LEBESGUE DENSITY AS A SET FUNCTION
N. F. G. MARTIN

Lebesgue (or metric) density is usually considered as a point function
in the sense that a fixed subset of a space X is given and then the
value of the density of this set is obtained at various points of the space.
Suppose the density is considered in another sense. That is, let a point
x of the space be fixed and consider the class <7 (x) of all sets whose
density exists at this point. Then to each set F in < (x) we assign
the value of its density at x, and denote this number by D,(E). Thus
from this point of view the density is a finite set function. It was
shown in [2] that if the space X is the real line then the image of
< (x) under D, is the closed unit interval.

It is evident from the definition of density of sets of real numbers,
which we give below, that D, is a finitely additive, subtractive, monotone,
nonnegative set function and the class < (x) is closed under the forma-
tion of complements, proper differences, and disjoint unions. Therefore,
if <r(x) were closed under the formation of intersections, D, would be
a finitely additive measure. This however is not the case for if
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the sets U,(R,U L,) = E and U, (R, U L) = F are members of D(0)
but £N F is not. In fact D(E) = D(F) = % and the upper density of
E N F at zero is not less than 4 while the lower density of EN F at
Zero is zero.

In part 1 of this note we prove a theorem which is somewhat of
an analogue of the Lebesgue density theorem [3] in the following respect.
As noted above D, is not a finitely additive measure, but we show that
the upper density at x, D,, is a finitely subadditive outer measure de-
fined on the class of all Lebesgue measurable subsets of X and the class of
D,-measurable sets is the class of all sets whose density exists at « and
has the value zero or one. In part 2 a Lebesgue density of a measurable
set F on a fixed F, set of measure zero is defined and a similar result

and
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proven for this function.

1. If E is a measurable subset of the real line X and I is any
interval we shall denote the relative Lebesgue measure of E in I,
m(E N I)m(I), by o(E:I).

The upper Lebesgue density of a measurable subset E of X at a
point « € X, D,(E), is defined by

D, (E) = lim sup,_., o(E : I) = sup {lim sup, o(E : I): I, — «} and the
lower Lebesgue density of a measurable set £ c X at a point = € X,
D, (E), is defined by

D.(E) = liminf p(E: I) = inf {lim, p(& : I,,): I, — 2},

where I, — x means the sequence {I;} of intervals converges to x in the
sense that @ € I;, for all k and m(I,) — 0 as k — oo. In the case D, (E) =
D,(E) the common value is the Lebesgue density of E at « and will be
denoted by D, (E).

LEMMA 1. A necessary and sufficient condition that o set K be a
member of < (x) is that

D(E)+ D(X—E)=1.

Proof. The necessity is immediate. To obtain the sufficiency we
note that for any interval I containing %, o(E:I) + o(X — E:I)=1 so
that D,(E) + D (X — E) = 1. Therefore

DX — E) 21— D(E) = DX — E) + D(E) — D,(E)
and it follows that D, (E) < D.(E).

LEMMA 2. The set fumction D, is a finitely subadditive outer
measure defined on the class _# of all Lebesgue measurable subsets of
the real line.

Proof. It is clear that D, (¢) =0 and D, =0. Let EC F be two
sets from M. Then since p(E:1I) < p(F':I) for all intervals containing
%, D, is monotone. Let E, E,, ---, E, be any finite collection of sets
from _#. Since o(Ui-  E;:I) < >, o(E;: I) for all intervals I contain-
ing x, we have

z‘)(u E) < 33 limsup p(B,: I) = 3, D(E) .

Thus D, is a finitely subadditive outer measure.
Let _# (x) denote the class of all sets £ such that for every Ae
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D(A) =D, (ANE)+ D,(A— E). Since _#(x) contains X and b A (@)
is an algebra (in the sense of Halmos [1]) and the restriction of D, to
A (x) is a finitely additive measure.

LemMmA 3. _Z(x) is a subset of < (x).

Proof. Let E e _#(x). Since the real line X is a member of _#
and D (X) =1, we have

1= D/X) =DXNE) + DX — E) = D(E) + DX — E)

which by Lemma 1 gives E € o (x).

LEMMA 4. If E e = (x) and J 1is any wnterval with x as one end
point then D(E N J) = D(E).

Proof. Let D,(E)=d. Since D, is monotone, d = D, (E N J) and
if {I.} is any sequence of intervals converging to , limsup, p(ENJ): I,) =d.

Suppose first that J is a bounded interval. If z is the left end
point of J, denote the right end point by ¥ and let

I:={z:x§z§x+l(y—w)};
n

if x is the right end point of J, denote the left end point of J by ¥
and let

I,L*={z:oc—71%—(ac—y)§z§x}.

In either case I —x and o(E: 1) = p(ENJ): I}) for all n. There-
fore, lim, o(E N J):I¥) = d and we have D,(E N J) = D, (E).

Suppose next that J is unbounded. If x is the left end point of J
let I) ={2: t =2z =2+ (1/n)} and if x is the right end point of J let
IF!={f:2—Am)=z=w}. Again we have [} —2x and p(E:[}) =
P(ENJT):I}) for all n so that D,(E N J) = D,(E).

LEMMA 5. Let Ee o (x) and let J be an interval open on the
right with right end point at x and K be an interval closed on the
left with left end point at . Define the set Aby A= (ENK)UJ — E).
Then D,(A) = max {D,(E), D(X — E)}.

Proof. Suppose D (X — E) < D(E)=d. ByLemma4, D,(J — E) =
1 —d =d and since D, is monotone, D,(A) = D (EN K) =d.

Let ¢ > 0 be given. Then there exists a sequence {I;} converging
to « such that
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D,(4) < lim sup;, p(A4 : I}) + % .

For each k, let J, = I) N (JU K). Since I —»z,J —x and p(A: I}) =
o(A: J,) for all but a finite number of k. Therefore

(1) D,(A) < lim sup, o(A : J,,) + €/2 .
For each interval J, we have

P(A:d,) —d=pK:J)eE: (KNJy) —d]
+ o : X —E:(JNJy) —d].

Since £ ¢ &7 (x) and K N J, — 2, lim, p(E : (K N Jy)) = d. Since J N J, — 2,
lim, (X — E:(JNJ) =1—d =<d. Therefore there exist integers N,
and N, such that for all £ > N, p(E: (KN Jy) —d < ¢/2 and for all
k>N, p(X—E:(JNdJ,) —d<e/2. Thus for all £ > max {N,, N;}

pA:J) —d <—Z—,0(K:Jk) +—;—p(J:Jk) =_;_.

Therefore lim sup, p(4 : J,) < d + ¢/2 and we have by way of equa-
tion (1) that D,(4) < d + . Since ¢ was arbitrary, D,(4) <d which
completes the proof of the lemma.

THEOREM 1. The class _# (x) of D,-measurable sets is the class of
all sets whose density exists at x and has the value 0 or 1.

Proof. Firstsuppose E e _# (x)and D(E)=d. Let J={2: x—1=2<x},
K={ v=<z2z=<2z+1}. Define the set A by A=FEnNK)U(J — E).
By Lemma 5, D,(A) =max{l —d,d} and by Lemma 4, D,(ANE) =
D(ENK)=d and DA —E)=D,(J—E)=1~d. Since Ee 7 ()

l1=d+1—d=D(ANE)+ D(A— E)=Dy(4) = max{l — d, d} .

Therefore d = 0 or 1.

Next let E be a set whose density at x is zero or one. Let A be
any Lebesgue measurable set and suppose D,(E) = 0. Since D, is mono-
tone, D, (AN E) < D,(E) =0 and hence D, (AN E)=0. Since D, is an
outer measure

and since Di is monotone D, (A) = D,(A — E). Therefore D, (A) =
D(ANE)+ D(A — E)and Eisin _#Z (z). Incase D,(E) =1 the above
argument with E replaced by X — E gives the desired result.

2. Suppose that Z represents an F, set of measure zero. Define
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the upper Lebesgue density of a measurable set E or Z by
D,(E) =sup {D,(E):x e Z}

and the lower Lebesgue density of E or Z by
D, E)=inf{D(E):x € Z} .

If D,(E) = D,(E) we will say that the Lebesgue density of E on Z,
denoted by D,(E), exists and has the common value of D,(E) and D,(E).
It is clear that if the density of E exists on Z then the density exists
at every point of Z and has the same value at each point. In [2] it
was shown that for any number d such that 0 < d < 1, there exists a
set E such that D,(F) =d. Thus if <7 (Z) denotes the class of all sets
whose density on Z exists, D, is a set function which maps < (Z) onto
the closed unit interval. It is clear that D, will have the same prop-
erties as D, where x is any point in Z.

LEMMA 7. D, is a finitely subadditive outer measure defined on
the class _7.

Proof. The lemma follows immediately from the monotoniety and
subadditivity of D, and the definition of D,.

Let _#(Z) denote the class of all sets F such that £ € _~ and for
every Ae . #, D(A)=D,(ANE)+ DA — E). Then _#(Z) is an
algebra and the restriction of D, to _~ (Z) is a finitely additive measure.

LEMMA 8. _Z(Z) is a subset of < (Z).

Proof. Let E e _(Z). The real line X is in _# so we have
1=D,X)=Dy/E)+ D, (X — E)=sup{D(E) + D(X — E):x e Z}

and
D(E)y+D(X—E)=1

for all x € Z. But for any ® € Z, D, is subadditive so that D.(E) +
D(X — E)=1. Therefore D,(E)+ D(X— E)=1 for all x € Z and
by Lemma 1, the density of E exists at every point of Z. Hence
DJ(E)+ D,(X —E)=1 for all x in Z and
D,E) + DX — E) z inf {D(E) + DAE):x € Z}
—1=D,E)+ DX — E).

Since D, if finite, DAE) = D,(E) and it follows that E e &/ (Z).

THEOREM 2. The class of all D,-measurable sets is the class of
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all sets from < (Z) which are mapped onto 0 or 1 by D,.

Proof. Let % ={E:FEe D(Z)and D,(E)=0or 1}. If Ee %
we may show that E € _#(Z) exactly as was done in Theorem 1.

Suppose E e _#(Z). By Lemma 8, E e < (Z) and hence D,(F) =
D(E)=d for all x € Z. Let «, be any point in Z and let J = {z:2 < xy},
K={z:2=2x}. Define the set A by A= — E)U(ENK). Then
by Lemmas 4 and 5, D,(A) =max{d,1—d}, D,(AnE)=d, and
D,(A—E)=1—d. Since Ae _~ and Ee _7(Z),

sup {D,(A):x e Z} =sup {D(ANE)+ DA —E):xe Z}.
Let ¢ > 0 be given. Then there exists an #, € Z such that

D.(A) +e¢>sup{D(ANE)+ DA —E):z e 7}
>D,(ANE)+ D, (A—E)=1.

Suppose @, < ,. Then D,(A)=D,(X—E) and 1—d+¢>1.
Since ¢ was arbitrary and 1 —d <1 we have 1 —d =1 and d = 0.

Suppose @, > ;. Then D,(A) = D,(E) and d + ¢ > 1. Since ¢ was
arbitrary and d <1 we have d = 1.

Suppose #, = @,. Then D, (A) = max {d, 1 — d}, and max {d, 1 —d} +
¢ > 1. Since ¢ was arbitrary max{d,1 — d} = 1. But both d and 1 — d
do not exceed 1 so that d =0 or 1.

Therefore E is in 2% and we have _#Z(Z) = .57
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