PRINCIPLES OF PARTIAL REFLECTION IN THE SET
THEORIES OF ZERMELO AND ACKERMANN

A. LEvy AND R. VAUGHT

It was shown in [4] that the Zermelo-Fraenkel set theory may be
obtained by adjoining to the Zermelo theory Z an axiom schema called
the principle of complete reflection. (This schema, denoted here by CR,
and other notions involved in these introductory remarks will be described
explicitly later.) A schema of partial reflection, called here PR, which
is also valid in ZF was described in [5]. As we shall see in §2, the
theory T, = Z 4+ PR is a very strong one, in which, apparently, all of
the ‘ordinary’ set-theoretical constructions can be carried out.

Nevertheless, we shall show in §4 that 7, is much weaker than
ZF. Indeed, we shall prove within ZF the existence of numerous well-
behaved models of a theory 7, which deals with classes as well as sets
and is based on a partial reflection principle PR, stronger than PR.

The theory A* of [3], which is the set theory of Ackermann [1]
with an axiom of regularity added, deals with classes as well as set
(members of V). Regarding its ‘purely set-theoretical’ part A*/V, it is
known that A*/V & ZF (cf. [3]). An interesting question, which remains
open, is whether A*/V and ZF coincide. The development of the theory
A* has already been carried out in [1] and [3] to a considerable extent.
In particular, it was shown in |[3] that T, & A*/V and, moreover, that
another sort of partial reflection principle, called here R, is valid in A*.
As we shall observe below, the central axiom schema (v) of A* may,
in fact, be replaced by R.

In order to investigate the strength of A*, we shall, in § 6, establish
within A* the same facts concerning the existence of models of T,
which have been previously proved in § 4 on the basis of ZF. The very
short proofs within ZF of these facts depend heavily on the axiom of
replacement, or that of complete reflection. In order to establish the
same facts within A4* we are forced to carry further the general develop-
ment of 4*, In particular various results will be obtained within A4*
concerning proper classes, which have hitherto been little investigated.

§ 1. Preliminaries. Each set theory 7 we shall consider is for-
malized in the first order logic with identity and has as its only non-
logical symbols the binary predicate ¢ plus, in some cases, the individual
constant V. Its only sentential connective is| (joint denial) and its only
quantifier is 3. (The symbols ‘A’, ‘v’, etc., used in the metalanguage
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1046 A. LEVY AND R, VAUGHT

are to be understood in the usual way.) The words ‘theory’, ‘formula’,
‘valid’ etc., are to be understood as in [8]. We shall, however, say that
a formula is valid in T provided that its universal closure is a sentence
valid in 7. Moreover, each theory has a specified set of axioms. If
T is a set theory and X is a sentence or a sentence schema, we denote
by T + X the theory whose axioms are all axioms of T together with
the sentence or sentences X. We write T'S 7’ to mean that every
sentence valid in the theory T is valid in 7.

Throughout the paper we shall use the letters 6, ¢, and +, or ¢ to
range over formulas or sentences, respectively, involving only &, and 6,
@, and ¥, or X or 7 to range over formulas or sentences or terms re-
spectively, which may involve V as well. Concatenation will be denoted
by juxtaposition. We write ,@(@) to mean that @ is valid in the
theory T (logically valid).

It is assumed that the distinct variables (of any theory) are v, v;, +«-.
To improve readability we agree that z,y, 2,  are in order v, vy, ¥, ¥;
and that =«,y,2,%,v, w,s,t, o, %, -,y , --- are distinct variables. If
Toy ***, Ty are terms we denote by &(z,, .-, 7,—,) the formula obtained
from @ by simultaneously substituting z; for v, (¢+ < n) — after first chang-
ing bound variables in @ to avoid any collisions.

We denote by (3vi, Vi, *+*, Vi, €7)@ the formula

3vi) @, )V, €TA =+« A0, €T A D).

Two or three other similar usages will be observed which are to be
understood analogously.

By Rel(r, @) we mean the formula obtained from @ by relativizing
its quantifiers to 7, i.e., by replacing each part of the form (3v,)@ by
(3v,e7)0, after first changing bound variables to avoid collisions.

Let T be a set theory involving V. In the course of proofs within
T which are being approximated in English, we shall refer to arbitrary
objects as classes and to members of V as sets. We denote by 7/V the
theory without the constant V whose axioms (and whose valid sentences)
are all sentences o such that —r Rel(V, o).

The following special formulas will be needed.

DEFINITION 1.

x &y for (V2)(zex —zey)
Cp(x) for (Vy,2) ey NYyex—zex), read ‘x is complete’

Sc(x) for Cp(x) A (Vy,2) RSy Nyex—zen)?
read ‘x is supercomplete’

1 Strictly, we should say that Sc¢ (rather than Se(z)) is the formula on the right. In
addition, we are agreeing to write vx S v; instead of < (vk, v1).
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Ord(x) for Cp(x) A\ (Vy,2, wex)yédy AN (yezVy=2V zcy)

ANwey Ayez—owez)] A(Vu)u S x A @) (tecu)— @t)tecu

N ~@s)set Aseu)] A (Vu, v S 2)@w)vt)ftcew—tecu

N tév] read ‘@ is an ordinal’
Db(x, y, z) for (VE)(tez—t =u \/ t = y) read ‘z is the doubleton {x,y}’

Oc(z, y, z) for (v, w)(Db(x, x, v) A Dbz, y, w) A Db(v, w, 2))
read ‘z is the ordered couple <wzy>’

Ri(z, y, 2) for Qv)(Oc(x,y,v) Avez) read ‘x is in the relation z to ¥y’

Rn(z, y) for Ord(x) A @2){(vu)(u € x — (3v)RIl(u, v, ?))
A (Vu, v)[(wex A Rl(u,v,2) Vu=xAv=1y)
— (Vt)tev— Qu, V) eu A RI(W, v, 2) At S V))]}
read ‘x is an ordinal and R(x) exists and equals y'**

W(x) for (Au)|Rn(u, x) A (vv € w)@w e u)(v e w) A Ay)y € u)]
read ‘For some limit ordinal )\, R(\) exists and equals z’.

The theories S,, S, Z and ZF have no individual constants. S, is
based upon the axiom of extensionality t S y A ¥y & « — « = y, the axiom
schema of subsets

@) (vy)yewr—yecz A @) (¢ not free in @)
and the axiom of regularity
Ay)yex)—FY)lyex A ~ FAz)zey A zex)].

S has, in addition, the axioms of pairing, sum set and power set, and
the axiom schema of regularity. Z has the axioms of S plus the axiom
of infinity, and ZF has, in addition, the axiom schema of replacement.®

We shall need to make frequent use of the following lemma, whose
proof is straightforward and will be omitted. Parts (a), (b), and (c)
state certain simple invariance properties, while part (d) presents an
‘inner’ criterion for a supercomplete set to be of the form E(\) for some
limit ordinal . Another easily proved fact is that +— Rn(x,y) — Sc(¥);
this will be employed in the sequel without mention.

LEMMA 2. (@) +u & w— [Rel(u, p) — Rel(w, Rel(u, ®))]
(b) +Se(w) A uew— [Rel(w, Se(u)) «— Sec(u)]
() FsSc(w) A uew— [Rel(w, W(u)) — W(u)]

2 Informally, the sets R(«a) are defined by transfinite recursion as follows: R(a) =
U {P(R(B))/B < a}, where U x is the union-set of %, and P(x) is the power set of x.

3 For an explicit description of all these axioms and axiom schemata, cf. [9]. The
phrase ‘the universal closure of’ is tacitly understood to precede each description of an axiom
given in this paper, so that every axiom is a sentence.



1048 A. LEVY AND R. VAUGHT

(d) g, W(x)— Sc(x) A Rel(x, 0 A (Vu)@v)(u € v) A @)t = 1)),
where 0 is the sentence (Vu)@v, w)(Bn(v, w) A u S w).

A very natural theory can be formed by adding o to the axioms
of S (cf. [7]).

§ 2. Principles of reflection. The principle of partial reflection, PR,
is the axiom schema @ — (3u)(Sc(u) A %o, *++, X,— € u N Rel(u, ®) . The
principle of complete reflection, CR, is the schema

(Fu)[Sc(u) A (Y&, *++, @, € u) (P < Rel(u, P))] .

In both cases @ is supposed to have at most the free variables z,, «--,
Z,—, . We denote by 7, the theory S, + PR.®

It was shown in [4], Theorem 6, that ZF =S + CR. A stronger
schema is also valid in ZF (see, e.g., [4]). This is the schema CR*:

(1) @u)teu N Wu) A (Yoo, *++, Tuy € u)(P «— Rel(u, P)))

(where at most «,, +++, ®,-, are free in ®). By only slightly modifying
the arguments of [4], one sees that, in fact, ZF = S, + CR.®

We shall see below that ZF is much stronger than 7,. Nonethe-
less, T, is a very strong set theory. It appears that, roughly speaking,
all of the usual constructions of ordinary mathematics, including ordinary
set theory, which can be carried out in ZF, can also be carried out in
T,. It seems that only when one turns to notions which are of a
metamathematical character can one find propositions valid in ZF but
not in 7,. (Of course such notions can be expressed within set theory
itself, so the distinction here is only a vague one). The only way to
support these claims would be to prove a great many theorems within
T,. Perhaps, however, they will be adequately illustrated by the follow-
ing remarks and examples.”

4 It was shown in [6] that any supercomplete model of ZF is of the form R(2) for some
limit ordinal 2; references to earlier related results are given there. See also the proof of
Theorem 5 in [3]. By defining Rn(x, y) in a more awkward way, one can obtain a similar
criterion for a supercomplete set to be of the form R(a).

5 The principles CR and PR were introduced and discussed in [4,5,3], It may be
interesting to note that PR can be put in a form resembling CR even more closely. In-
deed, as one easily sees, on the basis of S, the principle PR is equivalent to the schema

Qu){Sc(u) A yeu A (Yo, -, Tu-1€Y)(¢ < Rel(u, ¢))} ,
where at most o, + -+, £y—1 are free in ¢.

6 To see this, first note that one easily proves in S, + CR the existence of 0,1, 2, 3.
Thus one can apply the second argument in the proof of Theorem 2 of [4]. Moreover, by
a variant of the same argument one obtains the axiom of pairing. Now all of § and the
form of CR used in proving Theorem 6 of [4] follow easily.

7 That the partial reflection principle when added to certain theories T is very strong
was already indicated in [3], pp. 164-165 and [5]. However, it was not yet realized there
that this applies even to the case when T is Sy or S. In particular, the question raised
in [3], p. 165, whether the existence of w; can be established in S + PR is easily answered
affirmatively, as we shall see below.
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All the axioms of S follow trivially from 7' (to obtain the axiom
schema of regularity, one can proceed in the usual way, since, by PR,
every set is included in a complete set). Since in S one can prove that
x U {x} exists for every x, a direct application of PR yields also the
axiom of infinity. Thus Z < T,.

We shall briefly sketch a proof in 7T, of the proposition 0 (of Lemma
2): If p does not hold, then by regularity there is a u such that

~ (3z, y)(Bn(x, y) A u S y)
while
(vu' e w)@x', ¥ )(Bn(@', y') N S ¥) .
By PR, v belongs to some supercomplete set ¢ such that
(vu' e w)@x', y' e t)Rel(t, Bn(z',y') ANu' S ¥').
It follows, as one may check by looking at Definition 1, that
(2) (vu’ e w)(32', y' e )(Rn(x', y') AN S ') .
Now on the basis of Z there exist z, #, and y such that, for any «’, ¥

(3) Ri(x', y'yz)— o',y et N R, ),
2 ex— @Y,y et A Rn(x', y)), and
weye— @, y)a,yet AN Rn(x', y) AN S ¥) .

Again on the basis of Z, it is a simple exercise to infer that Rn(z, v),
z being the set whose existence is required in Definition 1. Since, by
(2) and (3), v < ¥, we have obtained a contradiction.

Let PR* be the schema whose description has ‘W(u) when that of
PR has ‘Sc(u)’. Since p is valid in 7,, we see by Lemma 2(d) that PR*
is valid in T,.

One can prove in 7, the following theorem: For any set x well
ordered by a relation y, there exists an ordinal & such that <a, €,>
is isomorphic to <z,y>. (By ¢, we mean {<u,v>/u,vez A\ ueuv}.)
This theorem is proved by transfinite induction within <z, ¥>, invoking
PR at the limit stages.

One now easily proves by induction on «, in 7, that the initial
ordinals , exist for every «, again invoking PR when « is a limit
ordinal.

We now construct a second theory, T,, as follows. The theory T3,
has in addition to ¢, the individual constant V. Its axioms are those of
S + o together with Sc(V) and the following axiom schema, PR,:

(4) Loy o0y Xy € VAYP—@ue V[Sc(u) A Xy +o+, Xyt €U A
Rel (u, )]
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(where the free variables of v are among ), «++, 2,-,).® As before, by
Lemma 2(d), the schema PR; having ‘W(u) in place of ‘Se(u) in (4),
is also valid in T..

If ¢ is any sentence valid in T,, then Rel(V, o) is valid in T.(i.e.,
T, = T\/V). Indeed, suppose ¢ is (the universal closure of) an instance
of PR applied to the formula . Then Rel(V, ¢) may be derived in T,
by applying PR, with (Qw)(Sc(w) A %, +++, ,-, € w A\ Rel(w, )) for +r
(and noting Lemma 2(a)).

§ 3. Formalized syntactical and semantical notions. As is well
known we can, if we wish, conceive of the expressions of 7, as natural
numbers, of the concatenation of expressions as some specific elementary
number-theoretical operation, ete. Let us assume henceforth that this
has been done explicitly in some standard way. It follows that we can
get counterparts of metamathematical discussions such as those in §1
and §2 within the theory S by ‘translating’ those considerations to S.
In this way we arrive at several special formulas in (addition to those
in Definition 1) which will be needed. In Definition 3, below, we do not
exhibit these formulas explicitly, but only state a version of the intended
explicit formula in English. The explicit formula is to be obtained from
the English version by understanding notions defined in §1 or §2 in the
way specified there, understanding such terms as ‘function’, ‘natural
number’, ete., which have not been defined here, in the standard way,
and then translating in an intensional way.®

DEFINITION 3. (In the following, 7T is to be T, T, T\/V, T, + o,
T.+ 2 or T\/V +o0.)

(a) Ax(x): 2 is an axiom of 7.4

(b) Conr: No contradiction is derivable from the axioms of
T.

(c) As(z,y, 2): Sc(z), 2 #+ 0,y is a formula of Ty, and « is a func-

tion on the set of free variables of ¥ assigning
to each a member of z.

8 The possibility of forming ‘higher order’ partial reflection principles, like PR, is
already suggested in [3], p. 165.

9 The only rigorous procedure would be to describe these formulas explicitly; but the
present procedure, which saves much space, seems unlikely to cause confusion.

10 The formulas Azp(w) should (and obviously can) be constructed so as to meet the
requirements of Feferman and Montague (cf. [2]). Though the notion ‘T¢’, for example, has
no representation in S, the notion ‘axiom of 7, obviously does. When referring to the
definition of PR, in §2 in constructing the formulas Axp(z), one should consider that PR,
is the set of all sentences (4) where wo,-:-,%n-1, % are arbitrary (rather than particular)
distinct variables; and similarly for PR.
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(d) St(x,y, 2): As(z, v, 2) and «x satisfies ¥y in <z,¢e, >."

@) St'(x,y,z, u): Sckz),ucz, vy is a formula of T, x is a function
on the set of free variables of ¥ to z, and «
satisfies ¥ in < z,¢&,u >."?

(e) Mody(x): For any w, if Awx,(w) then St (0,w, x).

(f) Neg(x, y): x is a formula and ¥ is the negation of z.

(g) Relat(x,y,z): vy is a formula, x is a variable not free in y, and
z is the result of relativizing the quantifiers in
Yy to w.

We dencte by S’ the theory whose non-logical symbols are ¢, 0 and
S and whose axioms are those of S plus (vz)(x ¢ 0) and

(v)yeSre—yex Vy=n1a).
Obviously, a formula of S is valid in S’ if and only if it is valid in S.
The terms 0, 1, --- of S’ are defined recursively by the requirements:
0is 0 and » + 1 is S(#).
The following lemma is easily established. (In reading it, recall that
every expression of 7, is a natural number).

LEMMA 4.
(a) FsAs(s,t, u) A Neg(t,t') — |St(s, t', u) — ~ St(s, t, u)]

and the analogous conditions concerning atomic formulas, joint denial,
ete., 1n place of megation, or St' tn place of St.
(b) Suppose the free variables of ¢ are vy, «++, v, _,, where
ky <k <e+er <kp,<mn. Then
s As(s, @, u) A RUDy, 24y 8) A+ A BUD,_, 24, 1s S)
- [St(S, @: u) — Rel(u; QD(ZU, R zn-l))] .
(¢) FsSe(w) ANuew A As(s,t,u) A Relat(x,t,t’)
A (Vz)(zes' —zes V Oc(z, u, 2))
— [St(s, t, u) — St(s', t', w)] .
1t The second clause may be understood (still in English) as follows: There exists a
set w such that (i) for any f,¢ < f,¢t > € w if and only if f is a function on the set of
variables (free or bound) of y to z, ¢ is a subformula of y, and there exist variables &, 7
and formulas ¢/, ¢/ such that either (a) ¢t is the formula & = 7 and f(¢) = f(7), (b) £ is the
formula ¢€% and f() € f(7), (c) t is the formula #/|t'" and < f,t’ > € wand < f,t'" > € w,
or (d) ¢ is the formula (3&€)¢’ and there is a v such that
<(f—{<&FO>DHU{<Ev >t > ew,
and (ii) for some z/, < a’,y > € w and z < '.
12 We shall understand the last clause as follows: For any variable £ not occurring in

y, if y’ is the result of substituting & for V throughout y and z’ =2 U {< &, u >}, then
St(z', y', 2).
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(d) FsW() A s, t,uecv— [Rel(v, St(s, t, u)) — St(s, t, u)].

LEMMA 5. FsW(w) A W) Avew —
{Mod' r.(w, v) < (Vs, t € V)[St(s, t, w) — (Ju € v)St(s, t, u)]} .

Proof. Under this hypothesis we have Modgs(w), as is well known.
One easily checks that St'(0, Sc(v), w, v). That St(0,0, w) is immediate
from Lemmas 4(a) and 2(d). It follows that Mod),(w, v) if and only if
each instance of PR,, is satisfied by 0 in < w, ¢,, v >. Obviously, since
W(v), any finite sequence of members of v belongs to v and w S v.
Now, by looking at (4) and applying Lemmas 4(a), 4(b), 2(b), and 4(c),
we see at once that the desired conclusion holds.

Let T be a set theory involving only ¢. 7T is called essentially re-
flexive over T, if S & T and, for every o, |-,0 — Conr,,. An instance
of a general observation due to Montague is the following fact: If T
is essentially reflexive over 7, then 7 is an essentially infinite extension
of T, i.e., T is an extension of 7T, and no consistent extension of T
without new symbols can be obtained by adding a finite number of
axioms to those of T;,. These statements remain correct if ‘7T, is re-
placed everywhere by ‘T,/V’."®

§4. Models of T, and 7, within ZF.

DErFINITION 6. Q(x) for W(x) A (Vw)(vs, t € x)[(St(s, t, w) —
(au € x)St(s, t,u)]

(‘Q(x)’ may be read ‘x is a @-set’.)
THEOREM 7. (a) Fz@v)tev A Q).
() tzro— @)t ev A Rel(v, 0) A Q(v)) .

(In view of Lemma 5 and Definition 6, Theorem 7(a) implies that one
can prove in ZF that statement: there exist arbitrarily large limit
ordinals M such that for every limit ordinal M >N, < R(\), ezun,B(N)
> is a model of 7).)

Proof. By (1), taking (3w)St(s, t, w) for @, we obtain
@v){tev A W(v) A (vs, t € v)[Ew)St(s, t, w) — Rel(v, (3u)St(s, t, u))l} .
Hence, by Lemma 4(d),
@v){tev A W) A (s, t € v)(Vw)[St(s, t, w) — Qu € v)St(s, t, W)} ;

and by Definition 6 this is what was to be proved in (a). By taking,

18 It is here that we are relying on the fact that the formulas Ax To(x) and AxTI”(w)
can be constructed in a special way. Cf. [2].
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instead, o A (3w)St(s, t, w) for @ in (1), one obtains in the same way (b).
COROLLARY 8. ZF is essentially reflexive over T,|V and over T,.

Proof. From Theorem 7(b) and Lemma 5 (as well as Lemmas 4(b)
and 2(a)) it" obviously follows that

b zr0 — (v, WYMod’s s rory (W, V) .
It can be proved in the standard way that
l“SMOdT1+X(w7 V) — Co/nTl—FS
and obviously
FsCOnp 1 revir.o0) = CORpyy s

Hence tzp0 — Cong ... Since by §2, one can prove within S that
T,< T)/V, it follows that also I~zp0 — Cong,.,, which completes the
proof.

DEFINITION 9. By Q'(x,¥) we shall mean the formula

Ord(x) N\ AR){(vu)(u € x — FV)RU(u, v, 2)) A (vu, v)[(w € x A Rl(u, v, ?))
Vu=zAv=y—Q® A (Wu, v)u cu A R, v, z2)—v cv)
A (YOQW") A (v, v')w eu A Rel(w',v',2) — v S 0" A v £ v")
—v SV},

(Thus ‘Q'(x, ¥)’ may be read ‘x is an ordinal and the xth Q-set exists
and equals %’.)

From Theorem 7(a) it obviously follows that

THEOREM 10. | zx(VE)(Ord(t) — Qu)Q'(t, u)) .

§ 5. Models of T, within T,. We shall now see that the consis-
tency of T, can be established, by a different method, within a theory
much weaker than ZF.

THEOREM 11. ,Q(V).

Proof. By Lemma 2(d) and the discussion in § 2, we see that W(V).
Thus, by Definition 6, what we must show is that
(vw)(vs, t e V)[St, (s, t, w) — Qu e V)Si(s, t, u)] .

Suppose s,te V and St(s, t, w). Then obviously (3u)St(s,t,u), so that
by PR} we have:
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@Fze V)[W(2) A s,tez A Rel(z,(3u)St(s, t, w))] .

Since Sc(V), it follows at once by Lemma 4(d) that Que V) Si(s, t, u),
as was to be proved.

COROLLARY 12. T,V 1is essentially reflexive over T,.

Proof. In exactly the same way that Lemma 5 was proved, one
sees that

|—SW(v) - [MOdTo(v) — (Vx, UAS v)[St(x, Y, ?)) - (Hu € U)St(x) Y, u)] .

Now the corollary follows easily from Theorem 11; we omit the details.
By slightly modifying the proof of Corollary 12 (and, of course

various lemmas and theorems used in its proof) one can verify that

Corollary 12 remains valid if 7} is replaced by the weaker theory

S, + Se(V) + PR..

If the latter theory is consistent, it remains so, as one easily checks,
on the addition of the axiom # & V, which converts it into a Bernays-
type set theory.)

§ 6. Ackermann’s set theory. A new system of set theory was
proposed by Ackermann in [1]. A further study and development of it
was made in [3]. The theory A of [3] has the non-logical constants ¢
and V. Its axioms and axiom schemata are

(@) Ax)vy)yex——yec VA®) (x not free in @)

(8) Extensionality

) xp oo, e VAWVYYer— ) A2 S V—oxecv (where the

free variables of ¥ are among ¥, %y, +++, 2, ;)

@) Sc(V).

(Actually, our axiom (a) differs superficially from that in [3], but
is obviously logically equivalent to it. Our axiom (y) also differs from
that in [3], but it is clear that, on the basis of (@) and (8), the two
are equivalent. The theory A of [3] only differs, in turn, from the
original theory of Ackermann [1] in having an individual constant V in
place of a singularly predicate M.)

We denote by A* the theory A + Rel(V, X), where y is the axiom
of regularity.

Ackermann established in [1] that all the axioms of Z with the
exception of the regularity schema are valid in A/V. In [3] various
further results of this kind were established, which we shall need to
use. The following Lemma 13 lists a number of these or their
easy consequences. It is necessary here to correct an error in [3].
Lemma 3 there which is the same as Lemma 13(a) below) does not
appear to be correct, as it stands, However, if the definition of Ord(a)
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in [3] is replaced by that adopted here (in Definition 1), then the
proof sketched in [3] for Lemma 3 can indeed be carried out, as one
easily checks; moreover, everything following Lemma 3 in [3] remains
valid. Hencerforth, in referring to [3] we have in mind that this change
in [3] has been carried out.

LEmMmA 13.
(@) F.0rdx) ANOrdy) NeeVoxey\Vae=yVyecxr
b)) FaxeVVyeVo[Ruz,y)«—xecVAYyeV
N Rel(V, Bn(x, y))]
(¢) Faw(vyex)@u, v)(Bnlu, v) A\ yev)— (3u, v)(Bn(u, v) A\ &€ v)
(d) Faye V—[W(y) > Rel(v, W(y))l
(e) FaxW(V)
() FaBRn(z,y) AN Bn@, y) NeeVANesS o —ySy .

Proof. Since our definition of Rn(x,y) differs a bit from that in
[3], most of these results cannot be derived directly from what is in [3].
Rather, we must first change slightly the arguments in [3] so as to
obtain the same results for our Rn(x,y) as are established in [3] for
Rn(z, y)(i.e., y = R(zx)) there; this is easily done. With this understan-
ding (f) can easily be established from what is in [3]. (b) follows directly
from what is in [3] plus the fact that — Bn(x,y) Aye V—axe V. The
latter may be established as follows: Suppose that Rn(x,y) Aye VA
x¢ V. It follows at once by Definition 1 that (vu € )(3v)Rn(u, v), and
hence by (a) that (vu € V)(Ord(u) — (3v)Rn(u, v)). By (a) and (f),

(vu e V)(vo)(Bn(u, v) —v S ) .

One easily establishes that (vue V)(vo)(Bn(u, v) —u S v) (by at least
ordinal argument based on (&) and Definition 1). Therefore

(vue V)Ord(u) - u S vy) ,
and hence, by (a) and (8), there is a z¢ V such that
vi(uez—ue V A Ord(u)) .

Now, using Definition 1 and (a), one verifies that Ord(z) and zez, a
contradiction.

(c) is Corollary 4(a) of [3]. (d) is an immediate consequence of (b).
Finally, (e) can be derived at once from Theorem 5 of [3] by taking
~ W(x) for o(x).

We now wish to present two results concerning the relativized axiom
of regularity. The first is that the axiom schema of regularity is valid
in A*/V (so that our A* coincides with that of [3] and we have Z S A*/V).
In order to prove this it suffices, as is well-known, to show that, on the
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basis of A, every set x is included in a complete set. To see this, one
notes that the intersection of all complete classes including x, of which
V is one, exists (by (@) and is such a set (because of (y)). The second
result is that the situation for A with respect to regularity is like that
which von Neumann showed to obtain for the usual set theories, namely:

THEOREM 14. If A is consistent, so is A*. Indeed, A* 1is inter-
pretable within A (in the sense of [8])."*

Proof. As in [3], we note that by axiom (a) it is provable in A
that there exists a unique class 7 such that

(Ve)xemwe——xe VA Rel(V, (Au, v)(Ru(u, v) A zev))] .

Let A’ be obtained from A by adding the individual constant = and the
axiom just displayed.

We will show that each axiom of A is valid in A" if in it V is
replaced by m. This is immediate for axiom (&), and also for (B), since
7T S V, and is easily proved for (8). Finally, that it applies to (y) is an
immediate consequence of (y) itself and Lemma 13(c) above, which says
exactly that xe VA S T —zxem.

To complete the proof it clearly suffices to show that the axiom of
regularity relativized to 7 is valid in A’. But this can be done by
employing the usual argument (involving the notion of the smallest a
such that » & R(a)).

In view of Theorem 14 (and the details in its proof) we shall hence-
forth deal exclusively with the system A*. It was shown in [3] that
A*|V S ZF. As was mentioned in the introduction, it is an open problem
whether ZF coincides with A*/V. It was also established in [3] that
whenever ¢ is valid in A*, then it is valid in ZF. As we might con-
jecture from looking at the axioms of A*, the converse here is false;
this has recently been proved by Grewe and Vaught.

In [3] (Theorem 5,) it was proved that a new, strong type of partial
reflection principle is valid in A*. This is the following schema, which
we shall call R:™

Zyerry, By € VAPV)— @Que Vp(u)

(where at most v, z;, *++, 2,, are free in @).

14 A closely related observation was made in [3], p. 163. What is there can be used
together with our observation below that () can be replaced by R to give a slightly dif-
ferent proof of Theorem 14.

It may be mentioned that the second author has established a stronger result: The theory
obtained by adding to A the unrelativized axiom of regularity is relatively interpretable
within 4.

15 The schema appearing in [3], Theorem 5, is actually somewhat stronger (formally).
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It may be remarked that, in fact: In the axioms of A*, (y) may be
replaced by R. To see this, suppose that («), (8), R, (8), the axiom of
regularity relativized to V, and the hypothesis of the typical instance
of (y) all hold. Then we have: There exists © & V such that for any
y,yex if and only if y. Hence, by R, for some we V, there exists
2" < u such that, for any y, y € 2’ if and only if ¥. By (B8), x = 2/, and,
by (8), 2’ € V, so that xe V, as was to be proved.

As was observed in [3], from the validity in A* of R it follows
easily that PR is valid in A*/V, so that T, S A*/V. It was briefly
indicated there that R implies as well various ‘higher order’ reflection
principles, and that R may be used to establish the existence of various
proper classes."?

We shall now establish a series of results whose end product will
be the proof that the formulas shown in Theorem 7 and 10 to be valid
in ZF are also valid in A*. These results constitute a further general
development of the theory of Ackermann, which includes and extends
the ideas mentioned in [3] concerning higher order reflection principles.
An interesting feature will be the proof (on the basis of A*) of the
existence of well-behaved classes much larger than V itself.

From now on ‘@’ and ‘¢” will always denote formulas with at most
the free variables v, and v,. Let S,(x, ¥, 2) be the formula

zey NP, ) A Wy A (vy')zey Ao, y) AN WEH) -y SYy) .
From the axiom (8) of extensionality it obviously follows that

(5) FaxSu(®, ¥, 2) A Sy, y',2) =y =9y .
LEMMA 15, +xx,2e VA @(x, V) — @y e V)Sx, v, 2) .

Proof. Assume x,ze¢ V and @(x, V). Then, by Lemma 13(e) and
the principle R, we have

(6) Aye V)zey A oz, y) A W(y)) .

That, as is to be proved, there is a smallest such y now follows easily
from (6) by means of Lemma 13(a), (b), (f).

THEOREM 16. xxe V A oz, V) — Qy)S,(z,y, V) .

Proof. Suppose that xe VA oz, V) A ~ 3y)S,(z,y, V). Then by
R, 3ze V) ~ (3y)S,(x, ¥, z), which contradicts Lemma 15,

If one ignores the part of its conclusion saying that y is smallest,
Theorem 16 may be regarded as an inverted form of the principle R.

We shall denote by Td,(x,y) the formula

16 Cf. [3], pp. 162-165,
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re VA @(0(:, V) AN Sga(x! Y, V) ’

which will be read ‘y is @-tied to V by 2’. Thus Theorem 16 says that
if xe V and @(x, V) then there exists a class which is ¢-tied to V by «.
In some applications of Theorem 16 it is suggestive to have in mind
the following ‘metamathematical principle’, which follows at once from
it (by taking ~¢' for @ in Theorem 16):
If y is not free in r and if, for every @

= — [Td (2, y) — P'(x, y)] then x4 — (xe V—'(z, V)).

(That is, in A*, for a given set «, if we want to show that ¢'(z, V),
it is enough to show that ¢'(x, y) for every y tied to V by x).

THEOREM 17. | +Td (2, y) N\ g+, %€ VA Y(y)
— 3y e V) (')

(where +r has mo free variables except vy, Xy, ««+, ®,—,).

Proof. Our hypothesis is that
xe VAP, V)ANS(x,y, V) Ny +++, 2,6 VAY(®Y) .

It follows, by (5) that (vy')(S.(x, %', V) — (y')). Hence, by R, there is
a set z such that x, «--,2,,e2 A (V¥')( Sz, ¥, 2) — (¥')). Since by
Lemma 15 3y’ e V)S,(x, ¥, 2), we conclude that there is a set ¥’ such
that r(y').

The schema in Theorem 17 is similar to R itself. Roughly speaking,
R says that if V stands in a given (expressible) relation to some fixed
sets, then there is a set v which stands in the same relation to the
fixed sets. Similarly, the schema of Theorem 17 says that if a class ¥
is tied to V then, if ¥ is in a given relation to some fixed sets, then
there exists a set ¥ which is in the same relation to the same sets.
Since much can be proved about arbitrary sets, it follows that much
can be proved concerning classes tied to V; (this will be illustrated in
the first half of the proof of Theorem 18, below). Thus one might say
that classes tied to V are ‘well-behaved’. This contrasts with how little
can be proved about classes in general.

THEOREM 18. + 4xTd (2, y) — Rel(y, 2), where 2 1s any sentence
valid in T,.

Proof. It is obviously enough to prove Theorem 18 for sentences
Y which are axioms of S + 0 or instances of PR,. Assume that Td(x, v).
Let ¢ be an axiom of S + p. Assume that ~ Rel(y, ). Then by
Theorem 17 (3y' ¢ V)(W (') A ~ Rel(y’, 6)). Therefore, by Lemma 13(d)
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and Lemma 2(a), we have Rel(V, Ay (W (y') A ~ Rel(y’, g))). But this
leads to a contradiction since S S A*/V and, as is well-known, one can
show within S, for each axiom o of S + o, that (vy' (W (y') — Rel(y’, 0)).
Let 2 be the typical instance (4) of PR,. By Lemma 2(a), (b), the
statement Rel(y, Y), which we wish to prove, is equivalent to:

(Vg +++, -1 € V)[Rel(y, V) — Qu e V)(Se(u)
A Loy o0y Ty €U A Rel(u, )] .

But the latter is an immediate consequence of Theorem 17.
We can now establish in A*/V the result of Theorem 7 that there
are arbitrarily large Q-sets.

THEOREM 19. (a) F4+,Qv)tcv A Q(v)) .
() tFaxp0— @V)Eev A QW) A Rel(v, 0)) .

Proof. Let 6(x) be the formula (Qu)(x eu A Q(u)). What we must
show (for (a)) is that — 4 *(vx e V)Rel(V, 6(x)). By Theorems 11 and 18,

FaxTd (%, y) — Rel(y, Q(V)) ;

and hence, obviously,
(7) FaxTd (2, y) — Rel(y, 0(x)) (for every o).

The desired conclusion is an immediate consequence of (7), by the
‘metamathematical principle’ following Theorem 16.

If 6(x) above is replaced by (@Fu)(x eu A Q(u) A Rel(u, 0)), then ex-
actly the same argument establishes (b).

Exactly as we obtained Corollary 8 from 7 one obtains from Theo-
rem 19

COROLLARY 20. A*|V is essentially reflexive over T,|V and T,.

It should be remarked, however, that Theorem 19 is much stronger
than Corollary 20. By looking at the proofs of Theorems 11, 18, etec.,
one easily sees how to obtain a much simplified proof of Corollary 20.

From the existence of arbitrarily large Q-sets one can pass at once
within ZF to the existence for every ordinal a of the ath Q-set (cf.
Theorem 10). However, to make this passage in A*/V, as we shall do
now, requires some more effort.

LEMMA 21: Fpve V—[Rel(V, Q) — Q)] .

Proof. Suppose ve V. It is easy to check, using Definition 6 and
Lemmas 2(a) and 4(d) that (on the basis of S and so, a fortiori, of T7)
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(8) wez A W) A Qw) — Rel(z, Q(w)) .

From this and Lemma 2(a) and the fact that W(V), one obtains the
desired right to left implication.

Since S T,/V, (8) also holds relativized to V. Simplifying by
means of Lemma 2(a), (c), since Sc(V), this gives

(9) W(z) A Rel(V, Q(w)) AN weze V— Rel(z, Qw)) .
Now assume, contrary to the Lemma, that
ve VA Rel(V,Q) N ~Qv) .

Then, by (9), we see that W(z) A veze V— Rel(z, Q(v)), while by PR*
we obtain the contradictory result that

Fze V)[W(@) AN vez A Rel(z, ~ Q())].
LEMMA 22. Frpt,uc V—[Rel(V,Q'(t, u)) — Q'(¢, u)] .

Proof. Lemma 22 can be easily derived from Lemma 21. We shall
only give the hint that one should look at Definition 9 and make some
simple absoluteness arguments.

THEOREM 23. |+ 4#,(VE)(Ord(t) — (3u)Q'(t, w)) .
Proof. We must show that
.+ Rel(V, (v&)(Ord(x) — Qu)Q'(x, w)) .

Since S & A*/V, the principle of transfinite induction holds in A*/V.
Hence, it suffices to show in A* that, if

(10) ae VA Rel(V, (@)Ord A (VB e a)@v)Q'(B, v)) ,

then Rel(V, Qu)Q'(a, u)).
Assume (10). Then, by Lemma 22 and Theorem 18,

Tdy(a, y)— (V8 € a)@v e V)Rel(y, Q'(8, v)) .
and hence, obviously,

Td(a, y) — Rel(y, Qw)(v/ € &)(3v € w)Q'(8, v)) .
Therefore, by the ‘metamathematical principle’ after Theorem 16,
(11) Rel(V, Qw)(VB e a)@v e w)Q'(B, v) .

From (11) and Theorem 19 it follows easily that Rel(V, Qu)Q'(«, u)).
(The needed argument, which we leave to the reader, can be carried
out within A*/V on the basis of familiar methods well-known to be valid
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in §).

7. Final remarks. Though we have applied Theorem 16 repeatedly,
we appear by no means to have utilized its full strength in the pre-
ceding arguments. In all our applications, the formula @(x, V) has been
taken to be of the form Rel(V, 0(x)), or possibly, Rel(V, 6(x)) A W(V).
As an illustration of an application of Theorem 16 where @(x, V) is a
‘higher order proposition’ we may mention the following:

In A*, we can establish the existence of a class y tied to V such
that <y, e, > and < V, €, > have the same true sentences. (Indeed
for a fixed ze V we can even demand that elements of 2z satisfy the
same formulas in <y, €, > as they do in < V, €, >). To see this,
note that the set x of true sentences of < V, €, > isa set of natural
numbers and hence a member of V, and we can easily construct a for-
mula @(x, V) which expresses the fact that x is the set of truths of
<V, e, >. (The situation when z is given can be handled analogously).

In the argument just sketched, one question needs clarification. In
speaking of satisfaction in <y, €, > we refer to members of the power
set P(y) or even of PPP(y). Since these classes are beyond the reach
of Theorem 18, how can we be sure our statements about satisfaction
have their intended meaning? The answer is to be found in Theorem
17. Since the formula y(y) there can also be allowed to refer to classes
as large or larger than y, we easily see that the classes P(y), PP(y),
etc. must exist and be ‘well-behaved’. Indeed, by arguing as in the
proof of Theorems 16 and 18, replacing mention of R by mention
of Theorem 17, one can obtain a kind of iteration of those results,
namely the following fact (roughly speaking): If te V and @'(¢,¥)
and y is tied to V, then there exists a class ¥ which is ¢'-tied to
¥ by t; moreover, for this ¥’ we have Rel(y’,2), 2 being an axiom of
T..

Our final remark is that the results of this paper can be extended
to various theories with stronger axioms of infinity. If we look at the
hierarchy S, ZF,ZM, --. of set theories of [4] we see that, roughly
speaking, the present paper has dealt with the ‘interval’ from S to ZF.
However, it is straightforward to verify that all the numbered defini-
tions and theorems in this paper from Lemma 5 on, together with their
proofs, can be imitated in the next ‘interval’ from ZF to ZM, and in
higher intervals. To illustrate this point we shall formulate explicitly
the counterparts of Corollaries 8, 12 and 20 in the interval from ZF to
ZM.

Sem?F (x) is the formula defined in |4], p. 224 (which means roughly
that « is of the form R(a) with « inaccessible). ZF, is the set theory
obtained from ZF by adding to it the axiom schema
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P — @Qu)(SemF (u) N\ @y +++, X,y €U A\ Rel(u, 9)) ,

where @ has at most the free variables z,, ++-,2,_,."" ZF,; has, in
addition to &, the individual constant V. Its axioms are those of ZF
together with Scm?##(V) and the axiom schema:

Ty, *o0y Byy € VA P — (3w e V)(SemZ (u) A @y, +++, Tpey €U A Rel(u, 1))

where 4+ has no free variables except g, +-+, ®,—,. A is the set theory
obtained from A* by adding to it the axiom of replacement (&) of [3],
p. 167. As was shown in [3], AJ/V S ZM.

Now, the counterparts of Corollaries 8, 12, and 20 may be stated
as follows: ZM is essentially reflexive over ZF,/V and ZF,. ZF,|V is
essentially reflexive over ZF,. A}|V is essentially reflexive over ZF,|V
and ZF,.
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