AUTOMORPHISMS OF MONOMIAL GROUPS
C. V. HoLMES

If H be an arbitrary group and S a set, then one obtains a mo-
nomial group after the manner described in [2]. Ore has in [2] deter-
mined the automorphisms of the monomial group when the set S has
finite order. Here we obtain all automorphisms of a large class of mo-
nomial groups when the order of the set S is infinite. A monomial sub-
stitution over H is a linear transformation mapping each element % of
S in a one-to-one manner onto some element of S multiplied formally
by an element % of H. The element % is termed a factor of the sub-
stitution. A substitution all of whose factors are the identity ¢ of H
is called a permutation, while a substitution which maps each element
of S into itself multiplied by an element of H is called a multiplication.
A multiplication all of whose factors are equal is termed a scalar. The
monomial substitutions restricted by the definitions of C and D as given
below are elements of the monomial group denoted by X(H; B, C, D),
where the symbols in the name are to be interpreted as follows, H the
given group, B the order of the given set S, C a cardinal number such
that the number of non-identity factors of any substitution is less than
C, D a cardinal number such that the number of elements of S being
mapped into elements of S distinct from themselves by a substitution
is less than D. S(B, D) will denote the subgroup consisting of all permu-
tations, while V(B, C) will denote the subgroup consisting of all multi-
plications. Any substitution w may be written as the product of a
multiplication v and a permutation s. Hence we may write 2(H; B,C, D) =
V(B,C)U S(B, D), where U here and throughout will mean group
generated by the set.

The main result of this paper is to determine all automorphisms of
the monomial group 3(H; B, d, C), d < C < B, where B* is the successor
of B, d =¥, and to determine the automorhism group of this group.

LEMMA 1. The basis group V(B,d) is & characteristic subgroup
of 3(H: B,d,C), d <C< B™.

Crouch has shown in [1] that V(B,d) is a characteristic subgroup
of 3(H; B, d, d). Itiseasy to show that if N is a subgroup of V(B, d),
then N is normal in Y(H; B,d,d) if and only if N is normal in

3(H; B,C, D). With this result Lemma 1 is an easy generalization of
the result of Crouch.

LEmmA 2. If T is an endomorphism of V(B,d), then there exist
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endomorphisms T; of H such that

(1) (e,++-,e,hiye, )T =nTE ++-, h;Ti --+), for all h; in H.

(2) For all b in H, and all i, hT} = e, for all but a finite number
of J.

(3) hTih;T}; = h,Tih; T, for all m and all 1,5 such that 1 + j.
Conversely if {Tj} is a collection of endomorphisms of H, such that (2)
and (3) are true, then there exists one and only one endomorphism T
of V(B,d) such that (1) is true.

The proof of Lemma 2 follows from direct computation.

LeMMA 3. If G=NUM, NN M = e, N a characteristic subgroup
of G, ¢t an automorphism of G, mp = n'm’, then the correspondence
mx = m' 18 an automorphism of M.

Proof. If me M; then mpy* =n'm', (W'm)p=m = @) )w(m)y,
m'p = (n')y 'pem, hence m’n = m, i.e. A is onto. To see that )\ is multi-
plication preserving we observe that

!

(mmy)pt = mprmopt = niminim; = (niminym; "} mim}) = nymim; ,
and hence
M = My, M = My, (MMIN = MMy, MAMN = (M, M)\ .

The endomorphism » of M has kernel e since N is a characteristic
subgroup of G, and hence, my = n'm’, m' =e, if and only if m = e.

LEMMA 4. Let p be an automorphism of 2(H; B, d,C),d < C < B+,
and let s e S(B,C), su =v's", s\ =¢8; then N is an automorphism of
S(B, C).

Proof. X(H; B, d,C) splits over the basic group V(B, d). Lemma
1 asserts that the basis group is a characteristic subgroup of the
monomial group. Lemma 4 is then a consequence of Lemma 3.

LEMMA 5. 2X(H; B,d,d) is a characteristic subgroup of X(H; B,d,C),
d=<C=<B.

Proof. Let p be an automorphism of 2(H; B,d,C) and u = vs €
3(H; B,d,d). Then up = (vs)p = vusy. Since V(B, d) is a characteristic
subgroup of 3(H; B, d, C), vt € V(B,d) c 2(H; B,d, d). Now sy is some
element v's’ of 3(H; B,d,C), and by reason of Lemma 4 the corre-
spondence s to s’ induced by g defines an automorphism of S(B, C).
But the automorphisms of S(B, C) are the restriction of some automor-
phism of S(B, B*) to S(B, C), and every automorphism of S(B, B*) is
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inner. See [4]. We may then write spt = (v')(sI ), where s* € S(B, B*)
and I, is the inner automorphism generated by s*. Now s e S(B, d),
and since S(B,d) is normal in S(B,C), (sl ;) € S(B,d). Then up =
vsp = (vp)(v')(sl,;), and each member of this product is an element of
Y(H; B, d, d), which completes the proof of Lemma 5.

LemMmA 6. If

(1) N s a normal subgroup of a group G,

(2) G splits over N, G=NUM, NN M = ¢,

(8) M’ and N' are groups isomorphic to M and N respectively,
a the tsomorphism of M to M', B the isomorphism of N to N', N’
normal in G', and G' = M'UN', M' N N' = e,
then the correspondence p, (mn)pt = manp defines an isomorphism bet-
ween G and G' if and only if manBm 'a = (mum B for all m in M
and all n wn N.

The proof of Lemma 6 is contained in |2].

We will first find the automorphism group of Y(H, B, d, d) and then
the automorphism group of 3(H; B,d,C), d < C < B*. By reason of
Lemma 5 the problem of finding automorphisms of 3(H; B, d, C) is made
easy once the automorphisms of Y(H; B, d, d) are known.

Before proceeding to the problem of determining the automorphism
group of 3(H; B, d,d) we make the following considerations. If 7 is
any automorphism of the group H, we define an automorphism 7' of
V(B,C),d < C < B*, by the correspondence

(hn hz; hg, i )T’ — (th, hzTy haTv N ") .

Let [ denote the identity automorphism of S(B, D), d < D < B*; then
according to Lemma 6 the correspondence T'*, (vs)T'+ = (v)T'(s)I, for all
ve V(B,C) and all s e S(B, D), is an automorphism of the group
2(H; B, C, D) if and only if

(S)I(@)T'(s I = (svs ™) T" .

Since V(B, C) is a normal subgroup of 3(H; B, C, D), this is an equality
between multiplications, and it is easy to see that the corresponding
factors of the two multiplications are equal. Hence 7' is an automor-
phism of 3(H; B, C, D).

In a similar manner we may associate with any endomorphism K
of the group H an endomorphism K+ of V(B, C).

THEOREM 1. ¢ is an automorphism of X(H; B, d, d) if and only if
there exist

(1) s an element of S(B, B"),

(2) v* an element of V(B, BY),

(3) T an automorphism of H,
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such that
(wp=@)T*I,I,, for all we 3(H; B, d, d) .

Proof. Suppose g is an automorphism of 3X(H; B,d,d). Then
Y(H; B,d,d) = V(B,d)p U S(B, d)pr. But V(B, d), by reason of Lemma
1 is a characteristic subgroup of X(H; B,d,d), hence X(H; B, d,d) =
V(B,d)U S(B, d)¢t, and V(B,d)N S(B,d)¢ = E.

There exists an isomorphism between S(B, d) and S(B, d), whose
form we now seek to discover. Since S(B, d)i is contained in 3(H; B, d, d),
the image of any element s € S(B, d) must have the form v's’, where
v'e V(B,d), s € S(B,d). We have seen in Lemma 4 that the corre-
spondence s to s’ is an automorphism of S(B, d), and hence there must
exist an element s* € S(B, B¥) such that s’ = (s);, since all automor-
phisms of S(B, d) have this form. The element s* is the element whose
existence was asserted in (1) of the theorem.

Any element of S(B, d) may be written as the product of a finite
number of elements of the form (1,4). Hence to discover the image of
(1, ) under g, is to know the image of all permutations. We therefore
reduce our study of s to that of (1, 7). (1, 7)¢t = v;8', where 8" = (1, 9)I ;.

We next proceed to the characterization of »; and the calculation
vt of V(B, B).

Since the order of any transposition is two, we have

[, )pP = [vlst, s = E.

This equality can exist if and only if each factor of v, has order two
except possibly the 1s* and 4s* factors, and moreover the 1s* and is™
factors must be inverses of one another.

We have in Lemma 2 discovered the form which all endomorphisms
of V(B, d) must have, and hence the form of all automorphisms of this
group. For an arbitrary element v of V(B, d)

vV = (--.’e’hil’ ‘..’h’in’ e’ ...) ,
we have,
()t = (i, Tirh;, Tz« « Ri, Tin, «««, by Ttk Tj> « - - hinT;‘n, eed),

where the T} are endomorphisms of the group H, and only a finite
number of the factors of the multiplication are different from the identity.

In the calculations which follow the subscript of an element 2 will
always indicate the position of % in a multiplication, that is &, will be
the jth factor of some multiplication v. Whenever we require two
factors of an element which is a multiplication to be distinct we will
indicate this by employing superseripts; distinct superscripts indicate that
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the two factors are distinct elements of H. Whenever a multiplication
has undergone a transformation by a permutation we will employ super-
scripts to indicate, after the shuffling of factors, the equality existing
between the factors of the original and resulting multiplication, like
superscripts indicating the same group element.

Let us consider generating elements,

s=(1,1) of S(B,d),
v=(--,eh,e ) of V(B d).

Since f is an automorphism of X(H; B, d, d) we have

(s)w) s ™)t = (sws~™)pt
where
(1, 7,)# = (s, 0, kiﬂ oo, kin’ e, «++)(1s*, 1s%) ,
(++,e, h,, e, o .)ﬂ = (thlj’ th.f, h;T'f, e,

where only finitely many of the factors are different from the identity.
We compute this equality considering two cases.

Case 1. Suppose j # 1, j # i©. Then since (svs™') = v, the equality
reduces to

(S)pv)pu(s My = (g,
or
(oo ey v ony ks, oo )(Ls™, i87)(hy TE, Iy TS, hyTH, -+ +)
X (Ls*, is*) (e ey 0, kit oo, il e, oo )] = (B, T3, By T3, by TH, - ov)

Direct computation on the left side of the equality yields the following
multiplication,

(oo hyTiy ooe, by TikiY, oo, ko by T T o

i

M) kis+thj +'Zc,;_sl+’ M) kitthgbk';lr °r ') .

18
Then the resulting equality between multiplications demands equality
between corresponding factors. Hence we have
(1) RTi =k, hT] k',

?

(ii) hTi, =k, WT7 ki

i

for m =1, -+, m, %, # 1s*, 1, + tsT, and j # 1s*, j # 4s*. Since in
equalities (i) and (ii) h represents the same group element, we have
dropped the subseript.

Case 2. Suppose 7 = 1 or 5 = 1. Either equality will yield the same
result, and hence both cases are included in one consideration. The
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calculations recorded are for j = 1.

v=(hl,e ), s =(1,1),
(svs') = (+++,¢e,hi,e, ), and
(S)p)Us™ e = (- -+, e, hiy e, + =), or
[Coese, by ooey ki€ oo )As™, asT) T, MTY, TS, -+ +)
x (Is*, as') (e v, 6, ki), o ov, ki) ey oo 0)] = (MTY, BT, RiTS, -+ +) .

in?

Direct computation on the left side of the equality yields the following
multiplication,

(' %y h}Trlru ) kilhiTillki;ly ct k
ey k”ihiTl

15t

BT K, eee

1sT 1872

kil ooe i BiTHR, <o 0) .

Then the resulting equality between multiplications demands the following
equality between factors.

(iii) hTi =k, hT k!,
m=1,+--,m, 1,+1s", 1, #+1s".

@iv) hT; , =k, kT Kk},

(v) hT: . =k hT} k] .

The equalities (i) through (v) are restrictions on the endomorphisms 7'} of
H. We may now further our study of images of multiplications under
¢t in view of these restrictions.

Suppose 7 #+ 1 and consider,

(”'y e, hjy e, "')ﬂ = (thljy hJTZJ? thajvh'jTAj) "') .

According to restriction (i) each factor in the image multiplication is
conjugate to AT’ except the factor h;Ti . But since ¢ is an automor-
phism of V(B, d), the image multiplication must be an element of V(B, d),
hence only finitely many of the factors may be different from the
identity. It then follows that every factor save the factor thjer must
be the identity and in this case the factor h,T’, must be different
from the identity. That is, for 5 different from 1,
(...’g’hj, e, "°)ﬂ:(°°',6, thf'er’e, ...) .

We next consider the case where j = 1.
(hn €, *- '))a = (thll’ h1T21y thaly * ’) .

If we rewrite (v) in the form AT} =k, hT! k', we see that every
factor of the above recorded image multiplication is conjugate to some
element T/ .. But we have observed in the previous consideration

that for j # 1,h,;T/, is the identity element, and hence all factors of
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the image multiplication are the identity except the 1s* factor. That is,
(hly €, ')ﬂ = (' **, 6, thllsn €, *- ') .

In the beginning we assumed the most general representation of an
automorphism of V(B, d) for t, and for the correspondence assigned we
have only an endomorphism of V(B,d). We must now determine what
further restrictions are necessary to insure that the correspondence is
an automorphism of V(B, d). Suppose we are given an arbitray multi-
plication of V(B, d),

(...,e’h;l, ...’h:n’e, ...)_

We ask if this multiplication arose from the image of some‘ other multi-

plication under p. This is equivalent to asking under what conditions

will the set of equations,
himTiimx" = h,'

Tm ?

’)’)’1/:1’-..,”y

have unique solutions h;, m=1,---,m, in H. Such a unique set of
solutions can exist if and only if the T}, are automorphisms of the
group H. With this added restriction we have completed the characteri-
zation of the images of multiplications, but will employ (iv) to change
the representation later.

Let us refer to equality (ii) restricting the endomorphisms whose
subscripts are different from 1s* and is*. We have seen that if 7, be
different from js* then AT/ is the identity. In Case 1, which produced
equality (ii) we have restricted j to be different from 1 and 4, so that
4 may be so chosen that js™ = 7, and the following equality results,

k, hT! .k} =hTi. .
Inasmuch as we have required that T/, be an automorphism of H, we
can only conclude that % 1ot belongs to the center of the group H. That
is, the multiplication component of the image of (1,%) under g must
have every factor except possibly the 1s* and the is* factors belonging
to the center of the group H.

We will now show that the factors of this multiplication which do
not occupy the 1s™ and 4s* positions are the identity element.

Since (1, 2)(1, j) has order three, we have

[(1, A, DUV = [(ky, Kooy ooy == +)(AST, i85 ) Ry, hoy B, « - )(Ls™, G = B

By direct calculation we see that if n be different from 1s*, ¢s*, and
js*, then the wnth factor is k,h,k.h,k.h, =e. We have previously seen
that both %, and k, belong to the center of the group H, and moreover
each has order two. It then follows that 2, and k, are inverses of one
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another. The 1s* factor of the above product is

k

1s+his+kis+hls+kjs+hjs+ =€,

which, in view of the centrality of the elements km and h,.. together
with the equality

k1s+kzs+ = h1s+hjs+ =€,

reduces to his+kjs+ =e. Since k. has order two, b=k jote Thus the
factors of the image multiplications (1, 7) and (1, j) are the same if we
exclude the 1s¥, is*, and js* factors, and further the js* factor of the
multiplication component of (1, %)y is equal to the is* factor of the
multiplication component of (1, 7).

In a similar manner by considering (1, j)# and (1, t)¢ where t + 1,
t + 4, we find that the ts* factor of the multiplication component of
(1, ) is equal to the js*t factor of the multiplication component of
1, .

But the ts* factors of the multiplication component of (1, 7)¢ and
(1, j)¢ are equal, and the js* factor of the multiplication component of
(1,4 and (1,t) are equal. That is, the ts* and js+ factors of the
multiplication component of (1, %)y are equal, and hence all factors of
the multiplication component of (1, %)y, except possibly the 1s* and is*
factors. But this multiplication is an element of V(B, d) and hence all
factors except possibly the 1st and is* factors must be e. Then

(1’ 7:)[’! = (' v, € k13+ €, €, kis+’ €, ')(1S+r 7:8+) .

Let »* be the multiplication of V(B, B*) whose 1s* factor is e, and
whose ist factor is the ¢s* factor k... of the multiplication component
of (1,%)u. This multiplication v* is the element of V(B, B*) whose
existence we asserted in (2) of the theorem.

We have seen that

(hly e, ...)/,{: (...,e’ th;s"" e, ...)

where T+ is an automorphism of H. Let T)+ generate, in a manner
described in the discussion preceding this theorem, an automorphism 7'+
of (H; B,C, D), d = C,D =< B*, which is moreover an automorphism
of X(H;B,d,d) since X(H; B,d,d) is a characteristic subgroup of
2(H; B, D, C). This is the automorphism which forms the first com-
ponent of ¢, and T|+ is the automorphism of H whose existence we
asserted in (8) of the theorem.

If we now refer to restriction (iv) on the automorphisms T7 ., hT} . =

k, +hT! k', we observe that we may write

(' ** 6 hj! €, ')/z = (" *9 € kjs+thlls+kj~sl+y e, "’) ’
(1’ "’)ﬂ = (’ *y 6 k1s+’ €, ", 8, kzs+’ €, * ”) X (1S+, 7;8+) ’
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which we may now record in simplified form as
(+rye by, o)t =(, ¢ hye - )TI.I,,
(1,79)¢ = (1,7)T*II,+, and hence for an arbitrary element u of 3(H; B,d,d),
@y = @ T, .

Conversely suppose we are given an element s* of S(B, B*), v" €
V(B, B*), T an automorphism of H. Then I, Iv+, and T+ are each
automorphisms of 3(H; B,C, D) d < C, D < B*, and hence the product
T+I.I, . is an automorphism of the group. Then the groups 3(H; B, d, d)
and Y(H; B,d,d)T*1_1,, are isomorphic. But each of the automorphisms
T+ I, and I, take elements of 3(H; B, d, d) into 3(H; B, d, d). Hence
the restriction of the automorphism T+*I_.I . of 3(H;B,C, D) to
2(H; B, d, d) is an automorphism of the latter group. This is the auto-
morphism g, and the proof of the theorem is complete.

COROLLARY 1. =T +Is+Iv+ s an inner automorphism of 2(H; B, d, d)
if and only if T+ is gemerated by an inner automorphism T = I,—
of H,s* e S(B,d),v" is the product of an element of V(B,d) and the
scalar [h] of 2(H; B, B*, B).

Proof. If T+ is generated by the automorphism I,-i, s~ € S(B, d),
vt = vf[h], vi € V(B, d), [h] € V(B, B*), then

‘LL = T+Is+I')i*'[h] = T+IS+I[7&]I1)1+ = T+I[h]Is+Iva = IS“'I”;E = Ivfs"‘ y
and hence ¢ is an inner automorphism of X(H; B, d, d).
Conversely suppose g is an inner automorphism of X(H; B, d, d);
then

# = Iu = Iv’s’ - Is'v’ .

Hence if h=e, and T = [,-, pt = T+Is,Iv+, where s' e S(B,d),v" e
V(B, B*), vt = v'[h] = v € V(B, d).

THEOREM 2. The group of three-tuples (T, s*, v*), where T 1is an
automorphism of the group H,s* e S(B, B*),v* e V(B, B*), with the
operation

(T, sty v (T, 87, ) = (0T, 8578, vis; (vi T )si )

18 homomorphic to the automorphism group of 2(H; B, d, d) under the
correspondence N, (T, s*, v\ = p,pp = THI I, and the kernel K of )\
s the set of all three-tuples (T, s*, v*), where s* is the identity permu-
tation of S(B, B*), v* is a scalar [h] of V(B, B*), and T is the inner
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automorphism I,—1 of the group H.

Proof. That the set of three-tuples (7', s*, »*) with the above defined
operation form a group follows by direct computation.

Let )\ be the correspondence between the group of three-tuples and
the automorphism group of 2(H; B, d, d) as defined in the theorem. We
will show )\ is a homomorphism.

The correspondence X\ is onto, for given any automorphism y=7T+1.1,,,
there exists a three-tuple, namely (7, s*, v*), such that (T, s*, v")\» = p.
Direct computation reveals that \ is multiplication preserving.

Therefore A is a homomorphism from the group of three-tuples onto
the automorphism group of X(H; B, d, d).

We compute the kernel K of A. Let g, ¢ K.

@, i) = (LTI, =(1,i).

But T acts as the identity automorphism on permutations, and there-
fore the equality reduces to

1) I, =(1,7),

which can exist for all ¢ if and only if s* leaves all 7 fixed and there-
fore is the identity permutation. Then (1, 4)I , = (1, ¢), for all 7, if and
only if »* is a scalar [R].

Consider

(hy ety = (hy e, ++)T*I I, = (khTk, e, -++) = (h, e, ced).

This equality can exist if and only if T'= I, .

Thus we have shown that the kernel K of M\ is the set of three-
tuples (T, s*, v*), where s* is the identity permutation of S(B, B*), v+
a scalar [k] of V(B, B*), T the inner automorphism I.-: of H.

COROLLARY 1. Let A denote the automorphism group of X(H; B, d, d),
A, those elements of A which leave S(B, d) fixed elementwise. Then

(1) A, is a subgroup of A, such that any automorphism t in A,
has the form pt = T* I, [R] @ scalar of V(B, BY).

(2) The set of two-tuples (T,h), T an automorphism of H,h an
element of H, form a group with the operation, (T, h)(TT,, h,) =
(T\T,, hy(h, TY))-

(8) The group of two-tuples are homomorphic to A, under the
homomorphism N, (T, k)N = g, pt = T*I,;.

(4) The kernel K of )\ is the set of two-tuples (I,_,, h).

Proof. The assertions (1) through (4) are immediate consequences
of the theorem, since the set of two-tuples form a group isomorphic to
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a subgroup of the group of three-tuples under the correspondence

(T, h) ——(T, s7, [R]).

THEOREM 3. ¢t is an automorphism of 3(H; B,d,C), d < C < B*,
2f and only 1f there exist

(1) steS(B,BY),

(2) v»te V(B,d),

(38) T an automorphism of H,
such that (w)p = (W)T+I I . for all w e X(H; B, d, C).

Proof. We have seen in Lemma 5 that 3(H; B, d, d) is a character-
istic subgroup of X(H; B,d,C); hence if ¢ is an automormphism of
3(H; B, d, C), its restriction to J(H; B, d, d) is an automorphism of that
group. We have in Theorem 1 determined all automorphisms of 3(H; B, d, d);
hence we will be concerned with extending the automorphisms of
3(H; B, d, d) to automorphisms of ¥(H; B, d, C). As is evident from the
statement of the theorem not all automorphisms of 3(H; B, d, d) may be
extended to an automorphism of X(H; B, d, C).

There is determined by ¢ an element s™ of S(B, B*) such that

(s)r = (W)s,.), s € S(B, d) .
If se S(B, C) then
() =v's',v' € V(B,d), s € S(B, C).

According to Lemma 4 the correspondence \, s\ = s/, is an automorphism
of S(B,C). The automorphism induced on S(B,d) by p¢ extends to
S(B,C) in one and only one way, hence )\ = I.., and the elements
87 € S(B, B*) is the element whose existence was asserted in (1) of the
theorem.

Any element s e S(B,C), may be decomposed into the product of
two elements s;s, such that the order of each s, and s, is two. See [4].
We will therefore reduce our study of syt to that of st

We then have

(s)p = 01(31I5+)7 v, e V(B,d),

and since s, has order two, [v,(s,] )]’ = E. We observe the factors of
v, considering two cases.

Suppose % is an index such that x, does not belong to the set of
-elements moved by s,I.; then it follows from the above equality that
the nth factor of v, has order two. On the other hand if ¢ is an index
such that x; is moved by (s,)I,;, then there is an index j such that
(x;, ¢;) is a transposition of (s,)I,.. Then the above equality demands
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that the ¢th and jth factors of v, must be inverses of one another.

If n is an index such that x, does not belong to the set of elements
moved by s;, we will show that k_. belongs to the center of the group
H. Let

v:(”'yeyhnrey°“)

and consider

(81’08;1)# = (’U)[,l = ( *y e, hnT,,:LsM €, sv) = (sl)lu(v))u(sl_l)ﬂ
= ’Ul(SlIs_,_)(' A hnT:s+9 €, ')(SI_I)IS+(?};1)
= (- DRI knsh"Tu

ns'*’k;sl"" € .) .

This equality of multiplications demands the following equality of factors:
h ;:Ls'*' = kns‘*'hT:s‘*'k;sl*' :

Since T, . is an automorphism of the group H, it follows that k& __.
belongs to the center of H. That is, all factors of v, belongs to the
center of H except possibly those factors 7 such that x st belongs to the
set of elements moved by (s)I ;.

We next show that each of these factors which belong to the center

of H is moreover the identity element of H. Let

8y = (@, T,)(Xg, @) <+

and define an element s, € S(B, C) as follows,

8, = (@, xez)(xsv xt) v

where the x,, do not belong to the set of elements moved by s, and
hence s, has order two. The existence of such an element s, is insured
since we have required that ¢ < B*, and hence s, must move fewer
than B elements. Since s;s, has order three, we have

[(Slst))a]s =K,
(s)p = '01(31)15+ ’ vy = (hyy by By <2 0)
(S,){l = vt(st)ls-l— ’ Ve = (ky, Koy sy < +) .

By direct calculation of the above equality we discover that we have in
the 1s* position the factor

hls+k

a5t

h23+kls+htzs+kt2s+ =€ .

But x, does not belong to the set of elements moved by s, and x,, does.

not belong to the set of elements moved by s;, hence k,. and ht28+

belong to the center of H, and sinece h b, = kls+kt + = e, the factor
28

reduces to k28+ht23+ =e. Then k. = h,,, since each of the elements has
order two.
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Consider a third permutation of S(B, C),

8w = (&, x,,,2)(x3, Lp,)
where the z, do not belong to the set of elements moved by s, or s,.

(Sw)ﬂ = vw(S‘IU)IS'i' v Ve = (frfor far oo0)

Then calculations similar to those just performed with the elements s,
and s, yield

k ,»z-:f..-;-, 1 =2,4,6, .-,

but . , = Icwlsg, and hence,

wys”

h :f +:h 4.

’LUt.S“ tis liS
Therefore all factors of v, are equal except possibly those factors 4,
such that x(s,)I . # «;. But v, € V(B,d), and hence all factors of v,
are e except possibly the factors %, j an index such that x,(s)I . + ;.
We have then the following information regarding v,, s,¢t = vy(s,)I ..
If (x;, ;) is a transposition of s, then hisﬁ_hjs.k =-e. If z, does not belong
to the set of elements moved by s, then k_ , is the identity.
Let us consider (s)((x;, x,)/t, where (x;, ;) is a transposition of s,.
Since (x;, «,) is an element of Y(H; B, d, d), a characteristc subgroup of
3(H; B,d, C), we have

(@, et = (-, e, h, e, e, h, . e )x, % )

=vi(s))I .+, where s|=s(x;, ;).

Since (%;, x,) is not a transposition of s; the is*th and js*th factors of
v; are e, but the is*th factor of v} is the product of the 4s™th factor
of v, and the js*th factor of the multiplication component of (z,, x,)x.
Hence the is™ and js* factors of v, are identical with the factors in
the corresponding positions of the multiplication component of (x;, ;).
The multiplication component of (x;, x;)¢t was formed by conjugating
(x;, )], with an element v e V(B, B*). It is evident that the is*
and js* factors of v, can be formed in the same manner.

In the event that s, moves an infinite number of elements, it is not
possible that all 2 ,++ be different from the identity; yet we have seen
that all -, , are formed by conjugation by the element v, determined
by the restriction of ¢ to Y¥(H; B,d,d). If (x; ;) be a transformation
of s, and if the 4s* and js* factors of v; are distinct, then the st
and js* factors of v, will be distinct. We must then restrict ;" in such
a manner that this situation can happen only a finite number of times.
Hence we must require that no two factors of v/ be repeated infinitely
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often, and there must not occur in v an infinite number of distinct
factors. Under these restrictions v, will always be an element of V(B, d).

The v so restricted may then be written as a product v*[k], where
vt e V(B,d) and [k] € V(B, B*), k being that factor of v which was
repeated infinitely often. Then

p="T"1.1, = T1+IS+IE+[“ = T71 Il v = Ty Iyl 1, = T T,
where T+ is generated by the automorphism 71, of H.

Conversely, given an element s* € S(B, B*), v e V(B, B*), and T
an automorphism of H, then I,,I., and T+ are automorphisms of
Y(H; B,B*,B"). Hence the groups J(H; B, d, C)and X(H; B,d, C)T+I.I .
are isomorphic. But each of the automorphisms 7'+,I ., and I, of
Y(H; B, B, B*) takes elements of X(H; B,d,C) into elements of
J(H; B,d,C). Hence the restriction of the automorphism T*I.I, of
Y(H; B, B*, B*) to 2(H; B, d, C) is an automorphism of the latter group.
This is the automorphism g, and this completes the proof of the theorem.

COROLLARY 1. ¢ is an inner automorphism of 3(H; B,d C), d <
C < B*, if and only if T+ is generated by the identity automorphism.
of H, and s* is an element of S(B, C).

Proof. If T+ is generated by the identity automorphism of H, and
st e S(B, C), then

p="T1.1,=1I.,,vs" eHBdC),
and hence p is an inner automorphism.
Conversely suppose g is inner,
pr=1,, we2(H;B,d,C); then
ﬂ = Iu, - T+Is+Iv+ y and T+Is+ == IMI(17+)_1 .

Moreover, (s)I . = (s)I, I, for all s € S(B, C); therefore s* € S(B, C).
Then finally T+ = I,I,+,+— is an inner automorphism. Since T'* leaves
S(B, C) fixed elementwise, T+ = I;;, but [e] is the only scalar of
J(H; B,d C), hence T+ is generated by the identity automorphism.

THEOREM 4. The group of three-tuples (T,s",v*), T an automor-
phism of H,s* e S(B, B*), v e V(B, d), with the operation,
(T, st viNTy, s, v0) = (TuT, s5st, vfsi (0. Th)s )
18 1somorphic to the automorphism group of

¥(H;B,d,C), d<C<B*".
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Proof. The set of three-tuples form a sub-group of the set of
three-tuples of Theorem 3 and hence the mapping defined there is a
homomorphic mapping of the set of three-tuples named above onto the
automorphism group of J(H; B, d, C). Call this restriction of the homo-
morphism X\ of Theorem 3, )\'. Then the kernel K’ of \' is contained
in the kernel K of A. But the only scalar contained in V(B, d) is the
identity multiplication; hence K’ has order one, and )\ is the desired
isomorphism.
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