NORMAL SUBGROUPS OF SOME HOMEOMORPHISM
GROUPS*

J. V. WHITTAKER

1. Introduction. The normal subgroups of the group of all homeo-
morphisms of a space X have been enumerated by Fine and Schweigert
[2] when X is a line, by Schreier and Ulam [3] when X is a circle, by
Ulam and von Neumann [4] and Anderson [1] when X is a 2-sphere.
In each of these cases there are either one or two proper normal sub-
groups. However, when X is an m-cell (n > 1), there are infinitely
many. The object of this paper is to investigate the normal subgroups
for a class of spaces X which includes the mn-cell. Some of these nor-
mal subgroups, although not all, can be defined in terms of the family
of fixed point sets of their elements, and we investigate this relation-
ship at some length. A smallest normal subgroup is exhibited, and the
corresponding quotient group is represented as a group of transforma-
tions of a related space.

2. Families of fixed point sets. Let X be a set, II(X) the group
of all permutations of X (one-to-one mappings of X onto itself), and G
a subgroup of II(X). Suppose that & 1is a non-empty family of sub-
sets of X satisfying the following conditions:

(i) If F,, F, e % then there exists an F, ¢ & such that F, C
F.NF,

(i) If F, e & and g € G, then there exists an F, € & such that
F, C g(F).

We shall call & ecliptic relative to G. For example, if &# con-
sists of the complements of all finite subsets of X, then & is ecliptic
relative to TI(X). If X has a topology, we denote the group of homeo-
morphisms of X by H(X). Let X be a closed unit ball B, in euclidean
n-space and %, consist of the complements in B, of those balls which
are concentric with B, and have radius less than one. Then & is
ecliptic relative to H(B,). In this connection, we note that for & ¢
H(B,), M(S,-) = S,_,, where S, , is the boundary of B,.

Let X again be an arbitrary set and G a subgroup of II(X). We
introduce a partial ordering among the families of subsets of X as fol-
lows: & < &' provided that, for every F' € &, there exists an F' ¢
" such that F' C F. Evidently & < &' implies & < % ', where
& C & ' means set inclusion, but the converse is false. We define
equivalence of & and &’ to mean & =< # ' and &' = % and we
write & = F .
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LEmMA 1. If 74 ' are families of subsets of X, & = F ', and
F 1s ecliptic relative to G, them 7' is ecliptic relative to G.

Proof. If F|, F;e 7', then there exist sets F,, F,, F,e # and
Fie &' such that F,c F,, F,Cc Fy,and Fic F,c F, N F,Cc Fi N F..
Second, if F! € % "and g € G, then we can find F,, F, ¢ 4 and F) ¢
7 " such that F, C F| and F', C F, C g(F),) < g(F").

To any family . we can adjoin all subsets of X which contain
some element of &% and thus obtain a family & * which is clearly
equivalent to &% and, by Lemma 1, is ecliptic relative to G if & is.
In fact, & * has the property that F'}, Fif € & * and ¢ € G implies
FinFf gFf) e # * In addition, & * is an upper bound, with re-
spect to set inclusion, among the families equivalent to 4 We shall
call # replete if it is equivalent to no larger family.

If feI(X), we set K(f)={x e X:f(x)=x}. For any family #
of subsets of X, we define

S(Z,G)=1{9 e G:K(g) D F for some FFe 7}.
We note that if the empty set @ e &, then S(&, G) = G.

LEmMMA 2. (a) & = &' wmplies S(&, G) = S(F ', G).
(b) If & satisfies (i), then S(Z G) is a subgroup of G.
(c) If f e I(X), then

FIS(Z OIS = S(f(F), fGF) .

(d) If .7 1s ecliptic relative to G, then S(.Z, G) is a normal sub-
group of G.

Proof. For (a) we show that & < &' implies S(.Z, G) C S(& ', G).
Indeed, if g € S(Z G) and K(9) D F' for some F € % we can find
F’' e &’ such that F' c F'c K(g), whence g € S(#’,G). In (b) we
need merely observe that, for any f,, f, € II(X), K(f;, f2) 2 K(f) N K(f>)
and K(fi") = K(f1). In part (c) we use the relation K(fgf ") = f(K(9)).
If g € FIS(F G)|f, then g = fg,.f*, where g, € G and K(g,) D F for
some F ¢ % Hence, g € fGf~, K(9) D f(F'), and ¢ € S(f(F), fGf™).
If g e S((F), fGf™), then g = fg,f* for some g, € G, and K(g9) D f(F)
for some F' e #. Hence, K(g,) D F, and g € fI[S(¥ ®]f*. In part
(d), let f e G. From (c), fIS(F G)|f* = S(f(&F ), 3. Normality will
follow from (a) if we can show that f(& ) = # Clearly (ii) implies
f(F)=s F 1f Fe.¥ then there is an F,e & such that F,Cf(F)),
whence f(F,)CF,, and & < f(7).

We shall assume, from now on, that X is a Hausdorff topological
space, unless the contrary is explicitly stated. For S(.% H(X)) we shall
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write S(.# ), and if & is ecliptic relative to H(X), we shall simply say
that & 1is ecliptic. For any family of subsets of X, we introduce a
further condition:

(iii) If Feg and Uc X is open (U +# ), then there exists an
he H(X) such that h(cF)C U, where cF' is the complement of F' in X.
An ecliptic family which satisfies (iii) will be called strictly ecliptic. The
family & of subsets of B, defined above is evidently strictly ecliptic. If
F satisfies (ili) and . = & ', then clearly & ' satisfies (iii). Since
K(h) is closed for every he H(X), there is no loss of generality in as-
suming that the elements of any family # are closed, and this assump-
tion will be made from now on, unless the contrary is stated.

LEMMA 3. If X admits families %, % ' which satisfy (i) and (iii)

and contain more than one element, then & = .7 .

c !

Proof. We may as well assume that % & ' are replete in the
closed subsets of X. If Fe & F+ X, and F'e.& ', then we can find
h e H(X) such that h(cF')ccF. Hence, h(F")DF,h(F')e & , and F' =
' W(F")e.# . Thus & 'Cc.# and, similarly . c.& .

Some spaces contain no ecliptic families except {X} and the set & (X)
of all closed subsets of X. For, by Lemma 2, such a family defines a
normal subgroup of H(X); when X is a 1-sphere, Schreier and Ulam
[3] showed that the only proper normal subgroup of H(X) consists of the
orientation-preserving elements of which some have no fixed points.

3. Minimal normal subgroups. We shall need to know something
more about H(X). Rather than make specific and detailed assumptions
about the existence of certain homeomorphisms, we shall assume a mild-
ly euclidean structure for X, namely:

(iv) If Uc X isopen (U+ @), then there exists an open VC U which
is homeomorphic to an open ball in a euclidean space of positive dimen-
sion.

The dimension of the ball may vary for different open sets. We
shall refer to V as a euclidean neighborhood in X.

THEOREM 1. Suppose X satisfies (iv) and contains a strictly eclip-
tic family # If N is a normal subgroup of H(X), then either N D
S(.Z#7) or N consists of the identity e.

Proof. Suppose N + {¢} and g,e N, g, # e. Then g,(x) + x for some
x € X, and we can find a neighborhood U, of z and a euclidean neighbor-
hood V, such that ¢g,(U,) N U,=@ and V,Cgy(U,). Let ® map V, homeo-
morphically onto an open ball in some euclidean space, let Bcw(V,) be
a closed unit ball of the same dimension, and set W, = @ '(int B), where
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int denotes interior. We wish to construct a homeomorphism k, of W,
in its relative topology with the following properties:

(a) K)o W,NeW,,

(b) there exists an open VC W, such that, for all integers n > 0,
RNV =g,

(e) if A= Uz h(V), then ANcA is a single point. To do this is
evidently equivalent to constructing such a homeomorphism k, of B, for
then #, = @'k, has the desired properties in W,. Let 6 be a homeomor-
phism of [0, 1] such that K(6) = {0,1} and 6(r) <r for 0 <r <1l. If
pe B lies at a distance r from the center of B, then we define ky(p)
to be the point on the same radial line at a distance 6(r) from the
center. By choosing a sufficiently small open ball in B which does not
meet either the center or boundary, we can satisfy (a), (b), and (c).

We now define the function %, as follows: h(x) = hy(x) if xe W,
h(x)=x if xecW, Clearly, h, € H(X). Now g, = ghi'gs'h, € N since N
is normal, and g.h'gs h.(x) = hy(x) for xe W, since g;(W,)CcW,. Thus
9,(x) = ho(x) for xe W,. Let g be any element of S(# ). Then there
exists an Fe # and h,e HX) such that K(9)DF and hy(cF)CV.
Thus K(h,gh;)DcV. If we can construct an h e H(X) such that

(1) grhgh™ = hghy* = f,

then we will have shown that g€ N and S(.% )CN, since the left mem-
ber of (1) lies in N. Let us rewrite (1) as hg, = 9.fh. We set

hz) = {g(‘fg;"(@ for zegi(V), n=12.-,
¢ for wec(Usg(V)) .

By property (b) above, m # n implies g™(V)NgH(V) = @, whence h is
single-valued. Since K(f)DcV, the restriction of f to V is a homeo-
morphism of V, and the same holds for g’fg;” and gX(V), n =1, 2,.--.
Let ANcA consist of the point x, where A = Uz9%(V). Then each
x # x, has a neighborhood which meets at most one of the sets g»(V),
and A, ' are evidently continuous at such points. By the construction
of h, and V, every neighborhood of x, contains all but a finite number
of the sets ¢g”(V), whence h, h™' are continuous here as well. Hence,
he H(X). If wecA, then g,(x) € K(k) and hg,(x) = 9,/ h(x). When ze V,

hg\(x) = 9.f9:'(9:(®)) = g.f (x) = 9./ k() .

Finally, if » =1 and xz e gX(V), we have g7(V)CK(f), so that ¢.f97(y)=
g**(y) when ye V. Hence,

hg\(x) = g7 fg7" ' (9:(2)) = 9. f 97 97" () = 9. fh() .

This establishes (1) and completes the proof.
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We offer the following example of a non-Hausdorff space X without
euclidean neighborhoods which admits a strictly ecliptic family . such
that S(%7) is not minimal. Let X be an infinite set in which z(X)
consists of the finite subsets of X and X itself. Then H(X) = II(X).
For & we take the collection of non-empty open sets and form S(.& ).
Since X is not Hausdorff, K(h) need not be closed for ke H(X). Clearly
& is strictly ecliptic, but S(% ) contains, as a proper normal subgroup,
the set of he H(X) such that ¢K(h) is finite and % is an even permuta-
tion of cK(h).

4. Normal subgroups of H(B,). As we remarked in § 2, the family
% of complements of smaller, open, concentric balls in B, is strictly
ecliptic. When . & is extended to a replete family, it will consist of all
closed sets containing a neighborhood of the boundary S,_,. In this sec-
tion, we will also be concerned with the group Hy(B,) of those h e H(B,)
such that K(h)DS,_,. Evidently Hy(B,)DS(%# ), and H,(B,) is normal
in H(B,).

THEOREM 2. If N is a mormal subgroup of H(B,) which contains
an element not in H\(B,), then NDH\(B,).

Proof. We will assume, to begin with, than » = 2. Suppose g, €
NnNcH(B,), and choose €S, ;, so that g,x) + x. Let W, be the part
of an open ball with center # which lies in B, and is small enough so
that g(Wy)N W, = @. We wish to construct a homeomorphism %, of W,
and an open set Wc W, such that WNS,_, +# @ and h,, W satisfy (a),
(b), (c) in the proof of Theorem 1. Let B, k,, and V be the same as in
that proof. If /I is an (n—1)-dimensional hyperplane which passes through
the center of B and meets V, then /I divides B into two regions (in-
cluding boundaries) 4, 4’ such that 4N 4" = II. The restriction of k, to
4 is evidently a homeomorphism of 4. Let +» map 4 homeomorphically
onto W, in such a way that (/1) = W,NS,_,. Then h, = ykyy" and
W = (4N V) clearly satisfy (a), (b), (c). We define A,(x) = hy(x) for x €
Wy, hy(x) = x for xzecW, so that h,e H(B,). Then ¢, = g/h;'¢;'h, €N,
and g,(x) = h(x) for x e W,, as in the proof of Theorem 1. If g is any
element of Hy(B,) such that K(g)DcW, it follows from the construction
in the same proof that g e N.

Let p,qeS,_, be antipodal, D the diameter joining them, and I1,,
I1,c B, two (n — 1)-dimensional hyperplanes perpendicular to D. Now
I1,, I, divide B, into three regions (including boundaries) 4,, 4,, 4, and,
correspondingly, S,_, into three zones (including boundaries) Z,, Z,, Z..
We take 4, to be the middle region, so that 4, N 4, = I1,, 4,N 4, = II,,
pedy,qged,. Let P,Q be arbitrary neighborhoods of p, ¢, respectively,
such that P c 4,,Q c 4,.

Next, we construct h,, k, e H(B,) such that Ay (P)DcW, hy(Q)>DcW.
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For example, %, might first expand P until its complement is quite small
and then rotate the complement into W. If ge H(B,) and K(9)DP,
then K(h,gh;") D c¢W, whence ge N. Similarly, K(g) > @ implies ge N.
We now wish to construct a homeomorphic mapping 6 of B, onto 4,U 4,
such that é(x) = « for all xe 4,. To accomplish this, we introduce sphe-
rical coordinates 7, ¢,,--+, ¢,_, for the points x € B, such that ¢, is the
angle between D and the radial line through x. Then II, satisfies the
equation r cosp, = k,, | k;| <1(t =1,2). Let r, ¢, be regarded as polar
coordinates for the closed upper half-plane in euclidean 2-space, and let
R be the set of (r,¢,) such that »r <1, 0 < ¢, <7w. The lines r cos
¢, =k, (1 =1,2) divide R into three regions (including boundaries) R,,
R,, R,, Let w be a homeomorphic mapping of R onto R,U R, such that
o(y) =y for all ye R,. We then set

0(7" ¢'1y Tty ¢n—1) = (a)(’ry ¢1); ¢2; tt Yy ¢n-1) .

Let f be any element of H(B,). Then 606~ e H(4, U 4,), and
K@f6")oIl,JUZ,UZ,. We define g,(x) = 607" (x) if x € 4,U 4,, g,(x) = z if
x e d,. Clearly, g,e H(B,), and K(g,)DP, whence g,e N. In addition,
9,(x) = f(x) for we 4,Nf'(4,), so that K(g;'f)DQ = 4,Nf~(4y), and g,=
g;'fe N. Hence, f=g¢g,9,€ N, and H(B, cN. When n =1, the con-
structions in the first half of the proof can not be carried out in S,.
The theorem follows, in this case, from the result obtained in [2] that
the only proper normal subgroups of H(B,) are S(.% ) and Hy(B,).

If Gcll(X) and YC X, we denote the restrictions of the elements
of G to Y by G|Y. For any orientable space X, we let E(X) denote
the group of all orientation-preserving homeomorphisms of X.

LEMMA 4. If N is a normal subgroup of H(B,), then N|S,_, is a
normal subgroup of H(S,_)).

Proof. Clearly N|S,_, is a subgroup of H(S,.,). If h,e H(S,-),
we can extend h, to an element h of H(B,). Let p, be the center of
B,, » #+ p, a point of B, lying on the sphere S with center p,, and 7 the
radial projection of S onto S,_,. We define h(p) = 7 'ht(p), (D)) = Ds.
Clearly he H(B,). Then N|S, ,= (ANh™)|S,-1 = he(N | S,-)hi.

COROLLARY. If N 1s mot contained in Hy(B,) and n <3, then N
is either E(B,) or H(B,).

Proof. By Lemma 4, N|S,_, is a normal subgroup of H(S,-,) dif-
ferent from {e}. It was proved in [3] for n = 2 and in [1] for n =3
that the only normal subgroups of H(S,_,) are {e}, E(S,-,), and H(S,_,).
Hence, if he E(B,), there exists a ge N such that A |S,.,=g]|S,.
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Then f= g*he H(B,)CN by Theorem 2, and » = gfe N. If NZE(B,),
a similar argument shows that N=H(B,). We note that Hy(B,)=E(B,).

5. The lattice of normal subgroups. In the first part of this sec-
tion, we revert to the assumption that X is an arbitrary set. The in-
tersection of two ecliptic families may be empty. If, for example, . &
is the ecliptic family defined above for B, and .# is the family of com-
plements of interiors of simple polygons lying entirely in the interior
of B,, then % N A = @, although & § = & . However, the inter-
section of any collection of replete, ecliptic families is also replete,
ecliptic, and non-empty, since it always contains {X}. The smallest
ecliptic family (up to equivalence) which contains a given collection {.#,}
of ecliptic families consists of all finite intersections of elements in
U %,. We denote this set by V.& and set A.¥, = N.%. If the &
are replete, then \/.#, is also replete. For if F,,---,F,c U.%, and
FoN,F, then FUF,e U % (1 =1,-++,m), and F = NJ(FUF),).

For any collection {G,} of subgroups of a group G, we set AG, =
NG, and define VG, as the smallest subgroup of G which contains G,.

LEMMA 5. If G s a subgroup of II(X) and {.F, },es s @ collection
of replete ecliptic families relative to G, then

S(N e, G) = NS(F, G), S(V F,, G)DVS(F, G) .

Proof. 1f ge S(A . “, G), then there is an F'e N.Z, such that K(g)D F,
whence ge S(7,G) for each ac A. If ge AS(H, G), then, for each
ae A, there is an F,e . & such that K(9)DF,. Hence, K(g)DF =
Usesls, F'e F; for each Be A since o4 is replete, and g€ S(A.#, G).
This proves the first relation. In the second, if ge VS(#,G), then
there are sets Fi,-++, F,e U,e. ¥, and elements g¢,,---, g, €G such that
K(9,)oF;(t=1,-++,n) and g =g,*-+9,. Hence, K(¢9)DF =, F;, F e
V.Z, and geS(V .7, G).

We now return to the case X = B,.

LEMMA 6. Let & be a family of (not mecessarily closed) subsets
of S,_, which

(a) satisfies (i), or

(b) s ecliptic relative to H(B,). Let &~ be the family of closed
subsets of B, which contain a member of <& in their interior (in the
relative topology of B,). Then

@) & s ecliptic relative to H(B,), or

(b) & s ecliptic relative to H(B,). In either case, & 1is replete.

Proof. If F,,F!e2 and F, Cint F, F'|, C int F’, then F,NF}C int
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FNint F' =int(FNF’"), and FNF'e &, whence & satisfies (i). In
part (a), if & e H(B,), then int A(F') = h(int F)Dh(F,)= F,, and h(F) e A
In part (b), if e H(B,), then there is an F'{'e & such that r(I)DFY,
and int A(F)DF} as in (a), so that A(F)e .~ Thus (ii) is verified in
each case. The repleteness of & 1is obvious.

We will indicate the above relationship between & and ¥ by say-
ing that & is derived from <. The simplest example of a derived
ecliptic family relative to Hy(B,) is that in which & consists of a single
subset of S,_;. An ecliptic family relative to H(B,) is obtained by let-
ting < consist of the complements in S,., of finite subsets of S,_,.
When 7 = 2, a family equivalent to the latter can be described as the
set of complements in B, of interiors of simple closed curves which meet
S, in a finite number of points. The construction can be varied by tak-
ing the set of complements of countable or first category subsets in S, ;.

Returning to Lemma 5 and the case X = B,, G = H(B,), we have
not been able to determine whether equality holds in the second relation
even for the case S(# V.7 ") DS8(7)VS(¥ "), v Vv ' = &(X). How-
ever, we do have the following result for derived families.

THEOREM 3. Let &, ' be derived Jrom &, &, respectively,
where & = {P}, ' = {Q,}, and suppose that P,, Q, can be separated in
S, by an (n — 2)-sphere >,CS,_, which is tame relative to H(B,).
Then

(2) S(F V.7, H(B,) = S(F, H(B,)VS(Z', H(B,)) .

Proof. Let II, be an (n — 1)-dimensional hyperplane passing through
the center of B,, and set ¥, = II,nS,_,. Choose he H(B,) such that
h(Z) = 3. Since I, and h(Q,) are closed and disjoint, we can find a
second hyperplane II, parallel to /7, and lying between /I, and A(Q,).
Now 11,, II, divide B, into three regions (including boundaries) 4,, 4, 4.
such that h(P,) C 4, h(Q,) < 4,. In fact, P, C int h7(4,), Q, < int A7*(4;),
where int denotes interior in the relative topology of B,. Hence, h=(4,) € #
and h(4,) € #'. Since these sets are disjoint, ¥ € % VvV %' and
S(¥ v ', H(B,)) = H(B,). By setting 4, = P, 4, = @, and following
the argument in the second half of the proof of Theorem 2, we can
show that the group generated by those g e Hy(B,) such that K(g) D 4,
or 4, is precisely H,(B,). Since K(g) D 4, implies g € S(h~(5"), H(B,)),
and K(g9)D4, implies g e S(h~(# '), H(B,)), it follows from Lemma 2(c)
that

Hy(B,) = [S(h™(F"), H(B,) V S(™(7""), H(B,))Ih™*
= WS((F"), H(B)Ih™ vV RMSH™ ("), H(B)Ih™
= 8(F, H(B,)) vV S(5", H(B,)) .



NORMAL SUBGROUPS OF SOME HOMEOMORPHISM GROUPS 1477

Hence, (2) is established. When n = 1, the hypothesis of the theorem
states that P, and @, are the two points in S;,. The construction in the
second half of the proof of Theorem 2 can evidently be carried through
in this case.

6. Quotient spaces. Wwe turn now to the problem of representing
the quotient groups Hy(B,)/S(5 ), where % 1is an ecliptic family, as
groups of transformations.

THEOREM 4. Let A C S,_, have the property that the set of its
netghborhoods im B, has a countable base, and let & be the ecliptic
family derived from {A}. Then Hy(B,)|S(.7 ) can be represented as a
group of order-preserving transformations of a partially ordered set
Z onto ttself.

Proof. Let Y Dbe the set of all countable sequences {U,} of open
subsets U, ¢ B, such that U, D U,D---, and {U,} is a base for the set
of neighborhoods of A. We introduce a partial ordering in Y as follows:
{U,} £ {V,} if there exists a k, > 0 such that k¥ > k, implies U, c V,.
We call {U,} and {V,} equivalent if {U,} = {V,} and {V,} < {U,}, and we
write {U,} = {V,}. Thus {U} = {V,} means that U, = V, for all but a
finite set of k’s. If {U,}={V,} and {U,}={W,}, then clearly {V,}<{W,}.
Let Z be the set of equivalence classes in Y formed by the relation =.
If w,veZ, we define u < v to mean that the same ordering subsists
between their respective equivalence classes. Moreover, u < vand v < u
implies % = .

If he H(B,) and {U;}e Y, then {h(U,)}e Y. Furthermore, {V,}eY
and {U,} =< {V,} implies {R(U,)} = {r(V,)}. In particular, {U,} = {V,} im-
plies {n(U,)} = {M(V,)}. Thus, corresponding to % there is an element
w(h) € I1(Z) which is order-preserving, and ge H(B,) implies w(gh) =
w(9)w(h). We now show that ke S(&") if, and only if, w(h) = 7, where
¢ is the identity in II(Z). If heS(¥), then there is an F — B, such
that K(h)DF and int F' D> A. For any u € Z, let {U,} be a representative
of w in Y. Since {U,} is a base for the neighborhoods of A4, we can find
ky, >0 such that k> k, implies U, C int F,, whence »(h)(u) = u, and
o(h) = i. Conversely, if h¢ S( ), then for each {U,} €Y, there exists
a sequence {x,} of points in B, such that x,e U, and A(x,) + =, (k = 1,
2,+++). Setting V, = U, N ¢{h(x;)} for each k, we have {V,}eY and
(Vo)) = {Vi}. If {V,} is a respresentative of ve Z, then w(h)(v) # v,
and w(h) #= . This proves our assertion. Let ¢ denote the canonical
mapping from Hy(B,) onto H(B,)/S(# ). Then 6(g) = 6(h) if, and only
if, w(9g) = w(h). Hence, wd~* is an isomorphism between Hy(B,)/S(F )
and w(H(B,)).

If A is closed in B,, then A is compact, and the uniform (1/k)-
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neighborhoods of A form a base for its set of neighborhoods, so that the
hypothesis of the theorem is satisfied in this case. If A =S,_,, then
& = %, and the construction in the proof allows us to represent
H(B,)/S(.~#") as a subgroup of order-preserving elements in //(Z) which
contains w(Hy(B,)).
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