A MULTIMOVE INFINITE GAME WITH
LINEAR PAYOFF

LEONARD D. BERKOVITZ AND MELVIN DRESHER

1. Introduction. Games can be classified in terms of the number
of moves by each player—unimove or multimove—and in terms of the
number of choices—finite or infinite—available at each move. The original
work of von Neumann [2] on the existence and structure of solutions
of games was, in effect, restricted to unimove finite games. Later,
Ville [3] proved the existence of optimal strategies for unimove infinite
games with continuous payoff funection.

Except for games with perfect information, multimove finite games
have been analyzed only very recently; and multimove infinite games
with an arbitrary number of moves have hardly been touched upon.

In this paper, we analyze a multimove infinite game with a linear
payoff function. The game is symmetric in every respect except that
the initial conditions of the two players are different. We prove that
one player has an optimal pure strategy and that the other player
must randomize on the strategies. The optimal strategies and game
value are derived.

Although this game had its origin in a military problem concerning
allocation of resources among several tasks, it is presented here solely
for its mathematical interest. A complete discussion of the military
problem and its solution is given in [1].

2. Description of game. We shall analyze the following multimove
zero-sum two-person game. At the wmth move, or stage of the game,
Blue has resources given by the state variable p, and assigns a value
to each of two tactical variables under his control, x, and wu,, subject
to the constraints

(2.1) 2, >0, u, >0, @, + u, <p,.

At the same time, Red has resources given by the state variable
¢, and controls the values of the tactical variables y, and w,, subject
to the constraints

(2.2) Yn=0, w, >0, ¥, + w, <q,.

Let us number the moves from the end of the game; i.e., the nth
move means 7 moves to the end of the game. The state variables at
the (n — 1)-st move are defined by
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2.3) Dn-1 = max [0, p, — max (0, y, — u,)] ,
) Qp—1 = Max [0’ 9, — Mmax (0! Ly — wn)] .

The payoff to Blue is given by

Mz

n=1

where N is the number of moves in the game.

The play of the game proceeds by first making the Nth move, then
the (N — 1)-st move, +-., the second move, and the first move. An nth
move of the game consists of a choice by Blue of x, and u, satisfying
(2.1) and simultaneously a choice by Red of ¥, and w, satisfying (2.2).
We assume that each player knows the manner in which the game
proceeds from stage to stage; namely, each player has the information
expressed by equations (2.3). We also assume that at each stage of the
game both players know the state variables and the entire past history
of the play; that is, at the nth move, both players know N, vy, q5, and
also know «,, u;, ¥;, w, for 1 =N, N—1,.--,n+2,n+ 1. It follows
that p,, ¢q;, for t= N, N—1, ..., n 4+ 1, n, are known at the nth move.

The strategies of the game in normal form will be defined inducti-
vely on the number of moves. First, a strategy for Blue in a one-move
game is a point X, = (x,, 4,), where x, > 0,u, >0, and x, + u, < p,.
Similarly a strategy for Red in a one move game is a point Y, = (y,, w,)
where y, > 0, w, > 0, and y, + w; < q,. Now let oy be a strategy for
Blue in an N-move game. Of course, oy is a function of p,y and gy.
Then, in a game of N 4+ 1 moves, at the (N + 1)-st move Blue chooses
a point Xy = (Xy41, Uys,) in the triangle 4., defined by

(2.5) Ty1 =0, Uyt =0, Tyy + Uyis < Dyia

and simultaneously Red chooses a point Yy, = (¥y11, Wys,) in the trian-
gle Dy, defined by

(2.6) Yvir1 =0, Wy =20, Yyir + Wyt < Qs -

These choices yield the state variables py, and gy, by equations (2.3).
A strategy oy, for Blue in the (N + 1) move game is then defined as
a choice X, in 4,,, and a function @, that associates, with each point
(@y41s U1y Yw41 Wys1) = (Xp11y Yyy,) in the product space dyiiDyiq a
strategy oy in the N-move game. Thus oy,, can be written as

Oy = (Xyi1; Q) = @y11, Uy D) »

where @, assigns the strategy oy to the point (Zy.1, Uyi1, Yni1y Wy1)-
In a like manner, a strategy 7y, for Red in the (N + 1)-move game

is defined as a choice Y., and a function vy that associates, with each
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(Xy+1y Yyy), a strategy 7, in the N-move game. Thus we have
Ty = (Yyis \EN) = (Yy+1 Wyss; ¥w) -
3. Solution of game. The main result of this paper is the following:

THEOREM 1. If N =1 or 2, the value of the game is given by
V(0y, q5) = N0y — qv) .
Blue has an optimal pure strategy:
T = Uy = 0 for m < N .
Red has an optimal pure strategy:
Y = Wy, = 0 for m < N

If N> 3, the value of the game is given by the (N — 2)-piecewise-
linear function.

VN(pNqu)Zafva_bquNy i:]-!z;""N_z’

where the constants al, and bl are positive and monotone decreasing in
1 for fixed N; the value of the superscript i is determined by the ratio
Pxlqy. The optimal strategies for the two players are as follows:

(i) At move m = 1, 2(counting from the end) the players choose

Ty = Uy, = Yo = Wy, = 0 .
(ii) At move m = 3, if, p, > q,, then Blue chooses Z,, U, such that

. 3q

< &, min (M’ _3) y

qs 3 2 2
Uy = Ty — Q.

Red chooses either 4, = q, or w, = ¢, each with probability 1/2.

(iii) At the (m + 1)-st move, where 3 < m < N — 1, if Dni1 = Qv
then the ratio P, 1/q... determines an integer 1,1 <i<m —1, and
Blue chooses

z — (zm - a’fn)p'nﬁ—l —_ (m _ 2b'fn)qm+1
m+1 i
m + b},

?—’Lm+1:pm+1—5"m+1? fO’r"L=1,2,~--,'m,——2,

and

a—’m+1 = (2 - L>Qm-(-1 ’

b?
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am+1 = (1 - ‘]:‘>qm+17 fO‘r‘ 1=m—1 ,
m

where the constants al, and b, are those associated with a game of length
m and nitial condition D, @.. Red chooses either Y,., 0 Wypii = Qmit
with probabilities at, = bi,/(m + b)) and Bi = m{(m + bi), respectively,
SJor 1 =1,2, -+, m — 2; however, if © = m — 1, Red chooses Y11 = Qum+1
with probability i, = 1/m, 0r Wy, = Qui With probability B, = 1/bn?,
OF Ymi1 = Wy = 0 with probability vi, =1 — 1/m — 1/(b2).

The proof of Theorem 1 will be carried out by induction on N, the
number of moves of the game. In the course of this argument, recursive
definitions will be given for the constants a% and b%. As an illustration
of the theorem, Table 1 shows the solutions for games with eight or
less moves.

4. A three-part sufficiency condition with mixed strategies. From
the statement of the theorem, it is seen that mixed strategies will have
to be introduced, at least for Red. However, it is sufficient to introduce
a restricted class of mixed strategies in order to prove the theorem.

For a game of one move, a mixed strategy for Red is a probability
distribution G, over D,. Now suppose G, is a mixed strategy for Red
in a game of N moves and state variables py and ¢5. Then a probabi-
lity distribution gy,, over D,,, and a function +y,, that associates
(Xyi1 Uyi1y, Ynary Wyes) With Gy is a mixed strategy Gy,, in the (IV + 1)-
move game. Thus we may write the mixed strategy as

Gy = Gy Yy) .

Mixed strategies F,, for Blue are defined similarly by a distribu-
tion function fy;, and a function ¢,, and can be written as

FN+1 = (fzv+1; ¢N) .

Let I}’,\ml denote a mixed strategy for Blue in the (N + 1)-move
game in which he selects Xy, = (#y.1, Uy,,) With probability 1 at the
(N + 1)-st move. Let GN,H denote a mixed strategy for Red in which
he selects Yy, = (Yyi1, Wy4,) with probability 1 at the (IV + 1)-st move.

Suppose that Theorem 1 is valid for games of length N =n. Let
FY and G} be optimal strategies for Blue and Red, respectively. Let
¢n,Yrn denote the functions that associate (,i1, Uni1y Yni1y Woi) With
Fx, Gx, respectively. Suppose, further, that p,., > q,,, (from symmetry,
it suffices to consider this case only).

The theorem asserts that at the (n -+ 1)-st move Blue’s optimal
choice is a point (x,.,, #,.,) that is determined by the ratio D,ii/¢n+1.
Denote this point by
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X = (@0, Uny1) = @ni(Prsss Cusd)s Un11i(Dt1s Turd)) »

and let F:+1 = (X:+17 (75;:)
The theorem further asserts that Red chooses (¥, W,i:) to be

Yi.=(0), Y2 =009, Y2 =00,

with probabilities «, ., Bri1, and ¥, = (1 — @uyy — Bary), respectively,
the values of «,,, and B,., being determined by the ratio ,:./q,:1.
Denote this distribution in 4,4, by 9F.:(Dns1, 9ns), and set G, =

(g:+1(pn+ly qn+l)r «]lr\:),
Define

Ln+1(Xn+1, Yn+1) = Put1 — Pu+1 — Unt1 — Qui + Yn+1 + Why+1
and

Mn+1(Xn+1a Yn+1) = Ln+1(Xn+1r Yn+1) + Vn(pn! Qn) ’

where p,, q, are obtained from p,.., ¢,+. by means of (2.3) and the
choices 11, Unity Yns1, Wor. Let Ey(Fy, Gy) denote the expected payoff
of the game of length N if Blue chooses a strategy F'y and Red chooses
a strategy Gy. Then

En+1(ﬁ';:+1: C311-!-1) = Ln+1(X;Lk+1’ Yn+1) + En(F;f’ Gn)
2 Mn+1(X;Lk+17 Yn+1)7 fOI' all Yn+1 ’

where (X %,,, Y,.1) = G,. Furthermore, we have

EpiFy iy Gid) = il Lyi(Xaisy Yi0) + Eu(F,, GI)]
+Buisl L Xniny Y3ibo) + En(Fy, G2))]
+ (1 — @iy — Bui)Lin i Xuvs, Yibi) + Eu(Fy, G1))
< Wi My X1y Yibh) + BuiaMy o Xr, Yi21)
+ (1 — s — Bur) My (X0, Y2L)

fOI‘ all Xn-Hv Where ¢n(Xn+1’ Ynﬂ) = Fn-
The validity of the following lemma is now apparent.

LEMMA 1. Given that Theorem 1 is true for N = n, to prove the
theorem for N =n + 1 with initial conditions p,., > Q... it suffices to
exhibit the X%, 0yyy, and B, for which

(4.1) Eyi(F, GED) = Viid(Passs €ur) 5

(4‘2) Mn+1(X;z:+1: Yn+1) Z Vn+1(pn’r1! QnJrl)
Jor all Y,,,, and
(4'3) an+1Mn+1(Xn+1y Y;Llll) + Bn—l—an-i-l(XnJrly Y;I,Z)H)
+ (1 - a’n+1 - /811,+1)Mn+1(Xn+1) Yibsi)l) S Vn+l(pn+1, qn+l)
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for all X,,,.

5. Some special cases. It will also be useful to tabulate the in-
formation given by equations (2.3). We may assume that p, > q¢,,
whence y, — u, > P, is impossible and the equations (2.3) can be tabu-
lated as follows, where the subscript n is suppressed:

Table 2
Determination of Values of State Variables pn-1 and ¢n-:

Region in (X, Y) Space Negion Pt -1

y—-u<0, x—w<0 I P q

Yy—-u<0,0<2r—-—w<gq II D q—x+w

y—u<0, T—-w>q 111 » 0
0<y—-u<p, r—w<0 v pP—yY+u q
0<y—-u<p 0<ez—-—w<q \Y P—yY+u qg—x+w
0<y-—-u<p, T —w>q VI P—Y+u 0

Games of length N =1, 2,3 will now be discussed. From the state-
ment of the theorem, it is clear that separate arguments are needed
for N=1,2, and for N > 3.

For N =1, an examination of the payoff (2.4) shows that optimal
play for Blue is to choose x, = u, = 0, and that optimal play for Red is
to choose ¥, = w, = 0.

As a consequence of Lemma 1, for N = 2 it suffices to consider

M(X,, Y)) =0, — @ — Uy — @, + Yo + w, + (0, — q))

with p, > ¢q,. Using Table 2 and dropping the subscript 2, we may
write this
20 —q) — (x +u) + (¥ + w)  in region I,
20— q) —u +w in region II,
M(X, V) = 4 2p —q— (v +u) + (¥ + w) in region III,

20— q) —x+w
2(p — q)
2p —q —x +w,

in region IV,
in region V,
in region VI,

where the region in the (X, Y) space for which each expression on the

right is valid is that given in Table 2.

choices at the second move are

(z, u) = (0, 0) for Blue; (y, w) = (0, 0) for Red;

and that V, = 2(p, — q,).

For N = 3, it suffices to consider

It now follows that the optimal

Thus the theorem is proved for N = 2.

M(X,, Y;) = py — @ — Uy — @5 + Ys + ws + 2(p, — Q,)
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where p, > ¢,. It follows from Table 2 that, dropping the subscript 3,
we may write M,(X,, Y,) as

(51) Ap - Bq + & + &u + &y + €4V ’

where the values of A4,B,¢;,=+1,7=1, --.,4 depend on the region
of the (X, Y) space. To prove the theorem for N = 8, we use (5.1) and
Lemma 1 to verify that the choices given for the third move are actually
optimal. .
Games of length N =3, and N =4, as can be seen from Table 1,
are somewhat transitional in character, and do not exhibit all the charac-
teristics of games of arbitrary length. For N = 5, however, all of the
characteristics of the game’s structure become apparent. For the reader
who wishes to gain further insight into the structure of the game, as
well as to obtain a motivation for the general induction step, the com-
putation of the functions m,(x, u)=min, M,(X,, Y,), ©=3,4,5, is recom-
mended. By way of illustration we give my(x, w), valid for 1<p/g<7/3.
The authors found the construction of a diagram quite instructive, and
also indicative of the form of my(x, u) for p/qg > 7/3. We have that
my(%, u) is given as follows, (where the subscript 5 is omitted):
(i) bp—q—2 —u, if © > 17¢/10, u > 3q/4;
(ii) b5p — 20¢/3 + Tx/3 —u, if 2¢ —3p/7 < x < 17q/10, 5x — 6u < 4g¢;
(ili) 11p/2 — 9q + Tx/2 — u, if ¢ < x < 2q — 3p/T,
9 — 8u < 10q — p;
(iv) 11(p — )2 —u, if 0 <2z < q,% + Tx > Tq,
14z + 24u > 3p + 1lg;
(v) 11p/2 — 9q + T(x + w)/2, if 2 >0,u >0,
u + Tx < Tq, Tz + 3u < 109 — 3p;
(vi) 5p + 22¢/3 + Tx/3 + 3u, if 2 <q,u >0,
Te + 3u > 10q — 3p, 14z + 24u < 3p + 11g;
(vii) 5p— 49— 2+ 3u if x > q,u > 0, ba — 6u > 4q,
92 — 8u > 10q — p.

6. Definitions and properties of constants. The first step of the
proof of Theorem 1 is to define the sequences {ay}, {b%}, {\i}. To this
end, consider the following sequences defined in the manner and order
indicated:

(6.1) a;=38,ayi=a;"+1n>3;
(6.2) h=8bi=4—— 1 n>3;
ar? br—2

(6.3) b, =a,=0,n>3;
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(6.4) ai,, — @ (2b, + )
' bt ar o
. 3an_:;)ia 1 >1inm=1+2,1+3,
(65) bn+1:‘bm |
(6.6) X:”b_lz +oo,'}’[,:3,4,5,...;
(6.7) M=1,
1 n-1 _ .
N =3 - al - =ML =845
6.8 M= sy =128, -3,
( a/z-l_az

The following properties of the foregoing sequences will be useful
in the proof of the theorem; indications of the derivations of the prop-
erties are given after the listing:

(6.9) ar = n, n>3;

(6.10) a, = b}, n>3;

(6.11) 4 >0 >007 >3, n=3;

(6.12) a, > b, >0, i=1,2,0,n—2;
n=23,4,5,¢++;

(6.13) n < al < 2n, 1=1,,m—2;
n=23,4,5,,;

(6.14) Z:EZ;:’ } n>381=238 ,n—2;

6.15) A, = (2n—a;)i?jb- G MEEISLE e m -2

(6.16) >N >N > 2, n>3;

(6.17) NG >\, n>38;1=1,2,4,n— 2

(6.18) Ao <\, n>8;1t=1,+-,m—2.

Statements (6.9)—(6.11) follow from the definitions and from trivial
inductive arguments.

Inequalities (6.12) and (6.13) are proved by induction on n,n > 1 + 2,
for each fixed 1.

The monotonicity properties in (6.14) are established as follows.
The monotonicity of {b}..},? =1, ---,n — 2, follows, by induction on =,
from the monotonicity of {b:},7 =1, ---,n — 2. To show that b272 > b2},
it suffices to show that 272 > 4. This inequality, however, is obvious
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from (6.5) and (6.11). When we compute ai3i —ab,,1=2,8, ¢, — 2,
we obtain

n
(n + b7 (n + b°)

where the subscript »n is omitted. From the inductive hypothesis that
{ai} is monotone decreasing in ¢, and from (6.13), the bracketed expres-
sion in turn is seen to be larger than the positive quantity

[b'2n — af) — b*(2n — a'™Y) + n(a** — a?)],

b¥'@2n — at) — b'2n — a* ) = (b — H(2n — a' ) .
Furthermore, for n > 3, by (6.1), (6.4), and (6.11) we have

bZ‘Z(n—l)—1> 3n—1)—mn
P +m T VP 4w

st — e = >0.

Thus the fact that {a.,} is monotone decreasing in % is established.
To prove (6.15), we use (6.4) and (6.5) in the definition (6.8) of A%,,.
Inequality (6.16) is obvious, and (6.17) is established inductively as

follows. Suppose A7 > AL for =1, .-+, — 1. Consider

ML _ M@ — a\ + (0 + BY)]
Mo M@ — @ £ (0 0]

1=1,2,+,m —3,

where the subseript # is omitted. To prove that this ratio exceeds 1,
it therefore suffices to show that

n()\’i-{»l _ )\‘i) + )\‘H—lbi . )\.in—l > )\'ixi-ﬁ-l(ai _ ai+1) .

Upon replacing A on the right by its definition (6.8), we see that this
last inequality is equivalent to (n + b))(M**' — \%) > 0, the validity of
which follows from the inductive hypothesis. The chain

nar- _ st _ g
P Dn o e+ 1) b

completes the proof of (6.17).
It is seen from (6.15) that to verify (6.18) it suffices to show that

n—2 —
)"n+1 -

< AP

(6.19) x;z%—_-%,nz?,; i=1,2, -, n—2.
n — Qa,

This inequality is shown to hold by induction on 7%, as follows. For
1 = 1, equality is obvious. Suppose that the inequality holds for 7 = k.
It is then seen to hold for i1 =k + 1,1 <% <n — 3, by writing (omitt-
ing the subscript n)

M2 — aF ) — (2n — YY) = NH(2n — af) — (2n — bF)
+ )‘kv}—l(ak _ ak+1) _ (bk _ bk+1)
> M @2n —a¥) — 2n — bF) > 0.



A MULTIMOVE INFINITE GAME WITH LINEAR PAYOFF 753

7. Miscellaneous preparations. For N < 3, Theorem 1 has been
proved in §5. The theorem will now be proved inductively for arbitrary
N > 3. Suppose then that it has been established for N=n > 3. It
is required to show that it holds for N==n + 1.

In order to simplify notation, for the remainder of the proof we
shall omit the subscript #. Thus the symbol ai, say, will be written
merely as a’, the symbol N34 as A7, bt as by, ete.

From the symmetry of Theorem 1, it is clear that it suffices to
consider the case p, > q,. Define X| = X}(p,/q.) as follows:

Xir=Xi=@uw) it M<Po< v, i=1,.0,m—1,

1

where
=B = (200 g E, i=1,. -2,
b+ n
(7.1)
@ = (225 = (1- L,
b2 n
Define a, = al(pllql) and Bl = Bl(pl/ql) thus:
@) if M <o 1<i<n—2,
then
: bt ; n
7.2 a, = ) = -, =8 =—:-;
( ) n —I— bl Bl Bl n + bl

by if Pr> o

1

then
1

n—1 __ n—1 __.
art=—, nl

n i
Clearly, a! > 0,8: >0 for all ¢ satisfying i1 <1<n—1;, a* + 8 =1
for all ¢ satisfying 1 <+t <n—2; and a* + B <1 for 1 =n — 1. Thus
a, and B, are probabilities. Lemma 2 will show that X} is an admis-
sible choice for Blue and will furnish some useful bounds for ! and u'.

LemMmA 2. The point X is an admissible choice of strategic
variable for Blue. Furthermore, for all i satisfying 1 <i<mn —1,
we have

. <7< 2q,

(7.3) .
0<ui<aq,.
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Since X} is defined piecewise, the first step in showing that X is
admissible is to show that the pieces come together—i.e., that X is
well defined. Substitution of p, = \"'q, into the definition (7.1) of
z7?, and application of (6.7), show that if p, = \*"q,, then zp* = Z?.
Similarly, it is seen that #?2 = u?* for p, = A*"'¢,. Substitution of
D =ANg,1=1,++,n— 2, into the definition (7.1) of Z, and use of
(6.15), show that, for p, = Mg,

= (2—E>q1 .

Substitution of p, = \!*'q,, and use of (6.15), show that, for p, = M*q,,
t=1,-,m—3,

Thus X} is well defined, and for M < pfg, < A, 1=1,2,-.-,m — 3,

)\’i _ )\,'H—l
(7.4) (2-Ma<z<(2- 20,
with equality on the left occurring for p, = M\ig,, and on the right for
p, = M*lg,. Similarly, we obtain

AR n—2 - =n—1

(1.5) (2 ~ NH)ql <F L.

Clearly, (7.3) implies z! > 0, u! > 0 for all ¢ satisfying1 <¢<mn — 1.
By definition, &' + %! =p, for 1 <1 <n—2; and for 1 =n —1, we
obtain 7 + u?¥ ' = A}'q; < p,. Thus the proof of the lemma depends
on the proof of (7.8). For 7 =mn — 1, (7.3) is obvious. The inequality
(6.18) implies \! < A\, whence it follows that (2 — Ai/Af)q, > q, for ¢ =1,
2, +++,n — 2. Clearly, the inequality (2 — M/\)g, < 2¢, holds for 7 =
1, ---,n — 2. Hence, we obtain ¢, < ¥ < 2¢, for 1 =1, -+, n — 2.

To verify 0 <ui<gq, for 1 <i<mn—2, we substitute from the
definition of Z! into the definition %! = p, — Z! and obtain

’L_L'i: (bi + ai _ n)pl 'l' (n _ 2bi)q1
0" +mn) ’

Hence, showing that %! < ¢, is equivalent to showing that p,/q, <38b'/(b* +
a* — n). Since p,/q, < N*, it clearly suffices to show that A+ < 3b%/(b* +
at —mn). If ¢ =n — 2 this inequality is obvious. If 7+ < n — 3, then by
using (6.15) and (6.8) this inequality becomes

1<i<n—2.

b* — Nt —mn) >0, 1=1,2,++e,m— 8.

Since a"* = n, it follows from (6.8) that for 4 = » — 3 the expression on
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the left of this inequality is positive. Further, the left hand member
is a monotone decreasing function of 4, as can be seen by forming the
difference of the left-hand side for superscripts ¢ — 1 and ¢ and getting
A —AH(a* — n) > 0. This inequality follows from (6.13) and (6.17).
Thus it follows that wi < q,. The inequality u! > 0, follows from

O +a' —mp + (0 — 20, > (@ — ), =0; 1<i<n—2,

and the lemma is proved.

It follows from Lemma 1 and the definitions of X, ay, B;, and from
the inductive hypothesis to the effect that Theorem 1 is valid for N = n,
that the validity of Theorem 1 will be established if (4.1), (4.2), and
(4.3) of Lemma 1 are shown to hold for this X}, a,, B,. The next sec-
tions of the proof will be devoted to the verification of these three
statements.

In the course of this verification, it will be necessary to compute

(7'6) Ml(Xn Yl) = LI(XD Yl) + V(p, (I)
:Ll(leYl)"—ajp—“bJQy j:1,°",n—2,

explicitly in terms of p, q;, X;, Y;, for certain choices of X, Y,. For
any given fixed initial condition (p, q,), an integer 1 <i<m —1 is
determined by the inequality \! < p,/q, < A\, Each choice (X, Y)) by
the players falls into one of the six regions enumerated in Table 2' and
determines p and ¢ and hence an integer 1 < j <n — 2 via the inequ-
ality M < p/g < M+, It is this integer j that appears in (7.6). Clearly,
j is a function of p, ¢, X;, and Y,. In computing M,(X,, Y,) explicitly
in terms of the initial conditions and choices X,, Y,, it will thus be
necessary to take into account the region of the (X, Y)) space and the
supersceript 5. The statement ‘“(X,, Y,) leads to case III'?’ will mean
that, for the initial condition being considered, the pair (X, Y;) falls
into region III of the (X,, Y;) space and the ratio p/¢ is such that
j =7, At first glance, it appears that there are 6(n — 2) cases. Actually,
not all of these cases are possible; and since some specialization of
X,, Y, will oceur, not all of the possible cases will be encountered.

8. Verification, first part of sufficiency condition. We divide the
discussion into two cases.

Case 1. p,fq, > N

For this initial condition, it is readily seen from Table 2 that
(X, YY) leads to case VI, (X, Y{?) leads to case 11", and (X*, Y®)
leads to case III*%, It then follows by straightforward computation

1 The table is given for passage from n to n — 1, whereas the present situation is for
passage from n -+ 1 to n. The adjustment of subscripts is left to the_reader.
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and the definition of §6 that
8.1)  M(XF, YP)= M(X], YY) = M(XY, YP) = Vi(p, @) -
The equality El(ﬁ'*, G¥) = Vi(p,, q) now follows from
E(F¥, Gr) = o[ L(X ¥, Y) + E(F*, G*)]
+ BIlL(X¥, Y) + E(F*, G*)]
+ (1 — a, — BYIL(XS, YT) + E(F*, G)]
= o, M(XF, Y{') + BM(XT, Y1)
+ (1 —a, — B)M(XS, Y.
Case 2. M < pfg, < A 1=1,2,¢0e,m—2.

For this initial condition, it is immediately seen from Table 2 that
(X¥, YY) leads to case VI* 2, while (XF, Y{) leads to case II’ for ap-
propriate 5. To determine the value of j, we first observe that p/q =
0./(2q, — z¥). It follows from (7.4) and (7.5) that 7 = <. Straightforward
computation and use of the definitions in §6 now show that

(8.2) M(X3, Y1) = MyXY, Y") = Vi(py, ¢)) »

and hence (4.1) follows as before.

9. Verification, second part of sufficiency condition. Again, as in
§8, we divide the discussion into two cases.

Case 1. p,/g, > N7

Since Z'* > ¢q,, (X, Y,) can never fall into region I or IV of the
(X, Y)) space. Since (X}, Y,) lying in region V implies that
1 1

y1+w125?‘2+a?~2_q1=<2—“—+

bn__z ;@")ql > ql ’

this event is also impossible.
For Y, such that (X}, Y)) falls in region II, we have

_2 — pl > pl — bn—Z& > )’n—z
q q, — :2?‘2 + w, 2Q1 - E?_z 71 -

the last inequality following from (6.11) and (6.16). Hence, the superseript
asociated with region II is n» — 2, and
MX5Y)=0m+1p,— (0" =Dz —ut” — 1+ 0" g + v
_ (bn—2 - 1)’1,01 > M1(X;k’ YiZ)) = Vl(pu Q1) ’

the last inequality following from (8.1).
The only superseript that can be associated with region III or VI
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is » — 2. Having noted this, we easily see that for (X}, Y,) in region
III, miny M(XY, Y)) occurs for Y, = Y{”, and so (4.2) follows from
(8.1). Similarly, for Y, such that (X}, Y,) is in VI,

min M(X,, ¥;) = MyXY, Y1) = Vi(p,, 0) -
1

Case 2. A< pfg, < A t=1,¢00,m—2.

Since zi > q,, (X, Y,) cannot fall in region I or IV. If (X}, 7)) is
in region II, then we have

MX! YY) =@ +Dp— @+ Vg + ) — Dz, — w
+ Yy, — (b] - 1)?,01 ’

where j is determined by the ratio p/q = p,/(q, — & + w,). Clearly, j is
a nonincreasing function of w, alone, j = j(w,). From (7.4), it follows
that j(q) = <. For each 7, the minimum of M,(X}, Y,) is achieved at
a point Y, = (¥, w,), where ¥, = 0 and where w, is the largest value of
w such that (X}, Y)), Y, = (0, w), leads to case II. Hence, by the con-
tinuity of M(X}, Y)), it follows that the minimum of M/(X}, Y,), over
all Y, such that (X}, Y)) is in region II, occurs at Y. Thus, using
(8.2), we get

M(X7, Y1) = M(XT, Yi7) = Vi(py, @) -

The only superscript possible for (X, Y)) in region III is » — 2; thus
for Y, such that (X}, Y)) is in III, we have

MI(XI*’ Yl) =np, — ¢ + (yl + wl) .

The minimum of this expression over region III is assumed at Y, = (0, 0)
and is »p, — q,. Since we are considering the case p,/q, < A\*, the in-
equality

9.1) @ —1) — At (ai —n) >0

implies the inequality np, — q, > alp, — blq,, and so it suffices to establish
(9.1) in order to verify (4.2). With the aid of (6.8) and (6.13), it is
easy to see that the left-hand side of (9.1) is a decreasing function of
the superscript. Furthermore, for ¢+ = n — 2 it follows from (6.4), (6.5),
and (6.7) that the left-hand side of (9.1) is zero, and so (9.1) is verified.

In the event that Y, is such that (X, Y)) is in region V, we have

9.2)  M(X{, V)= (@ + Dp,— O + Dy + (¢ — 13} — w,)
+ (@) = D — ),

where 7 is determined by
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)J<£LLM.@<)J+!, §i=1,2 «e0,mn—2.
a q, — Ef + w, a
Since X is fixed, all questions concerned with determining which points
in the (X, Y)) plane lead to the different cases V'’ are thus seen to
devolve upon questions concerning point sets in the Y, plane. Clearly,
the lines L,

Y, = _)"jwl + )'j(ii - ‘I1) + p + 721 ’

in the (y,, w,) plane form a finite pencil through the point y, = p, + %!,
w, = ¥ — q,. From the monotonicity properties of the sequence {\'},
it follows that for any fixed y, = ¢ with ¢ < p, + %! (and so particularly
for ¥, < ¢)), as one moves along y, =c¢ in the direction of increasing
w;, the lines L’ are encountered in order of decreasing j, with the line
L™ being intercepted at a value of w, > &' — ¢q,. Thus, the sets in the

N

n-2

9

A=Xf"q1
Ln-3
L-70+1

n=2

vy

Jo—1
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Y, plane giving rise to the various cases V7 are, in general, as indicated
by the hatched regions in Fig. b.

From the fact that a’ > ¥, it follows that the minimum of M (X}, Y)),
over each set V7 of Fig. 1, is assumed at the upper left-hand vertex
of V/. Hence, by the continuity of M(X}, Y, in Y,, it follows that
the minimum of M, (X}, Y)), over all Y, such that (X}, Y,) is in V, is
achieved at w, = ' — q,, ¥, = 2¢, — #'. Substituting these values into
(9.2) and using i + u! = p,, we see that the value of the minimum is
2n(p, — q,). It remains to show that 2n(p, — q,) > aip, — blq,. Since
2:/q, > N, this inequality is implied by the inequality \!>(2n—b)/(2n—al)
which is established by induction in exactly the way that (6.19) was
established.

Finally, the case in which (X, Y)) lies in region VI must be con-
sidered. Examination of Table 2 shows that the only superscript possible
is j =n— 2, and so

M(Xik’ Yl):(n+1)p1"q1_57;+(n—l)ai“—(n_l)y1+w1-

The minimum of this expression is assumed at Y, = Y{". Since M,(X},
Y{®) = V,, the proof of (4.2) is now concluded.

10. Verification, third part of sufficiency condition. The proof of
(4.3) will clearly involve the computation of

(10.1) A(X) = a,M(X,, Y{") + B M(X,Y)
+ (1 - a; — /81)M1(X1y Yi3>) .

Thus, for each X, it is necessary to know the case to which we are led
by each of the points

x

)
AVr? Al Amr?
BI™? BII"* BII"?
cur? cur? cimrr?

2q
AVIr? Ar? Al
BIU BV BIV
cir? cur? cur?
AV AT Al
BT Bl BV

ci’ cI ci’

v
R

q Fig. 2 24
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A (X, YY), B (X, Y?), C: (X,YD).

Part of this information is tabulated in Fig. 2. In this tabulation, a
symbol such as, say, AV’ in a given region means that, for all X; in
that region, (X,, Y ) leads to case V’. In some instances, the value
of j is indicated; in others, the determination of j will be made in the
discussions of Cases 1 and 2 below.

Case 1. N\ ' < p/q..

First, the values assumed by the superscripts j will be determined,
In the case BI/, Table 2 shows that p,/q, = p/q; and since, by (6.16),
AP > A% it follows that 7 = n — 2. Also, in the case BII/, we have
7 =n — 2, because

P BB ¢ < @ < 2 .
¢ 2¢—®  q
Similarly, in AIY and CII’, we have j = n — 2, because the relation
plq = p./(q, — ®,) > p,/q, holds there. In the case AV’ the value of j
is determined by the ratio

17 M

The lines
Vi Ney + u, = N, — (0 — q)
form a finite pencil through the point z, = ¢, u, = —(p, — q)). It follows
from the monotonicity of the \’s that if a line u, = ¢ with ¢ > —(p, — q,)
is traversed from «, = ¢, in the direction of decreasing x,, then the lines
of the pencil are encountered in order of decreasing j, with [*? being
the first line encountered. Thus, the lines I’ divide the square 0 < x, < ¢,,
0 < u, < q, into subregions over each of which a different superscript j

Table 3
Determination of Values of the coefficients R and S
Region of (x;, u;) plane Region R s
Number
X1 U
2q, < x4 UL > q 1) -1 -1
g1 <2 < 2qy U = Q1 2) 0 -1
0<z <q Uy > qy (3) b2 — 2 -1
2 <@y u < qy 4) -1 0
g1 < < 2q4 % < q 5) 0 0
N2 J J
0< 2 <qy # < Q1 (6) —(b—bn—_zl)b——-l %_—-l
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is applicable. The number of subregions depends on the ratio p,/q;.
For sufficiently large values of this ratio, the entire square will have
the superscript value n — 2 associated with it. The important fact
to be noted is that the region with superscript n — 2 always exists and
contains the line segment 2, = ¢, 0 < u, < q..

Clearly, _~ (X)) is continuous and is of the form

A (X)) = F(py, q) + R, + Su, ,

where F(p, q,) is a step function on the (x,, u,) plane whose values are
expressions involving the constants ¢/, ¥ and the initial conditions p,, q,.
Its exact form is of no concern here. The coefficients R and S are also
step functions on the (x,, u;) plane whose values involve the constants
o, ¥. The information concerning R and S shown in Table 3 is easily
obtained from Fig. 2, the preceding discussion, Table 2, and the defini-
tions (7.2) of «, and B..

The superscript 7 in the entries for region (6) varies as the super-
seript in AV/, and assumes the same values as the superscript in AV,

For each of the regions (1) through (6) of this table, the set of
points at which the maximum of _#(X,) is achieved on that region is
easily determined from the tabulated values of R and S in the region.
It then follows from the continuity of .. (X,) that the maximum of
7 (X,) is achieved at all points of the square ¢, <, <2¢,0 < u, <q,
In particular, it is achieved at (7%, u?™?), since by (7.3) this point is in
the square. It now follows from (8.1) that

A(X) < 2 (X)) = Vipy, ) -
Case 2. N < plg, < A 1=1,2, 00, m—2

Under these initial conditions, Fig. 2 is modified from the outset as
follows. Point C is eliminated since we have al +RBi=1forl1<t<n—2;
and the region =, > 2¢,, 4, > ¢, need not be considered since p,/q, < 3.
In determining the superscript 4 and the modifications of Fig. 2, it will
be convenient to distinguish two cases, namely p,/¢, > 2 and p,/q, < 2.

Suppose that p,/q, > 2. The superscript 7 in BII’ is determined by
the ratio

(10.2) p__ P
q 29, — x,

’

where ¢, < , < min |2q,, p, — u,]. Thus j is a nondecreasing step func-
tion of x, alone whose value at %, = 2¢, is n — ¢, and whose jumps
occur at

(10.3) @, = 2q, — % :
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where j is such that 2¢, — »,/\ > ¢q,. At the jump points, j is continuous
from the right. Let j, denote the lowest value of the superscript j.
This is clearly assumed at 2, = ¢,, and the defining relation for j, can
be taken as

(10.4) Vo < Puoyjors
q,

Since, by assumption and (6.18), p,/q, < M+ < At it follows that j, <14.
It is also necessary to have some information concerning the superscript
at w, = q., &, = P, — ¢,. Substitution of this value of x, into (10.2) gives
the quantity »,/(8¢; — p.). It can be shown that »,/(8¢, — »,) < M*, and
hence it follows that 7 < % at the point x, = p, — q;, ¥, = ¢..

xl
A
AVI"? applies whenever «,>q,, u,>¢,
A2 ' . T,>q, U =g
B1° . . %,>q,

AT, Jp<i<n—2

=~a
-

Fig. 3

The superscript j in BI’ is determined by the ratio p,/q;; and, in
view of (10.4), this makes j = j,. In AIl' the superseript is determined
by p/q¢ = p/(¢; — ). Thus j is an increasing step function of x, alone,
having value j, at z, =0, and n — 2 at @, = ¢. The remarks made
under Case 1 concerning AV’ are applicable here, too. It is not difficult
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to see that the lines I/ split up the square 0 <%, < ¢, 0<%, < ¢, as
indicated in Fig. 8, which summarizes the foregoing discussion.

Suppose now that p,/q, < 2. Most of the remarks concerning the
superscript 7 in BIIY in the case /¢, > 2 are also valid here. Now,
however, %, cannot exceed ¢, when x, > ¢,, and so there is no need to
discuss the point %, = q,, ¥, = p, — ¢q,. If 7, denotes the maximum value
of the superscript 7, it no longer need be true that j, = n» — 2. However,
the relation 7, =4 does hold. For, the maximum value of p,/q, is
1,/(2q; — p,), and so the assertion 7, > ¢ is equivalent to p,/(2q, — p,) = N
This relation, however, is easily established.

As before, the superscript in BI’ takes on the value j,. In AIl,
it is readily seen that the superscript 7 is equal to j, at z, =0 and
increases to the maximum value of 7,. In AV’, the remarks made in
the discussion of p,/q, > 2 still hold, except that for xz, > p, — q, the

*

\ AYI"_2 applies whenever «,<q,, u,<¢,
Bl » ”» %,<q,

ATV, 7,<i<y,

-
S~~~
-~
-
-
~
-~

A Tro

Fig. 4

regions are truncated by the line z, + %, = p,. Furthermore, the smal-
lest superscript involved in a truncated region is clearly j;, and.so is
greater than ¢. This information is summarized in Fig. 4.

Regardless of whether p, > 2q,, or p, < 2¢,, we may write

# (X)) = H(p,, q) + T2, + Un,
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where H, T, and U are step functions having values that depend on the
choice of X,, but do not involve the variables z, or #,. The functional
values of H, T, and U do involve the constants a?, b?, a’, b’, and those
of H involve p, and ¢, in addition. The superscripts 7, of course, are
determined by X,. The values of T and U are shown in Table 4, and
the regions of constancy are indicated. Clearly, the regions of constancy
of F' coincide with those of T and U.

Table 4
Determination of Values of the coefficients T and U

Region of (x,u)| Region

Plane Number T v Remarks
2q1 < 4 _ nbt C s
Uy < ¢y @ 1 o ! Only applies if p; > 2¢;
q <y < 2¢q ) nbi 1 ~1 Only applies if p; > 2¢;; exponent
91 < Ut b +n j varies as superscript in BII
@ <21 < 2¢4 3) nbi 1 nbt 1 Exponent j varies as

U < q1 b +n b+ n superscript in BIIJ

0 <z <q1 @) s 1 ~1 Exponent j varies as

q1 < U b+ n superscript in AIlJ
O0<a; <qu (5) bibl 1 blgd 1 Exponent j varies as

U < q1 b + n b+ n superscript in AVJ

Suppose now that p, > 2¢,. Since nb® > n + b’, the maximum of
#(X;) over region (1) of Table 4 occurs at =, = 2q,, u, = », — 2¢,. Then
the following four facts,

(a) nb* > b" + n,

(b) the b”’s are decreasing in j,

(¢) the point %, = p,, 4, = ¢, lies in a set for which the superscript
7 in BIF’ does not exceed 7, and

(d) the continuity of _# (X)), have the following implications: (a)
the maximum of _# (X)) over region (2) and that part of region (3) ly-
ing below x, = p, — q, is attained at ;, = p, — q,, u, = ¢;; (b) the maximum
of _# (X)) over that part of region (2) lying above x, = p, — ¢, is at-
tained at all points of the line x, + u, = p, that lie in the strip for
which the superscript in BII assumes the value 7. Denote this set of
points by & Again appealing to the continuity of _~ (X)), we see that
the maximum of _/(X,) over all admissible X, for which z, >gq, is
achieved on &.

It is now asserted that X lies in &. In view of (10.3), this is
equivalent to showing that we have

ZQI_&<5i£2ql— ply i=1’°°"n_2-

)‘,i - XH'I

The right-hand inequality follows immediately from (7.4) and the initial
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conditions. The left-hand inequality follows from the definition (7.1) of
Zi, (6.15), and the initial conditions.
Thus, it has been proved that

(10.6) A(XF) < A (X)

for all X, such that z, > ¢q,. Since _7Z (X}) = Vi(p, q1), to complete the
proof of (4.3) in the case M < p/q, < M+, /g, > 2, it is sufficient to
show that (10.6) holds for all X, such that x, < ¢,. From the form of
S in region (5) of Table 4, it is clear that _» (X)) attains its maximum
along the line #, = q, whenever %, < ¢,. From the form of R in this
region, it is clear that if 5" > b + m, then the maximum of _# (X))
is attained at (x,, 4,) = (¢, ¢)). Hence, (10.6) follows for all X, in this
event. On the other hand, if b%"* < b® + n, then the maximum of
# (X;) will be attained at one of the points ¢, = ¢, — P,/ >0, or %, =0,
of the line u, = ¢,. In this event, it can be shown by lengthy com-
putation that (10.6) holds for such X,. Thus (4.3) is established for
M < pfg, < N p, > 2¢,. By similar methods, which will not be carried
out here, (4.83) can be established for p, < 2¢,. Thus the validity of
(4.8), and hence that of the theorem, is established.
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