when a transition occurs
the diffusing particle moves from a given state only into one of the two
neighboring states, and even if the particle goes off to infinity in a finite
time it either remains there or else it returns in a continuous way and
does not suddenly reappear in one of the finite states. These two prop-
erties of one-dimensionality and "continuity" have the effect that
when several particles execute the process simultaneously and indepen-
dently, a change in the order of the particles cannot occur unless a
coincidence first takes place. (The states are all stable so that with prob-
ability one a transition involves only one of the particles.)

It is also important for our results that the processes involved have
the strong Markoff property of Hunt [10], [11], (see also [19]). However
it is a consequence of theorems of Chung [3] that any continuous time
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parameter Markoff chain whose states are all stable has the strong Mar-
koff property.

There exist processes of birth-and-death type whose path functions
may have discontinuities at infinity. Such processes have been described
in some detail by Feller. Although the above result (A) does not apply
to these processes they fall within a more general class of processes
which we discuss next.

We consider a stationary Markoff process whose state space is a set
of integers and whose states are all stable. Let (Ptj(t)) be the transition
probability matrix. Then

(B) Suppose that n labelled particles start in states ίlf * ,in

and execute the process simultaneouly and independently. For each
permutation σ ofl, , n let Aσ denote the event that at time t the
particles are in states j ^ ^ , •• ,iσ<» respectively, without any two
of them ever having been coincident in the intervening time. Then

p(t; ίlf # ' M = Σ(signcj)Pr{Aσ}
,Jn

where the sum runs over all permutations of l, ,n and
sign σ — 1 or —1 according as σ is an even or an odd permutation.
The first stated result is seen to be a special case of this one. For

if the path functions are " continuous " and ix< ••• < in, j \ < ••• <jn

then Fΐ{Aσ} is zero except when σ is the identity permutation. There
is one other case in which the general formula permits an interesting
simplification, namely when the process is a local cyclic process. By
this we mean that the states may be viewed as N+l points 0,1, •••, N
on a circle and transitions occur only between neighboring states, 1 and
N being neighbors of zero and N — 1 and 0 neighbors of N. We take
0 <%!< < in < N and 0 < j \ < < j n < N and then Pr{Aσ} is zero
unless σ is a cyclic permutation. Since the cyclic permutations of an odd
number of objects are all even permutations we have in this situation

- Σ P r { A σ } , ^odd.(3) pit; ^ ' " ' M -
Jit 9 Jn

Σ P r { A σ } ,
li

Σ
η . . . / / / cyclic σ
Jit 9 Jn

This determinant is therefore non-negative.
Analogous results hold for one dimensional diffusion processes. Let

P(t,xyE) be the transition probability function of a stationary process
whose state space is an interval on the extended real line. It will be
assumed that the process has the strong Markoff property and that its
path functions are continuous everywhere. Given two Borel sets E, F
the inequality E < F will denote that x < y for every x e E,y e F.
We take n states xλ < x2 < < xn and n Borel sets Eλ<E2 <•••<£'„
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and form the determinant

^EJ >>.P(t,xltEn)

(4) P(t; Xί' '"'
E " P(t,xn,E1)...P(t,xn,En)

(C) Suppose that n labelled particles start in states x19 , xn

and execute the process simultaneously and independently. Then the
determinant (4) is equal to the probability that at time t the parti-
cles will be found in the sets El9 •••, En respectively without any
two of them ever having been coincident in the intervening time.

Next consider a stationary strong Markoff process whose state space
is a metric space and whose path functions are continuous on the right.
We take n states xl9 , xn and n Borel sets E19 , En and again form
the determinant (4).

(D) Suppose that n labelled particles start in the states xl9 , xn

and execute the process simultaneously and independently. For each
permutation σ of 1, 2, , n let Aσ denote the event that at time t
the particles are in the states Eσι9 *, Eσ respectively without any
two of them ever having been coincident in the intervening time.
Then

(5) p(t; X l ' '
v EU---,E

where the sum runs over all permutations σ.
The last result contains all of the preceding ones as special cases.

It has another interesting special case, namely when the state space is
a circle and the path functions are continuous.

There is a mapping θ -• eiθ = x of the closed interval 0 < θ < 2π
onto the circle. Given n Boral sets E19 * ,En on the circle we say
Eλ < < En if there are n Borel sets E[ < < E'n in the interval
(0, 2π] or [0, 2π) which are mapped onto El9 -*-,En respectively by the
above mapping. Specializing the sets to be one point sets gives the
meaning for x1 < < xn when x19 , xn are n points on the circle.

Now let P(t9x9 E) be the transition probability function of a strong
Markoff process on the circle with continuous path functions. Because
of the continuity of paths a change in the cyclic order of several diffus-
ing particles on the circle cannot occur unless a coincidence first takes
place. Thus the terms in (5) corresponding to non-cyclic permutations σ
will all be zero. Finally we take advantage of the fact that the cyclic
permutations of an odd number of objects are all even permutations,
and obtain the following.

(E) Suppose xx< < xn9 Ex < < En and n labelled parti-
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cles start at xl9 , xn respectively and execute the process simultane-
ously and independently. If n is odd and Aσ is defined as before
then

(6) ( Σ
v Ely-"7En

/ c y c l ι c σ

where the sum runs over all cyclic permutations.
Similar but more complicated results are valid in still more general

situations. For example we restrict our discussion to stationary processes
although both the methods and the results can be extended to non-
stationary processes. A generalization of another type which has in-
teresting applications is obtained when the n particles execute different
processes.

Let Pa{t, x, E), a = 1, ••, n be transition probability functions of
n strong Markoff process on the real line with continuous path functions.
Choose n states xx < < xn and n Borel sets Ex < < En and form
the determinant

( 7 ) det PΛ(t, x«, Eβ) .

If n labelled particles start in states x19 ••, xn respectively, and execute
the processes simultaneously and independently, the ith particle executing
the ith process, then the determinant (7) is the probability that at time
t the particles will be found in the sets Elf * ,En respectively, without
any two of them ever having been coincident in the intervening time.

The formal proofs of formulas (5) and (6) and of the interpretation

of p(t, XlfX* m">x») are elaborated in §5. For this purpose the rele-
V EuEf- Ej

vant preliminaries and definitions concerning Markoff processes are
summarized in § 4.

In § 6 we offer some observations on the problem of determining
when the strong Markoff property applies to direct products of processes.
In this connection we direct attention to those aspects of this problem
relevant to our analysis of the main theorem of § 5.

Section 2 contains a brief heuristic proof of (C) in the situation of
two particles. This is inserted in order to motivate the formal proof of
§ 5. Section 3 discusses the connections of the concept of total positivity,
to statements (A) - (E).

Total positivity is significant in relation to the theory of vibrations
of mechanical systems [8], the method of inversion of convolution trans-
forms [9], and the techniques of mathematical economics [13]. In this
paper total positivity is shown to be also important in describing the
structure of one dimensional strong Markoff processes whose path func-
tions are continuous. In a vague sense the most general totally positive
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kernel can be built from convolutions of stochastic processes whose path
functions are continuous. In principle, the representation desired is
similar to the representation formula which applies to Pόlya frequency
functions discovered by Schoenberg [20]. A detailed discussion of this
idea will be published separately. In this connection we mention that
Loewner has completely analyzed the generation of totally positive mat-
rices from infinitesimal elements [18].

In § 7 we investigate conditions which insure that the determinant
(4) is strictly positive. We find that this is the case if P(t, x, E) > 0
whenever t > 0, E is any open set and P(t,x, E) represents the transi-
tion probability function of a strong Markoff process on the real line
with continuous path functions.

The following converse proposition is of interest. Suppose the transi-
tion function P(t, x, E) of a Markoff process has the property that all
determinants of the form (4) are non-negative. Does there exist a
realization of the process such that almost all path functions are conti-
nuous? This is true with some mild further restrictions. In § 8 with
the aid of a theorem of Ray [19] we are able to establish a partial converse
based on a restriction about the local character of P(t, x, E). It will be
recognized that most cases of Markoff processes obey this requirement.

In § 9 we characterize the most general one dimensional spatially
homogeneous process whose transition kernel is totally positive.

The final section presents a series of examples of totally positive
kernels derived from Markoff processes with continuous path functions.

2 A heuristic argument. In this section we give a non-rigorous
outline of the method of proof for the case of two particles. Let P(t, x, E)
be the transition probability function of a stationary Markoff process on
the real line. Suppose that two distinguishable particles start at x1 and
x2 > xx and let Ex < E2 be two Borel sets. The determinant

pit; *i M = P(t, xlf E^Pit, x2, E2) - P(t, xlf E2)P(t, x2, Eλ)
V ExEj

is equal to Pr {A[} — Pr {A2} where A[ is the event that at time t the
first particle is in Ely the second in E2 and A[ is the event that at time
t the first particle is in E2, the second in Eλ. Each event A'if regarded
as a collection of paths, may be split up into two disjoint sets At + A"
where A% consists of all the paths in A[ for which no coincidence occurs
before time t and A" consists of the paths in A[ with at least one coin-
cidence before time t. We assume the paths are sufficiently smooth so
that for each path in A" and A2 there is a first coincidence time. This
will certainly be the case if all paths are continuous on the right.
Choose a path in A" and at the time of first coincidence interchange the
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labels of the two particles. This converts the given path into a path in
A[f and the resulting map of A" into A" is clearly one-to-one and onto.
Because of the Markoff property and because the particles act indepen-
dently it is plausible that this map is measure preserving so that

Pr {A[f} - Pr {A'J}

and granting this it follows that

. XU XΛ = p r Γ̂ JJ _ p r f̂ ,|

Ex Ej

= Pr {Aλ} - Pr {A*} ,

which is the general form of the result. If the path functions are all
continuous then Pr {A2} = 0 and the formula becomes

p(t; Xl>

3. Total positivity. A matrix is called (strictly) totally positive if
all of its minors of all orders are (strictly positive) non-negative. Such
matrices and their continuous analogues the totally positive kernels occur
in a variety of applications and have been studied by numerous authors.
A lucid outline of the theory together with an extensive bibliography
has been given by Schoenberg [21], Krein and Gantmacher [8], Our re-
sults indicate the existence of large natural classes of semi-groups of
totally positive matrices and totally positive kernels. One simply takes
the transition probability function of a one dimensional diffusion process
with continuous path functions. A number of interesting examples are
given in § 10.

Conversely the total positivity of the transition function may be used
to draw conclusions regarding continuity of the path functions. A pro-
gram along these lines has already been carried out by the authors for
the case of birth and death processes [12]. (see also § 8.)

Our attention was first drawn to total positivity in connection with
diffusion processes by unpublished results of C. Loewner who showed
that the fundamental solution of

du d2u . 7 du
— = a — -f o —
dt dx2 dx

on a finite interval with smooth a and b and classical boundary conditions,
is totally positive.

4. Definitions. As indicated in the introduction we are chiefly con-
cerned with processes on the integers, the real line, or the circle. In
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order to deal with all cases at once it is convenient to discuss certain
results for a more general process whose state space is a metric space
X.

Let X be a metric space, S3 the Borel field generated by the open
sets of X, and S3' the Borel ring generated by the finite intervals on
0 < t < co. Suppose there is given a set Ω called the sample space and
an X-valued function x(t, ω),0<t<cv,ωeΩ. Let 9JΪ be the Borel
field of subsets of Ω generated by the sets of the form {ω; x(t, ω)e E}
where t > 0 and E e S3. Suppose that for each x e X there is given
a probability measure Px on X such that Px{ω; x(0, ω) = x} = 1. Then
the function x(t, ω) is called a stochastic process on X with sample space
Ω and distributions {PJ.

The stochastic process is said to have right continuous path functions
if for every fixed ω the function x( , ώ) is right continuous on 0<£<oo.

Let ^f/t denote the Borel field generated by all sets {ω; x(s, ω)e E}
where E e 33 and 0 < s < t. Conditional probabilities relative to SDΪj will
be denoted by Px{ \x(8)fs<t}. The stochastic process is called a
stationary Markoff process if for every fixed t

Px{x{tt + t, ω) e E i f i = 1 , , n \ x(s), s<t}

= P*u,*> {α(ίι, o)) 6 Et, i = 1, , n]

with probability one when 0 < tx < < tn and Eu , En e 93.
We will be concerned only with stationary Markoff processes in X

with right continuous path functions. It will always be assumed that
the function

P(t,x,E) = Px{x{t,ω) e E}

is measurable relative to S3' (x) S3. This function satisfies the Chapman-
Kolmogoroff equation:

P(ί + s, x, E) = ^P(t, x, dy)P(s, y, E) .

Let F be a closed set in X. The time of first hitting F is defined
as

τF(ώ) — inf {ί x(ty ω) e F]

where the inf of the void set is taken to be + co. The place of first
hitting F is defined, if τF(ω) < co, as

ξF(ω) = x(τF(ω), ω) .

The Markoff process will be called a strong Markoff process if for
any closed set F we have the first passage relation



1148 SAMUEL KARLIN AND JAMES MCGREGOR

Px{x(t, ώ) e E} = Px{x(t, ω) 6 E, τr(ω) > t}

ξF(ω) 6 dy

In this relation it is implicitly assumed that the sets {ω τ{ω) < t}
and {ω τ(ω) < ί, |(α>) e H} where H is a closed subset of i*7, are 2δ£

measurable for each t. A discussion of the validity of these assumptions
made in § 6. It is there shown that under very slight conditions on the
transition function the assumption holds.

It seems reasonable to believe that the direct product of a finite
number of strong Markoff processes is again a strong Markoff process.
At the present time we are not able to prove that this is generally true,
although in the proof of the main theorem we assume this result. On
the other hand proofs can be given which cover the vast majority of
the special cases of interest. As noted above it follows from theorems
of Chung that the strong Markoff property is preserved under direct
products for processes with countably many states all of which are stable.
This includes the birth and death case. In § 6 we give a proof for direct
products of a one dimensional diffusion process whose transition prob-
ability function P(t, x, E) is jointly continuous in t and x. This covers
the case when P(t, x, E) comes from a diffusion equation

^ = α ( α θ ^ + & ( « ) —
θt dx2 dx

with a(x), b(x) continuous and a(x) > 0. References to other theorems of
this kind are given in § 6.

Let Xif ί = 1, , n be metric spaces and for each i let xt(t, ωt) be
a stationary Markoff process in Xt with sample space fl4 and distributions
{P^}. We form the product space X = Xx (x) (x) Xn in which the
generic point is an ti-tuple x = (xlf •• , xn) with xt e Xt. The space X
with the distance p(x, y) = Σp(xif yt) is a metric space. The vector valued
function x(t, ω) — (xλ{ty ω^)y , xn(t, ωn)) is a stationary Markoff process
in X whose sample space is the direct product Ω of the Ω% and whose
distributions are the direct product measures

x(t, ω) is called the direct product of the given processes.

5 The main theorem. Let X be a metric space, and x{t, ω) a
stationary strong Markoff process in X with right continuous sample
functions, sample space Ω and distributions {Px}. We form the direct
products X, Ω of n copies of X and Ω respectively and the direct product
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x(t, ω) of n copies of the given process. We say this direct product
process represents "n labelled particles executing the x(t, ώ) process simul-
taneously and independently", and this is the sense in which that phrase
is to be interpreted in statements (A)-(E) of the introduction. We
assume x(t, ω) is a strong Markoff process (see § 6).

The associated distributions are

The set F of coincident states consists of the points x=(x19 ,xn)
with at least two of the xi equal to one another. A permutation λ of
the n letters 1, 2, •••, n is called a transposition if there are two letters
i < j such that λ(i) = j , X(j) — i, and λ(r) = r if i Φ r Φ j . In this case
we use the notation \ = (ί,j). A coincident state x = (xu -••, xn) is
said to belong to the transposition λ = (i, j), i < j if xlf , x5-λ are all
different but xt = x3. Thus every coincident state belongs to a unique
transposition, and for a given λ the set of all coincident states belong-
ing to λ will be denoted by F{X). The group of all n\ permutations of
1, 2, •••, w will be denoted by S and the set of all transpositions by A.

Given n Borel sets Elt •••, En in X and a permutation σ e S, the
direct product set

Eσ = Eσω (8) . . . (8) EσW

is a Borel set in X. Let A^ = {ω; x(t, ω) e Eσ] where t > 0 is fixed.
Then if x — (xlf , xn)

p ί t . Xi, , »» V Σ ( s i g n σ ) p _ { A ; }
V Eu.. ,En

J °*s

by definition of the determinant and of P~.
The time τ(ω) of first coincidence is defined as the time of first

hitting F:

τ(ω) = τF(ω) = inf {ί x(ί, S) 6 F} .

The place of first coincidence is ξ(ω) = x(τ(ω), ω). Our main result can
now be stated very simply as follows.

THEOREM 1. The sets

Aσ = {ω ω e A'σ, τ(ω) > t]

are all measurable and

P(t; * " • • • ' * » ) = Σ (sign σ)P7{Aσ] .
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Proof. Since τ is measurable the sets Aσ are also measurable. For
each σ we apply the strong Markoff property to obtain

( ( Pj{x(t -s,ω)e Eσ}μ(dy)
JO JF

where

< s}

e ΛΓ

Now F is the union of the disjoint Borel sets F(X), λ e A, and if y e
F(X) then Py{x(t -s,ω)eEar}= Py{x{t - s, ω) e Eλσ]. Hence

σes

— Σ
σes

v
xeΛ

(sign σ) (W(s) f P?{x(t - s,ω) e Eσ}μ(dy)
Jo Ji?W

- (signλσ)l dΦ(s) \ Py{x(t - s,ω) e Eλσ}μ(dy)
Jθ jF(λ)

= ~ Σs(sign σ) [PJ{A;> - P^{^lσ}] .

This quantity is therefore zero and

P ( ί ; ^ •••'«-) =Σβ(signσ)P;-{i4;}

- Σ^(signσ)P-{Aσ} .

The various assertions (A) - (D) of the introduction can be obtained
by specializing the above theorem in the appropriate way.

6 Strong Markoff property for direct products* For the vast
majority of one-dimensional diffusion processes which are met in appli-
cations one finds that the transition probability function P(tf x, E) is
jointly continuous in t and x. It will be shown that the direct product
of ^-copies of such a process has the strong Markoff property. The proof
imitates the proof of a theorem of Dynkin and Jushkevich [7].

THEOREM 2. Let x{t> ώ) be a stationary Markoff process on the real
line with continuous path functions and transition probability function
P(t, x, E) which is jointly continuous in t, x. Then the direct product
x(t, ω) of n copies of this process is a strong Markoff process.

Proof. Let F be a closed set in the ti-dimensional space, τ(ω) the
time of first hitting F for the direct product process, and ξ(ώ) the place
of first hitting F, The fact that τ(ω) and ξ(ω) are measurable functions
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is a trivial consequence of the continuity of the path functions. With a
given integer m > 1 let τm(ω) — kjmy where k is the integer such that

m m

and let ξm(ω) = x{τjω), ω). Then for any Borel set E

P»(x(t, ω) e Έ) = Pj{x(t, ω) e E, τjω) > t}

+ Σ Pϊ{x(t9 ω) e E, τm(ω)=lL\ .

Let

(θ if τm{ω)φ —

and

ι0 if y 0 E .

Then

ϊ- \x(t, ω) e .&, τM(ω) = —1 = £?j{

= Ej \E \Ak(ώ)f(x(t, ω)) I φ ) , s < Al l

= E7\Ak(ώ)E\f(x(t, ω)) I φ ) , s < Al l

= E- [Ak{ω)PτWm-^\x(t - A, (ή e l | J

- A, ω) e E~\Pj\ξm{ω) e dy, τ.(ω) = A

and hence we have the first passage relation for r m :

e ^} - Pj{x{t, ω) e E, τjo>) > t}

{ξm(ω) e dy]

For every ω we have τm(ώ) > τm+1(ω) [ τ(ω) and by continuity of path
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functions ξm{ω)—*ξ{ω) as m—*OD. Hence τm(ω)f ξm(ώ) converge in mea-
sure to τ(ώ), ξ(ω). Since P^{x(t — s, ω) e E] is jointly continuous in y
and s and is bounded we may let m —> cx> in the above formula and ob-
tain the first passage relation for τ(ω). This completes the proof.

The referee has brought to our attention the following stronger
theorem of Blumenthal, [1, Theorem 1.1], which is slightly reworded
here.

THEOREM. If the process has right continuous path functions and

if for every bounded continuous function f the function \ f(y)P(t, x, dy)

is continuous in x for each £>0, then the process has the strong Mar-
koff property.

In this theorem the state space X is any metric space. Naturally
this theorem requires more involved arguments than the above Theorem
2. Finally we mention that a very thorough discussion of the Markoff
chain case has been given by Chung [4].

7 Strict total positivity Let X be the non-negative integers and
x(t, ω) a stationary strong Markoff process on X with all states stable
and "continuous'' path functions. If P(t) = (Pa(t)) is the transition
probability matrix of the process then it follows from assertion (A) that
this matrix is totally positive. Let us call the process a strict process
if Pij{t) > 0 for every i, j and all t > 0. We will prove

THEOREM 3. If the process is strict then its transition probability
matrix is strictly totally positive for every t > 0.

Proof. The proof is similar to the proof of a related theorem in
[14], namely Theorem 20 on page 543. It is seen from the proof of that
theorem that it is sufficient for our purposes to prove that if iλ < i2 <
• < in then

Yί; *i'* ' M > 0
^ O m. . « O* '

, V

for every ί > 0, that is the principal subdeterminants are strictly posi-
tive. However since

pί2t. ) (

it is enough to show that these determinants are strictly positive for
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sufficiently small t > 0. Because the path functions are right continuous,
if {rfc) is an ordering of the positive rationale, the set

U fl (ω x(rk, ω) = i\ x(0, ω) = i]
1 <l/

has probability one. Hence for some m = m(i) > 0 there is a positive
probability Rt that a path starting at i remains at i for at least up to
time l/m(i). Now if 0 < t < max ljm{ik) then we have

and this proves the theorem.
Now let x(t, ω) be a stationary strong Markoff process on the real

line with continuous path functions satisfying the hypothesis of Theorem
1. Let P(t,x,E) be the transition probability function of the process.
The process will be called strict if P(t, x, E) > 0 whenever t > 0 and E
is any non-void open set. We will prove

THEOREM 4. Tf the process is strict then its transition probability
function is strictly totally positive in the sense that if £>0, a?1< <
xn and E1 < < En are non-void open sets then

Pit; Xl> •"•'a? Λ > 0 .

We begin with two lemmas in which the hypotheses of the theorem are
assumed.

DEFINITION. If α, b are two points on the real line then

τΛ(ω) = mf{t x(t, ω) = a} ,

M(t,x,a) = Px{τa(ω)<t} ,

M(t, x, a, b) = Px{τa{ω) < t, τb(ω) > t] .

LEMMA. // a < x < b then M(t, x, α, b) > 0 and M(t, x, b, a) > 0
for every t > 0.

Proof. Assume that M(t, x, b, a) = 0 for some t = t0 > 0 and hence
for every t < tQ. Then if J = [6, <χ>) we have for every t < t0

Pit, x, J) - [P(t - s, α, J)dβM(s, a?, α)
Jo
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and in virtue of the continuity of paths

P(t, a, J) = [p(t - s, x, J)dsM(s, a, x).
Jo

Now because of the continuity of paths we can choose tλ so 0 < \ < tQ

and

M(t, α, x)M(t, x, a) < 1/2 for 0 < t < tx .

Since P(s, a, J) < 1 for all s < tx it follows from the integral equations
that

P(s, α, /) < 1/2 for s < tx,

and by an iteration argument we obtain P(tlf a, J) — 0 which contradicts
the hypothesis. Hence M{t, x, 6, α)>0 for t>0. Similarly M(t, x, α, 6)>0
for t > 0.

DEFINITION. Given an open interval V = (α, 6) let

Λ(ί, x, V) = P,{τα(ω) > ί, τ6(ΰ>) > ί} .

LEMMA 2. 7/ ΛJ e V = (α, 6) then .#(£, a?, F) > 0 for all t > 0 .

Proof. Assume that for some xe V and £'>0 we have R{t', x, V)=0.
Then R{t, x, V) = 0 for all ί > ί\ Because of continuity of paths t0 =
inf {t JB(ί, a?, V) = 0} is positive. Now choose any # 6 V, y Φ x. To fix
the ideas we assume x < y < b. If ε > 0 is so small that M{t\ x, yy a)—
M(e, x, y,ά) > 0 then the inequality

0 - R(t', x, V) > \^R(t' - τ, y, V)dτM(τ, x, y, a)

shows that R{V - e , y, V) = 0. Consequently if t^ inf {« R(t, y, V) = 0}
then

0 < tx < t0 - ε < t0 .

But we can now repeat the argument and show that t0 < tx. This con-
tradiction proves the lemma.

Proof of the Theorem. Let x±< < xn and Ex < < En be non-

void open sets. The index of the determinant

(t. *»—,*.
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is defined to be the number k of values of i for which x% is not in Eim

Thus the index of an nth order determinant of this kind is an integer
between 0 and n inclusive.

In each set Et choose a non-void open interval Ut such that xt e Uι

if xi G Ei but Ui contains no x5 if xt 0 EL. Because of the probabilistic

interpretation

These two determinants have the same index k. If k = 0, then from
the probabilistic interpretation and the second lemma above

P(t; XlfΛΛm9Xn

V Ulf~ fUn

Thus the subdeterminants with index zero are positive. Now suppose
the index is k > 0. We can find n open intervals U'l9 •••, £/„ whose
closures are mutually disjoint such t h a t xt e U't for every i and U[ = E7"4
if α?4 e Ϊ7t. We can choose n points x[, , x'n such t h a t x\ e Ui for every
i and ίc{ = xt if ^ e ί7ίβ Now in the collection U19 •••, Un, U[, •••, ?7^
there are exactly m = n + fc distinct intervals and they are disjoint.
Denote them by Vτ < < F m . Similary in x19 , α?w, a?ί, •••,#„ there
are exactly n + & distinct points. Denote them by y1 < < ym and
then yi e Vi for each i. Let J5(ί) be the m-square matrix with elements

bu(t) = P(t, yt, Vj) .

The determinant pit; Xu *">x») is a minor of B(t). Moreover B(t)
V Ulf—,Un'

is totally positive, all of its elements are strictly positive, and its prin-
cipal minors have index zero and are therefore strictly positive. Hence
by Lemma 14 of [14] all minors of B(t) of index one are strictly positive.

This proves that p(t; Xlf # ' ' ' Xγι ) > 0 if the index of this determinant

l 9 ; n

is < 1. We now assume that for some integer r, 1 < r < n, all the
determinants of the t y p e P U Xl9 "°'Xn (with index < r are strictly

v E ••• E '
positive.

Let 1 < ix < < in < m, 1 < j \ < < j n <m and

Σ I iv - iv I = r + 1 .
v=i

Then
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P(t;

and in this sum there is at least one term with

n n

I h "v I S ' , 2-j I α v jv I ^ '
V = l V = l

F o r t h i s t e r m t h e i n t e g r a n d Pis; Vχi ***'Vn ) i s p o s i t i v e f o r e v e r y

\ Y .. # y /
^i, •••, vn in the range of integration because vy e Vjy for at least n—r
values of v. Also for this term the integrator P(t; ^V ***'^'» J has

v dv19 , dvj
positive measure on the range of integration because y^ e VΛy for at
least n — r values of v. Hence the special term and also the entire sum

is strictly positive. This proves that p(t; Xl' * * ~'Xn ) > 0 if the index
\ jp jp /

of this determinant is < r + 1, and the theorem follows by induction on
the index.

8 Local character of P(t, xy E) and continuity of path functions*
Let P(ty x, E) be the transition probability function of a stationary Mar-
koff process on the real line. Given δ > 0 we define

V(x, δ) = [a + δ, CX3) ,

I'(x, δ) = U(x, δ) u V(x, δ) .

The transition probabilities are called of local character if P(tf x, I\x, δ)) =
o(t) for each x and δ > 0. They are called uniformly of local character
if for each δ > 0 and each compact set F on the real line the relation
P(t, x, Γ{x9 δ)) = o(t) holds uniformly for x e F. We will prove that if
the transition probabilities are positive of order two (see Theorem 5)
and if for some a > 0 we have P(tf xy I'(x, δ)) = o{ta) for each x and
each δ > 0 then the transition probabilities are uniformly of local charac-
ter, and in fact for every β > 0 the relation P{ty xy Γ{xy δ)) = o(tβ)
holds uniformly on compact sets. This is of interest in connection with
a theorem of Ray [19] to the effect that if the transition probabilities
are uniformly of local character and if P(ty xy X) = 1 where X is the
real line (not the extended real line) then the process has path functions
continuous except possibly at + oo and — oo.
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THEOREM 5. Let P(t, x, E) be stationary transition probabilities on
the real line such that P(t, x, E) -> 1 as t -> 0 + if x is an interior
point of E. If P(t, x,E) is positive of order two (i.e. the second order
determinants of (4) are non-negative) and if there is an a > 0 such that
for every x and every δ > 0 we have P(t, x, Γ(x, δ)) = o(ta) then for every
compact set F on the real line and every β>0, δ>0 there is a constant
M = M(F, δ, β) such that

P(t, x, Γ(x, δ)) < Mtβ

for every x e F.

Proof. Given a point x on the real line and δ > 0 let y — x + δ/2
and N = (y — δ/4, y + δ/4). Then because of the second order positivity

P(ί, x, V(x, δ))P(ί, y, N) < P(t, x, N)P(t, y, V(x, δ)) .

Both factors of the right member of this inequality are O(t") while
P(ί, y, N) -> 1 as t -> 0. Hence P(ί, x, V(xf 8)) - O(t2").

This is valid for arbitrary x and δ, so the argument can be iterated,
and for any integer n > 1 we have

P(ί, x, V(x, δ)) = O(ί Λ ) .

The 0 symbol so far may depend on x and certainly depends on δ.
A similar argument applies to P(t, x, U(x, δ)) and combining them we
have

P(ί, x, Γ(x, δ)) = O(tη

for any β > 0.
Now suppose x < y < z, let E — (z, oo) and let TF be an open

interval containing y but whose closure does not contain z. Then

P(ί, x, £?)P(ί,!/, TΓ) < P(ί, α?, ΪΓ) P(ί, 2/, JS7)

< P(ί, 1/, S)

There is a positive ί0 = ίo(2/, £7) such that P(ί, y, TΓ) > 1/2 for ί < ί0

and therefore

P(ί, a?, £7) < 2P(ί, ?/, £7) if t < ί0 .

Similarly if 2<2/<x and E — (— ^yz) then there is a positive t1 — t1(yJ E)
such that

P(ί, x, S) < 2P(ί, y, E) if ί < t, .

Now let ί1 = [α, 6] be a finite interval and δ > 0. Choose a finite
number of points ylf , ym such that every open subinterval of (a — δ,
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b + δ) of length (l/2)δ contains at least one of the points yt. Given
x e F there are indices a, β such that

x - 4"δ <y«<χ <Vβ<χ +-^δ

Δ Δ

Since U(x, δ) c U(yx, δ/4) and F(x, δ) c V(yβ, δ/4) we have

P(ί, x, U(x, 8)) < 2P(t, ya, u(ym, A ) ) ,

P(t, x, V(x, 8)) < 2P(t, yβ, v(yβ, A ) )

for sufficiently small t. In fact these inequalities are valid if t is less
than the least of the numbers tQ(yi9 V(ytf δ/4)), tλ(yi9 U(yίf δ/4)), i — 1, 2, ,ra.
Since each of the finite collection of functions P(t, yt, V(yu δ/4)),
P(t, Vi, U(yif δ/4)), ί = 1, 2, ••-, m is o(ίβ) for any /3 > 0, it follows at
once that for fixed δ > 0, β > 0 P(t, x, Γ{x, δ)) = O(tβ) uniformly for
X 6 F.

9 Homogeneous processes* A process on the real line will be called
a homogeneous process if it is a stationary strong Markoff process with
right continuous path functions and its transition probability function
satisfies the homogeneity relation

P(t, x + h,E) = P{t, x,E -h)

where E — h = {y y + h e -B}. This class of processes includes all the
processes with stationary independent increments and is slightly more
general. If X denotes the real line then for any homogeneous process
the function

P(t, x, X) = P(t, 0, X) - a(t)

is independent of x. From the Chapman-Kolmogoroff equation a(t+s) =
a(t)a(s) and then because of monotonicity a(t) = e~βt where 0</9< + c».
The case β = 0 gives the processes with stationary independent incre-
ments. The general homogeneous process is obtained by taking a process
with stationary independent increments and stopping it after a random
time T with Pr {T > t] = e~βt. The trivial case β = + oo is excluded
in the remainder of this section.

There are two special kinds of homogeneous processes of particular
interest from our point of view. First the essentially determined ones
for which, if E is any open set
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e~βt if x + vt e E
P(t, . (

{0 otherwise

where v is a real constant and 0 < β < oo. And second, those derived
from the Wiener process, for which

P(t, x, E) = -£LΛ expΓ- (Λ±^VΪ] dyV2πσt U L 2σt J

where v is a real and σ a positive constant and 0 < β < oo. These two
types are interesting because they have continuous path functions and
the transition probability functions are therefore totally positive. For
those derived from the Wiener process it is strictly totally positive, while
for the essentially determined ones it is not. The main result in this
section is the following.

THEOREM 6. If the transition probability function of a homogene-
ous process is totally positive then the process is either an essentially
determined one or else one derived from the Wiener process.

Together with the results of § 5 this theorem shows that for homo-
geneous processes total positivity is equivalent to continuity of the path
functions. At the close of this section we show by a different method
that for homogeneous processes positivity of order two is already equi-
valent to continuity of the path functions. This assertion is probably
true not only for homogeneous processes but for arbitrary one dimensinal
strong Markoff processes with right continuous path functions. Although
we are not yet able to prove the result in this generality, we do have
a proof for the case of birth and death processes, which is published
separately [12].

Proof. Let P(t, x, E) be the transition probability function of a
totally positive homogeneous process and let P(t, x, (— oo, oo)) = e~βt.
We form the function

Pe(t, x, E) = (" e<»P(t, y, E)qζ{t, V - x)dy
J-oo

where ε > 0 and ?8(ί, x) = (2ττεί)"1/2 exp [- (x2j2et)]. Then Pε is a
homogeneous strictly totally positive kernel for t > 0, it satisfies the
Chapman Kolmogoroff equation, and is analytic in its dependence on x.
There is therefore a density function ps(t, x) such that

P8(ί, x,E)=\ ps(t, y - x)dy .

For fixed ε, ps is measurable in t, x and is analytic in x for fixed ε, t.
From the formula



1160 SAMUEL KARLIN AND JAMES MCGREGOR

P.(ί, y-x)= lim ±-Pt(t, x, (y, y + h))
Λ->0 + h

we deduce that if xx < x2 < < xn and y1 < y2 < < yn then det
pε(£, αjj — y3) > 0 for £ > 0. Thus for fixed t and ε the function pε(t, x)

ί f°° \

is a Pόlya frequency function (we have I ps(t, x)dx — 1 ) in the sense
of Schoenberg [20] and the Laplace transform

1 _ f-

(M) J-
e~xspε(t, x)dx

converges in a strip — a < Re [s] < a with α > 0, and has there a rep-
resentation

ψ(s, t) = e~ys2+8s Π (1 + δ vs)e-V
V = l

where γ > 0, δ, δv are real, 0 < γ + Σ δ ? < c o The constants γ, δ, δv

will of course depend on t. From the Chapman-Kolmogoroff equation
we have ψ(s, t) = [ψ(s, tjnj]n where n is any positive integer. Conse-
quently any zero of ψ(s, t) must be of order at least n and n being
arbitrary there can be no zeros. Hence

ψ(s, t) = e8s~ys2 , γ > 0 .

Again using the Chapman KolmogorofE equation in the form ψ(s, t + τ) —
—ψ(sf t)ψ(s, τ) we deduce that δ = at, γ = b2t where α, b are real and
independent of t. Now if t > 0 is fixed F(x) = eβt P(t, x, (0, oo)) is non-
decreasing, F(— oo) = 0, i^(+oo) = 1, that is .P is a distribution function,
and the above result shows that the convolution of F with the normal
density qe(t, oo) is a distribution of normal type. By a well known
theorem [17], F is also of normal type and we have

ί: e~sxdF(x) = e~ats + (b2 - ε)ts2

with b2 — ε > 0. If b2 — ε = 0 the given homogeneous process is an es-
sentially determined one while if ¥ — ε > 0 it is one derived from the
Wiener process.

Another approach to the problem of determining when homogeneous
processes or equivalentely infinitely divisible processes are totally positive
is based on the Levy Khintchine representation. We consider an in-
finitely divisible process x(t) properly centered with no fixed points of
discontinuities whose characteristic function φ(t, s) has an expression

log <p(t, s) -

- tψ(s)
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with the aid of (1) we are able to establish

( 2 ) lim—Pr {\x(t) - x(0) | > λ} = ( dG(x)

wheji λ and — λ are continuity points of G. This limit relation is es-
sentially known but for lack of any available specific reference we sketch
a proof.

The proof consists of defining

Fτ{x(t) - x(0) < λ} - 1 ; . 0ior Λ > u

H(t, λ) =
Pτ{x(t) - s(0) < X} f o r χ < 0

t

and forming the Fourier Stieljes transform of H which reduces to
(φ{t, s) — l)/ί. This clearly converges pointwise as t -» 0 to ψ(s). Invok-
ing the Levy convergence criteria following comparison with (1) establishes
(2).

An alternative proof of (2) can be based on verifying the validity
of (2) first for the case of a finite composition of independent Poisson
processes and afterwards passing to a limit to obtain the general in-
finitely divisible process.

The truth of (2) also follows by exploiting the properties of the
infinitely divisible process Uκt which counts the number of jumps of
magnitude exceeding λ that the process x(t) executes in time t. (See
[5] page 424).

Because of (2) and Theorem 5, we see that x(t) is totally positive

of order 2 if and only if \ dG(x) = 0 for all λ > 0. Hence the only

totally positive infinitely divisible process is the Wiener process except
for a drift factor.

10. Examples* In this section we present some examples of totally
positive semigroups of matrices and kernels. These matrices and kernels
are fundamental solutions of parabolic differential equations (or differen-
tial difference equations).

In generating examples of totally positive kernels it is useful to note
that if P(t,x,E) represents a totally positive kernel and P(t,x,E)
possesses a continuous density p(t, x, y) with respect to a α-finite measure
μ then p(t, x, y) is totally positive in the sense that

det p(t, xiy yj) > 0

where x1 < x2 < < xn and yx<y^< < yn. The proof consists of



1162 SAMUEL KARLIN AND JAMES MCGREGOR

selecting Ex< E2 < < En where Et is a sufficiently small open set
enclosing yi and computing

the limit taken as μ(E^ tends to 0 for all i.
Ex. ( i ) The analytic properties of birth and death matrices have

already been investigated in detail by the authors [14]. In Theorem 20
of that paper it is shown that with every solvable Stieltjes moment
problem there is associated one or more strictly totally positive semigroups
of matrices. A few examples of interest are recorded :

(a) Let L%(x) be the usual Laguerre polynomials ί normalized so that

L*(0) = ( n + a\\ , and let P(ί) be the infinite matrix with elements

PUt) = \~e-"Lϊ(x)L#x)χre-*dx .
Jo

Then P(t) is strictly totally positive for t > 0, a > — 1 .
(b) Let cn(x, a) be the Poisson-Charlier polynomials [15] and P(t) the

matrix with elements

PnJt) - Σ e-«cn(k, a)cm(k, a)^L .
fc=o kl

Then P(t) is strictly totally positive for t > 0, a > 0.
Ex (ii) The Wiener process on the real line is a strong Markoff

process with continuous path functions. The direct product of n copies
of this process is the w-dimensional Wiener process which is known to
be a strong Markoff process. Therefore the kernel

P(ί, x, E) = ~

is totally positive for t > 0 (strictly, since P(ί, x, E) > 0 when E is an
open set).

Ex. (iii) If Γ(t) = (Γ1(t), •••, Γ*(ί)) is the ^-dimensional Wiener
process and X(t) is its radial part, i.e.,

then X(ί) is a process on 0 < x < oo with continuous path functions.
These processes have been studied by Levy [16], Spitzer [22] and others.
The corresponding diffusion equation and transition function are
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du _ d2u , 2γ du
dt dx2 x dx

P(t, x,E)=\ p(t, x, y)dμ{y) ,

where

rv- fc-1

P(t, x, v) = Γ e - Λ T(ay)T(ay)dμ(a)
Jo

2γ+1/2Γ(γ + 3/2)

where J stands for the usual Bessel function.
These formulas make sense for arbitrary γ > 0 and have been

studied by Bochner [2]. The density may be written in the form

p(t, x, y) = (2t)- ( Y + 1 / a ) exp ( ^ ) exp

Now T(ixj2t) is a power series with positive coefficients, in fact

\ 2t J fc=o Jo-

where

a Γ(γ + 1/2)

and σ(s) is an increasing step function whose jumps occur at the even
integers. Let 0 < xλ < x2 < < xn and 0 < yλ < y2 < < yn. If
0 < Sj < s2 < < sw then the Vandermonde determinant

is known to be non-negative, positive if xx > 0. From the formula

det τ(^Ml) = \ \ J ^ M J ^ y»)dσ(Sl)dσ(s2). dσ(sn)
V 2ί / JJoS S l<V .<Sre<~ VSl s / V 8 1 β/

it readily follows that T(ixy/2t) and hence also p(t, x, y) is strictly to-
tally positive.
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Ex. (iv) If we consider Brownian motion on the circle the transition
density function has the form

p(ί, ί,ψ) = l + 2Σe~4 A ccos2πn(θ - ψ)
71 = 1

where θ and ψ traverse the unit interval. This formula may be derived
as the fundamental solution of the heat equation on the circle. In this
case the hypothesis of Theorem 1 are fulfilled and we deduce that all
odd order determinants of p(t, θ, ψ) are non-negative (actually strictly
positive) viz

If 0 ^ θx < θ2 < < θ2n+1 < 1 and 0 < ψ1 < ψ2 < <ψ2n+1 < 1
then det p(t, θί9 ψj) > 0.
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