THE PALEY-WIENER THEOREM IN
METRIC LINEAR SPACES

MAYNARD G. ARSOVE

1. Introduction. By a basis in a topological linear space 7~ we
mean a sequence {x,} of points of & such that to every x in .7~ there
corresponds a unique sequence {a,} of scalars for which

T =D, Ay .
n=1
Denoting the coefficient functionals here by ¢,, we can rewrite this as

1.1) ¢ = f;l Do), -

If it happens that all ¢, are continuous on .7, the basis will be refer-
red to as a Schauder basis. Every basis in a Fréchet space [14, pp.
59, 110] is known to be a Schauder basis (see Newns [21], pp. 431-432),
and it will be shown here that the same holds for bases in an arbitrary
complete metric linear space over the real or complex field.

The classical Paley-Wiener theorem asserts that for & a Banach
space, all sequences which sufficiently closely approximate bases must
themselves be bases. A more precise statement of the theorem is ob-
tained by replacing _~ in Theorem 1 by a Banach space 7.

The bibliography at the end of the present paper includes a chro-
nological listing of articles on the Paley-Wiener theorem, and we give
now a brief résumé of its history. As originally presented in 1934 by
Paley and Wiener [1, p. 100], the theorem was derived specifically for
the Hilbert space L®. Then, in applying the theorem to the Pincherle
basis problem [2, p. 469], Boas observed in 1940 that the proof of Paley
and Wiener remains valid for Banach spaces. Boas also succeeded in
simplifying a portion of the proof. However, the first really elementary
proof of the theorem was published in 1949 by Schafke [8], to whom
conclusion (3) is due. The remaining articles on the Paley-Wiener theo-
rem deal mainly with various generalizations of condition (2.1) for Hilbert
spaces.

From the viewpoint of modern functional analysis, the key to theo-
rems of Paley-Wiener type lies in the inversion of an operator I+ T by
means of a geometric series in 7. This crucial observation was made
by Buck [15, p. 410] in 1953.

Received July 28, 1958, and in revised form June 22, 1959. The research reported upon
here was supported in part by the National Science Foundation.

1 The same technique was used also in [9], the author having been unaware of the
earlier remarks of Buck. A further application (to generalized bases) appears in [12].
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Our purpose in the present note is to utilize the operator technique
in deriving a number of variants of the Paley-Wiener theorem. For
reference, we begin by sketching a proof of the theorem itself for com-
plete metric linear spaces. The ensuing variants then have in common
the hypothesis that {x,} be a Schauder basis and {y,} a sequence tri-
angular with respect to {x,}. This is evidently motivated by the case
of Pincherle bases in spaces of analytic functions (see, for example, [9]),
and we conclude, in fact, with a generalization to arbitrary Fréchet
spaces of the theorem of Boas [2, p. 447, Theorem 4.1] on Pincherle
bases.

The author is indebted to Professor Robert C. James for reading
the manuscript and suggesting a number of important simplifications.
In particular, Theorem 2 replaces a weaker theorem of the original
manuscript.

2. The proof for metric linear spaces. In what follows, we shall
denote by _~ a complete metric linear space over the real or complex
field and employ the notation of Banach:

2| = o(z, 0) (xe 7),

where o is the metric on . It will be assumed further that p is
translation invariant.

With these conventions the Paley-Wiener theorem can be formulated
as

THEOREM 1. Let {x,} and {y,} be sequences in _, and let N be
a real number (0 <\ < 1) such that

2.1) 3 @l — @)|| <A S 4z,
n=1 n=1
holds for all finite sequences a, a,, +++, a,, of scalars. Then

(1) if {=,} is total in _7, so is {Y,};
(2) if {x,} is a basis in _, so is {y,}, and the coefficients in
any expansion >.b,y, satisfy

oo

> buYn

n=1

’

<1

2.2) < =

> batt,
n=1

(3) of {=,} is a basis in _, there exists an automorphism® A
on _# such that y, = Az, (n =1, 2, --+).

2 A translation-invariant metric yielding the original topology always exists (see, for
example, [19, p. 34]).

3 The term automorphism is used to designate any linear homeomorphic mapping of
the space onto itself. By the open mapping theorem [13, p. 41, Theorem 5| every one-
to-one continuous linear mapping of .4 onto itself is an automorphism on 4.
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Proof. For convenience we consider first the case in which {x,} is
a basis. Condition (2.1) then allows us to define a continuous linear
operator T on _ as

oo

(2.3) Te = 3, Pu(®) (Y — 2,)

and yields the inequality
|| T 2|l <\l (m=0,1,--).

By comparison with the corresponding geometric series in » we infer
convergence of the operator series

(2.4) U= i (—T)

and obtain the inequality
(2.5) NUz|| <@ — Nl .

Hence, the linear operator U is continuous on _.Z .

For any « in _~ the element y of _ defined by y = Ux has the
evident property that x = (I 4+ T)y, where I is the identity operator.
From y = 3\ b,x, it therefore follows that x = >, b,y,, and this proves
that {y,} spans _~ in the infinite-series sense. That {y,} is linearly
independent in the infinite-series sense can then be seen by rewriting
(2.5) in the form (2.2). Assertions (2) and (3) are thereby established,
the latter with A taken as I+ T (=U).

No essential change in the above argument is required to prove (1).
We can clearly presume the x, to be finitely linearly independent and
replace the infinite series in (2.3) by corresponding finite sums. Thus
defined on a dense subset of _, T is then extended to all of _~# in
the usual fashion.

It should perhaps be mentioned that the automorphism A in (3) is
uniquely determined by the way it correlates the basis elements x, and
Y¥,. In fact,

(26) Av = 3P @), -

3. Coefficient functionals and coordinate subspaces. We recall that
a Fréchet space is defined [14, pp. 59, 110] as a metrizable, complete,
locally convex topological linear space over the real or complex field.
Generalizing a theorem of Banach, Newns has shown |21, pp. 431-432]
that for bases in Fréchet spaces the coefficient functionals @, are always
continuous. This can, however, be carried one step farther by discard-
ing the hypothesis of local convexity.
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Such is the content of
THEOREM 2. FEwvery basis in _# 1s a Schauder basis.

Proof. As observed in footnote 2, there is no loss of generality in
taking the metric p on _# to be translation invariant. Having done
this, we can conveniently make use of the functional ||z || = o(z, 0).

Let {x,} be a basis in _#, so that for each x in _~ we have the
expansion (1.1), or equivalently

r— iq)n(w)xn =0.

n=1

lim

Mm—ro0

Since this yields boundedness in m (for fixed ) of

S pa@a|
the quantity
3. ol = sup | 3 pu(@e,
m21 ne=1
is always finite. Thus, o'(x, ¥) = || — y ||’ defines a translation-invariant

metric o' on _# with the property that o(z,y) < o'(z,y for all z,y in
.
It is immediate from (3.1) that

(3.2) [l pu(@)2, || < 2] m=1,2+--),

and the corollary to Proposition 2, pp. 25-26, of Bourbaki [14] then
ensures that each ¢, is continuous in the metric p’. The proof will be
completed by showing that o and p’ define the same topology on _# .

We establish, first of all, that _# is complete in the metric p’.
To this end, let {z,} be a Cauchy sequence in the metric 0. From
(3.2) and the result of Bourbaki just cited it follows that, for each =,
{P.(2:)} -1 is a Cauchy sequence of scalars and therefore converges to
some scalar ¢,. Now, given ¢ > 0, there exists a positive integer N
such that ||z, — 2,|]' < e for 7,k > N. For arbitrary positive integers
m and m' < m we thus have

(3.3) | 319,60 — putele,

< 2 (4, k> N),
which yields in the limit as j — o

icnwn < 2 4+

n=m'

ni‘,n,%(zk)wn (k > N).

The p-convergence of > @,(z,)x, (for fixed k) gives rise to a Cauchy

Y
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condition on its partial sums and thereby on the partial sums of ¥ ¢,x,.

Hence, ' c,x, converges (0) to some point z of .. Taking m' =1 in
(8.3) and passing to the limit on j, we arrive at

< 2 (k>N).

lz =2, = sup ngl (e, — Pa(z0)] 2,

That is, {2} converges to z in the metric p'.

The remainder of the proof involves simply a routine application of
a corollary of the open mapping theorem [13, p. 41, Theorem 6] to con-
clude that o and o' define the same topology on . .7 .

Relative to a given basis {x,}, a coordinate subspace of _7 is de-
fined as a subspace of the form {x: ¢,(x) =0 for n € K}, where K is
some set of positive integers. The coordinate subspaces arising when K
consists of the first £ — 1 positive integers are of special interest in the
sequel, and we denote them by _#,. That is, for each positive integer
k, #, is the set of all elements of _# expressible as infinite linear
combinations of the basis elements x,, %;.1, -++-. For convenience, .7
will be referred to as a terminal coordinate subspace (or, more precisely,
as the kth terminal coordinate subspace) of _7 relative to {x,}.

Since coordinate subspaces relative to Schauder bases are necessarily
closed, we have

COROLLARY 2.1. All coordinate subspaces of _7 are closed.

4. Some variants of the Paley-Wiener theorem. A sequence {¥,}
in _# will be called triangular with respect to a basis {x,} provided
that each y, has the representation

(4.1) Yo = @0 + 39U

In the present section we shall be concerned with the problem of de-
termining conditions under which {y,} will itself be a basis in _#. This
arises as a natural analogue of the Pincherle basis problem, and our
methods here have much in common with those of [9].

We take advantage of the following special properties of triangular
sequences.

LEMMA 1. Let {x,} be a basis in _#, and let 7, be a terminal
coordinate subspace of _Z relative to {x,}. If {y,} is a sequence in
A triangular with respect to {x,}, then

(1) {y.} s linearly independent in the infinite-series sense, and

(2) for {y,}r-x to be a basis in 7, it is mecessary and sufficient
that {Y.}y-, be a basts wn _# .
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Proof. To show that {y,} is linearly independent in the infinite-
series sense, we suppose that

ibnynzo .

Then, from (4.1) and the fact that _~; is closed, it is immediate that
bx, + z, = 0, where z, is some point in .#. Hence b, = 0, and an obvious
inductive argument establishes b, =0 (n =1, 2, -.+).

The second assertion is dealt with similarly. Let {y,};.. be a basis
in _#;, and let ¥ be any element of _# . It is evident that, for a sui-
tably chosen scalar b,, the point y — by, will lie in .#,. Proceeding
inductively, we then see that there exist scalars b, b,, ---, b,_, yielding

y_kz-lbnyne»//k'

Consequently, {#.}r-. spans _~# in the infinite-series sense and is there-
fore a basis in _~". The converse in (2) is trivial.
This leads to our first variant of Theorem 1.

THEOREM 3. Let {x,} be a basis in _ and {y,} a sequence tri-
angular with respect to {x,}. If there exist a positive number \ < 1
and a posttive integer k such that

(4.2) | S, — 2)|| <2

n=

m
> A%,
n=k

holds for all finite sequences a, Ay, **+, @, Of scalars, then

(1) {y,} is a basis in _7, and

(2) there exists an automorphism A on _# such that y, = Ax,
(n=1,2, ).

Proof. For conclusion (1) we apply Theorem 1 to infer that {y,};_
is a basis in .7, and then invoke (2) of Lemma 1. Theorem 1 shows
also that the mapping

A = :Zk Pu()Y

is an automorphism on .7Z,. We can obviously extend A, to a mapping
A of _ into itself by setting

and from the fact that {y,} is a basis in _# it is then clear that A
maps _# onto itself in one-to-one fashion. There remains simply to
observe that the continuity of A, implies continuity of A, so that A is
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an automorphism on _~ .

A further variant of the main theorem is at hand when {x,} is an
absolutely p-convergent basis in _», that is, when {x,} is a basis for
which all x € _7 satisfy

S llPa@all < +eo

THEOREM 4. Let {x,} be an absolutely p-convergenl basis in ../
and {y,} a sequence triangular with respect to {x,}. If

=3

, > ap iy, ||
(4.3) lim sup {sup ==+t <1 (a, scalar),
e [wm [lag,]|

then
(1) {y.} is an absolutely p-convergent basis in _7, and

(2) there exists an automorphism A on _# such that y, = Ax,
n=12 .--).

Proof. We first remetrize _7 by setting o'(x, y) = || — y||’, where
(44) 2]l = 3 | pa@)e, ]

for all z in _~. Obviously 0’ is translation invariant, and ||z || < ||z /.
Condition (4.3) can now be restated as follows: there exist a posi-
tive number N < 1 and a positive integer k& such that

(4.5) ey, — @) [I" < Mlaw, |’

holds for » > k and all scalars a. This, together with (4.4), yields the
inequality (4.2) in the metric o’. Hence, {y,} is a basis in _~, and
there exists an automorphism A on _~ such that y, = Az, (n =1, 2,

.+). It follows that, for arbitrary scalar sequences {b,}, convergence
of the series >)b,y, implies convergence (and thereby absolute p-con-
vergence) of the series > b,x,. Since (4.5) results in

105y [ < (1 N) [ by, ||

for n > k, we see that {y,} is, in fact, an absolutely p-convergent basis
in _~ . This completes the proof.

As noted in the derivation, there is no real loss of generality in
requiring that

S ea(@)m,

= S | pa@)ma |

4 In metric linear spaces the notion of absolute p-convergence coincides with that of
absolute convergence as defined by Day [16, pp. 11, 59] in terms of the Minkowski functional.
Here, absolutely convergent bases are defined only for Fréchet spaces (see §5).
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for all  in _#. Whenever the metric p and the basis {x,} are inter-
related in this fashion, condition (4.3) assumes the simpler form

(4.8") lim sup {sup [a(¥a — za)|[] <1 (a, scalar).
n—ro0 a70 H ax, ” ;-

5. The case of Fréchet spaces. Proposition 6, p. 97, of [14] ensures
that the topology on a Fréchet space & can be described by a sequence
{I' ll} of continuous semi-norms, and with no loss of generality this
sequence will be taken as monotone increasing (a condition automatically
fulfilled in spaces of analytic functions). Thus, |||, < ||«]|, for ¢ > p

and all x € #; and convergence in & is equivalent to convergence

with respect to each of the semi-norms || ||, The topology on .7 is
then that of the translation-invariant metric
S 1 Jlz—y]
5.1 Yy =S =1 Jla
¢ o ¥ q=21241+||x—yllq

As we proceed to show, the Paley-Wiener theorem and its variants
can be generalized in the case of Fréchet spaces by replacing the in-
equalities on the metric by corresponding inequalities on the semi-norms.

THEOREM 5. Let {x,} and {y,} be sequences in a Fréchet space .7,
and let {\,} be a sequence of real numbers (0 <\, < 1) such that

%an(yn - mn)

<\
q

m
DI
n=1

q

holds for all finite sequences a,, a,, +--, a,, of scalars. Then

(1) if {z.} is total in &, so is {¥,};

(2) f {x,} s a basis in F, so is {y.}, and the coefficients in
any expansion >, by, satisfy

< 1
q 1—2,

S bt

n=1

PIRJA

n=1

(q: 1, 2y "');
q
(8) if {x,} is a basts in F , there exists an automorphism A on
F such that y, = Az, (n =1,2, -++).

THEOREM 6. Let {x,} be a basis in a Fréchet space # and {y,}
a sequence triamngular with respect to {x,}. If there exist positive
integers k, and positive numbers N, < 1 such that

(5.2) | Zauton 2 (=12

<N,
q

m
> 0,2,
n=kq

a

holds for all finite sequences Ay O ery 0y Oy of scalars, then
(1) {y.} is a basis in & , and
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(2) there exists an automorphism A on . such that y, = Ax,
n=1,2---).

The proof of Theorem 5 duplicates that of Theorem 1. The proof
of Theorem 6 would likewise duplicate that of Theorem 3 if we knew
that {k,} were bounded (so that in effect we could replace it by a single
number k). Failing this, we use the following argument, based directly
on the properties of the transformation 7' of (2.3).

Convergence of the series

Tw = 3 pu(@)y, — )

is ensured by condition (5.2). In fact, if x lies in the k,th terminal
coordinate subspace ﬂ',;l, we have

(5'3) ||Tx”q£>\’q“x||q ((I:l, 2, "')°

Since the complementary subspace corresponding to each ‘%c,, is finite
dimensional, it follows that T is continuous on & .°

Now, taking account of the fact that % is closed, we verify at
once that « in .%_, implies T« in %. Hence, for arbitrary « in &,
the point T*'x must lie in &4 (k=1,2,.--). This result, combined
with (5.8), leads to the inequality

T ], < ()| T x|, (@=1,2, ---)

for n > k, and all « in % . As in the proof of Theorem 1, it follows
that the operator series

v= 5

converges and that U= (I + T)"'. From this we conclude that A =
I+ T is an automorphism on & carrying x, intoy, (n = 1,2, ---), and
that {y,} is a basis in & .

To frame an analogue of Theorem 4, we first define an absolutely
convergent basis in the Fréchet space .# as a basis {x,} such that

;”¢n(x)xn”q<+oo (q:]-yzr "')
for all x in & .°

5 Any « in & can be expressed as x=ux'+2’/, where 2’ is the projection of x on the
complementary subspace to & kg and x’/ is the projection of x on & . By continuity of the
coefficient functionals, 2 — 0 implies 2’ - 0 and thereby 2’ - 0. Then 7%’ — 0 and T2/’ — 0,
so that Tx — 0.

6 It is evident from [14, p. 101] that this definition is independent of the choice of
semi-norm sequence from among those defining the topology on &.
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THEOREM 7. Let & be a Fréchet space, {x,} an absolutely con-
vergent basis in F , and {y,} a sequence triamgular with respect to

{r.}. If

, S @@,
(5.4) lim sup =2+ <1 (¢g=1,2, ),

e || L, ”q

then

(1) {y.} ts an absolutely convergent basis in .7 , and

(2) there exists an automorphism A on & such that y, = Ax,
n=12,++).

Proof. Setting

(5.5) el = 35 llu@, @=1,2-)

for all x in &%, we observe that {|| ||/} is an increasing sequence of
semi-norms on % . It thus defines a metric o’ on & according to
(5.1), and there is no difficulty in showing that p©’' yields the same
topology as p.” Then, to each index ¢ there correspond a positive
number A, < 1 and a positive integer k, such that

holds for n > k,. The additivity property (5.5) assures us also that (5.2)
holds for the primed semi-norms, and the proof is completed just as in
the case of Theorem 4.

Again we note that the semi-norms on & can be required to have
the additivity property

anal%(oc)xn = 2|l Pal@)n lla (=12 --+)
relative to the absolutely convergent basis {x,}. In terms of a ‘‘natural”’
sequence of semi-norms of this sort, condition (5.4) reduces to

(5.4") lim sup Y0 = @ully <1 (¢=1,2,--:).

n-see [ 24 [lq

It is readily seen that the coefficients for an element in a given
basis are finite linear combinations of the coefficients in a basis triangular
with respect to the given one. We have, in fact,

LEMMA 2. Let {x,} be a basis in 7 and {y,} a basis triangular
with respect to {x,}. If x is an element of _# having expansions in

7 This argument appears also in the proof of Lemma 4 of [11].
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the two bases as

x = }i Ay, and X = f} b, Yn

1

3
i
-
3
It

then
a=b  and G, = b, - S b Puta) (n = 2).

Proof. The expansion of # in the basis {y,} appears as

€ = bz, + P(Y)®, + Pyy)s + -]
-+ bz[xz + (ps(yz)xs + .- ]
+by[w; + - -]

4o

Since .7, is closed, it follows from the linear independence of {x,} that
a, = b,. The fact that .7, is closed then results in a, = b, + ¢.(y,), and
the general formula is obtained by induction. (Note that the proof in
no way depends on rearrangement of the series.)

Using this lemma, we show how certain inequalities on the co-
efficients a, give rise to corresponding inequalities on the coefficients b,.
The underlying space will be taken as a Fréchet space .&# , and {y,}
will again be assumed to be a basis triangular with respect to the basis
{w.}.

Thus, let « be an element of & having the expansion

= Upln ,

and for each ¢ let M, be a constant such that

M, m=1,2 ).

2 llq

la, | <

Constants of this sort always exist if the basis {x,} is absolutely con-
vergent, since we can, for example, put M, = 3| a,%,|l,. (In spaces of
analytic functions, where we have access to the Cauchy inequalities,
the maximum modulus of course yields a better choice for M,.) In
similar fashion H,(y,) will be taken as any constant for which

(5.6) P | < Hq(yn)%f‘—lll"l Gi>n+ 1)

Absolute convergence of {x,} again suffices to ensure the existence of
such a constant, for example
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oy Pl
)=

and our remark on the case of analytic function spaces carries over.
Combined with the identities on the coefficients given in Lemma 2,

the above inequalities provide the estimates
by ]2 ll, < M, ,

b+l lle < My + S, HoWne) [ acs || i (n > 2.

We apply now a procedure based on the techniques (due to Narumi
[20]) used in proving Theorem 5 of [10]. With {B,} defined inductively
according to the equations

B, = M, ,
By |@ulle = My + % BasHo(Uas) || @y (n>2)

it is readily verified that
B, |l ulle = Bu-r [ @p-i lle = Buer Hy( Y1) || Tamr [l -
Thus, for n > 2
B, |l 2ally = (1 + H¥u-)1Bu-r || €ps o »
so that
B |2 l, = M, ,

Bullalle = M, [T 11+ H(,)] (> 2).
There follows

THEOREM 8. Let # be a Fréchet space, x an element of 7 , {x,}
a basis in F, and {y,} a basis triangular with respect to {x,}. Let
us suppose further that there exist constants M, such that the coefficients
iwn the expansion

x = ianxn
satisfy
|a’n’S Mq (n=1,2,"°)
[ 2l

for each index q, and that there exist constants H,(y,) for which (5.6)
holds. Then the coefficients in the expansion
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z =3 0.4,
n=1
satisfy the inequalities
b <M b <M T4 H ) (n>2).
leuq ”anq k=1

If in addition there exist comstants J, such that

(6.7 lim sup Hy(y,) < J, e@=12--.),

n—oo
then there also exist comstants K, such that

K,
2,1l

for all q, and the constants K, are independent of q¢ whenever the same
18 true of M,, H(y,), and J,. In particular, condition (5.4) implies

1ba| < (14 Jy)"

n=1,2 )

K,
ENP

[b,] <2

6. Concluding remarks. We begin by making explicit the speciali-
zation of Theorem 7 to spaces of analytic functions.

Thus, let 2 be a non-empty plane region, and fix {2, as any
sequence of non-empty subregions of £ such that 2, is a compact subset
of 2., (¢=1,2,..+) and 2 = U £,. The family of all functions f ana-
lytic on 2, topologized by the sequence of semi-norms

Mq(f) znlaxlfl ’
Qq
is a Fréchet space which we shall denote by .o (9).
Applied to .7 (2), Theorem 7 yields the following variant of Theorem
2, p. 117, of Evgrafov [17].®

THEOREM 9. Let {a,} be an absolutely convergent basis in S/ (Q),
and let {B,} be the triangular sequence defined by

Brle) = ) + 3 Antnil2)

where the A,, are any complex numbers for which the indicated series
converge. If

8 Evgrafov’s theorem, stated in terms of total systems, is given only for £ simply
connected and all a, bounded on 2. Also, our condition of absolute convergence is replaced
in the hypotheses of Evgrafov by the existence of a rather special sort of biorthogonal
system.
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6.1) lim sup 35 | A, | Hel%azd) < (G=1,2--),
nooe | k=1 Mq(an)

then {B,} is an absolutely convergent basis in 7 (2), and there exists

an automorphism on &7 () carrying o, into B, for each n.

A further specialization results in the theorem of Boas (cited in § 1)
on Pincherle bases in spaces of functions analytic on the discs N(0) =
{#z: |2] < R} (0 < R< +o). It is convenient here to let the index =
start with 0 and to put 8,(?) =2" (n=0,1, ---).

COROLLARY 9.1. (Boas). Let
a,(z) = z”(l s A,mz"> =01, ),
k=1

where the A,, are complex numbers, define a sequence in 7 (Ng(0)).

If

(6.2) lim sup 5_“1 | A |78 <1

Jor each r < R, then {a,} is an absolutely convergent basis in " (Ng0)),
and there exists an automorphism A on ' (Ng0)) such that a, = AS,
(n=0,1,---).f

Returning to the case of general Fréchet spaces, we observe that
the results of §5 remain valid if we assume only that the conditions
on the semi-norms are satisfied for infinitely many indices ¢. In fact,
the topology on & obviously is not affected if we replace the initial
sequence of semi-norms by any subsequence of it.

Finally, we remark that when the underlying space is a Banach
space, Theorems 4 and 7 coalesce. The common theorem is, however,
somewhat restricted in scope, since every Banach space admitting an
absolutely convergent basis is isomorphic to the space I* of absolutely
summable sequences (see Karlin [18, p. 974]).
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