ON EXTREMAL PROPERTIES FOR ANNULAR
RADIAL AND CIRCULAR SLIT MAPPINGS
OF BORDERED RIEMANN SURFACES

PaurL A. NICKEL

Introduction. There exist functions which map a planar Riemann
surface W of arbitrary conectivity conformally onto plane slit regions.
Functionals I, extremized in the class of all conformal mappings of W
by only one slit mapping, are known. Such functionals can be repre-
sented as limits of functionals I,, where each I, is itself extremized by
a horizontal or vertical-slit mapping with domain of finite connectivity.

A planar bordered Riemann surface of finite connectivity can be
mapped conformally onto a radial or circular-slit annulus with inner and
outer boundaries corresponding to any two contours of the surface. In
this investigation, extremal properties of such mappings are obtained
and extended to surfaces of infinite connectivity. The geometric nature
of the extended mappings, called principal analytic functions, is then
deduced from the extended extremal properties. In addition, certain
combinations of principal analytic functions are investigated from both
extremal and geometric points of view.

First, we consider a planar bordered oriented Riemann surface W7,
of infinite connectivity. It is assumed that W has two compact border
components, 8 and 7, such that no point of § U 7 is a limit point of
points of any other boundary components. Such contours are called isolated.
W is “approximated’’ by a sequence of compact bordered Riemann
surfaces {W,}, where each W, is of finite connectivity. On W,, an-
nular radial and circular-slit mappings F,, and F}, are constructed.
Among all normalized conformal annular mappings F' of W,, F,, max-
imizes

2r log(r(F)) + . (F)
and F), minimizes
27 log(r(F)) — p.(F) .

Here, r(F') is the quotient r,/rs;, where r, and »; represent the radii of
the positively oriented F'(v) and the negatively oriented F'(8) respectively,
and p,(F) is the complementary area of log(F'(W,)).

It is then shown by the reduction theorem (Sario[4]) that these ex-
tremal properties hold in the limit for the limit functions F}, and F7.
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Furthermore, the extremal properties of F, and F; imply that the former
is a radial slit mapping of W and that the latter is a circular slit mapping.
By establishing a deviation formula, it is seen that the functions F, and
F, are, up to a rotation, the only normalized conformal annular maps
of W extremizing the limit functionals. As another application of the
reduction theorem, we find that the univalent function 1/F . F max-
imizes p((F'), the complementary logarithmic area, among all conformal
annular mappings of W.

Next we pose the question: When does W have distinet radial and
circular-slit mappings. The answer is given in terms of AD-removability,
at least when W is a plane region bounded by an outer contour ¥ and
an inner contour 8. A point set E of the extended plane is called AD-
removable when the only analytic functions with finite Dirichlet integral,
defined on the complement of E, are the constant functions. In partic-
ular, we find that the principal analytic functions are, up to a rotation,
identical, if and only if the plane region bounded by ¥ and § minus W
is AD-removable.

1. We consider W an open planar bordered Riemann surface with
two compact non-point border components, 8 and v. In order to describe
the remaining part of the boundary of W, we recall that such a
surface can be embedded in a Riemann sphere S?. With respect to this
embedding, we assume that W and its boundary components satisfy the
following conditions:

(1) no point of 8 U 7 is a limit point of points of any other bound-
ary components, and (2) W — (8§ U v) is open in S®.  Operations in W
such as interior, boundary, etc., are referred to S>.

It is possible to exhaust an open Riemann surface by a countable
collection of compact approximating regions {W,}. In fact, W can be
countably exhausted in the following modified sense:

1. UvyC W,

2. W, cInt W,...

3. The boundary of W, consists of a finite number of disjoint an-
alytic Jordan curves.

4. Each component of W — W, is relatively non-compact.

5, W=uUW,.

There is no loss in generality in assuming that each W, contains a
¢ e W, where ¢ is arbitrary but fixed in advance.

Evidently 8 and v are two border components of W,. The remaining
border components will be denoted B,(W.,), BAW,), *++, Biwm(W,). When
only one approximating subregion is under consideration, the notation
for these remaining border components will be shortened to A, B, **°,
Bim. For convenience we define 3, as
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I. Extremal Properties of Harmonic Functions Defined on Approxi-
mating Regions.

2. We consider, in this and the following section, certain classes of
harmonic and analytic functions defined on an approximating region W,.

DEFINITION. H,(h + k) is the set of functions p, harmonic on Int
W, U3 U v and satisfying

(1) p() = e¢(p) = const. for zev with S dp* = 2n(h + k),

Y

(2) p@) =0,

(3) @) = e(p) for zed with Ssdp* — —2n(h + k), and

(4) S dp* = 0 for i = 1,2, - -+, k(n).

B;

h and k are real numbers. When the function p is defined only on Int
W, U8 U v, then the integrals S dp* andg pdp* are understood

Bi(Wnp)
pdp*. Here {W}}is an exhaustion of the sur-

Bi(Wy)

as limg dp* and limg
koo JBi (W' ) ke—oo JBy (W' g)

face Int W, and each B,(W)) is homologous (in W,) to 8:(W,). An ap-
plication of Green’s formula shows that these limits are independent of
the exhaustion {W}}. The class H,(1) will be denoted H,.

Principal harmonic functions p,, and p.,, belonging to H, are obtained
as harmonic extensions of functions constructed by use of linear operators
on Riemann surfaces (Sario [2]). In fact on each 8,71 =1,2, ..., k(n),
9D,,/0n = 0 and p,, = const. Hence for arbitrary h and k, the function
Duin = hpo, + kp,, belongs to the class H,(h + k), which is then not
empty.

3. THEOREM 1. P,,, wminimizes the functional S_ pdp* —
Bn

27(h — k)e(p) among all pe H,(h + k), where c¢(p) = c(p) — ci(p).

The value of the mintmum is —2x[h’c(p,,) — ke(p.,)].

The deviation of this functional from its minimum 18 Dy (D — Dyia)s
and the minimizing function is unique.

Proof. Let B be the entire border of W,. Then by Green’s for-
mula, we have

D0 = Duse) = | (0 = Pu)d(0 — Duss)” -

Since p and .. € H,(h + k), we conclude at once that L (D — Dria)
+
d(P — Duin)* = 0. Green’s formula becomes !
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Dy (P — Dria) = Sa pdp* +SB Drien@Diien — XE PrindD* + pdpj, .
We now expand the last term and find that

SB Drind ™ 4+ 0dD5, = hgg Do @D* + pdps, + kgé D, dp* + pdpf, .

But on S,, p,, has vanishing normal derivative, and p,, is constant.
This means that S_ pdpE = S P dp* =0 when pe H,(h + k). Thus we
Bn Bn

can infer from Green’s formula that
Sa DriadD™ + DAD, =h56+yp0ndzo* — pdps, + kL D1, dD* — pdp3, .
n +y

A direct application of the conditions (1), (3), (4) of H,(h + k) now
yields the formula
| Pradp” + pdpii, = 22 — K)e.(p) — ep)

—2xh(h + k)(c(Pon) — €2(D0n))
+2rk(h + k)(eo(Din) — (D))

We obtain in a similar fashion
SB phkndp;zkkn = kkS‘B p(mdp:fn - plndp())kn
n 7

5+y
= —2rhklc,(Do) — cx(Don) — (€(P1a) — Ci(D1a))]

Collecting contributions, we find
Dwn(p - pnkn) - 27‘E[h2(02(p0n) - Cx(pcm)) - k2(cz(p1n) - Cx(pm))]
= | pap* — 220 — K)e.0) — o)) -

Since the Dirichlet integral is nonnegative, we have that p,,, minimizes
the given functional. Clearly, for any pec H,(h + k) the deviation of
the functional from its minimum is Dy (» — Daia)-

We consider now the uniqueness of the minimizing function. For
another minimizing function p’, we would have a deviation of the func-
tional from the minimum equal to Dy, (" — pyi,). But p’ also minimizes,
80 Dy (P — Puka) = 0. Since pu.(§) = p'(€) = 0, we see that pu., = P'.
This completes the proof of Theorem 1.

4. Our interest in Theorem 1 will be with the following special
cases which we state as corollaries.
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COROLLARY 1. p,, maximizes the functional 2mc(p)— S; pdp*
37)
among all pe H,.

COROLLARY 2. p,, minimizes the functional 2mc(p) + S_ pdp*
By

among all pe H,.

COROLLARY 3. %(pon + ) minimizes the functional S_ pdp*
Bn

among all pe H,.

COROLLARY 4. po. — D1, maximizes the functional 4zwe(p) — Dy (P)
among all pe H,(0).
Each extremizing function s unique.

Corollaries 1, 2, and 3 follow immediately from Theorem 1 for
h +k=1. As for Corollary 4, clearly p,, — 0., € H.(0). Now for any

pe H,0), Green’s formula reads Dy (p) = S - pdp* = SE pdp*, and
Y+8+Bn n
Corollary 4 follows.

II. Geometric Properties of Analytic Functions Defined on Approx-
imating Regions.

5. DEFINITION. A, is the class of functions F analytic on Int
W, U 8 U 7 such that

(1) F(v) is a circle traced once in the positive direction,

(2) [FOI=1,

(3) F(8) is a circle traced once in the negative direction,

(4) F is univalent on Int W, U 8 U 7.
In this definition, F(y) and F'(8) are understood as oriented images of
oriented border cycles and the radii of these images are denoted r(F)
and ry(F).

Some useful relations between the classes A, and H, are expressed
in the following theorem.

6. THEOREM 2. (a) For any FeA,, log|F| is of class H,.
(b) The following analytic functions are of class A,:

(1) F, = exp(Pey + 1Du™) , (2) Fi, =exp(P, + 10:,%) .

The functions F,, are referred to as principal analytic functions.

wm

Proof of (a). Evidently 27 = Syd(argF(z)) =gyd(10g] F())* and



1492 PAUL A. NICKEL

Condition 1 of H, is verified. Condition 3 is checked just as easily and
(2) is apparent. As for (4), let B; be any component of the border of

W, other than & or v. Suppose that B ~ B3; and that S yd(log| F|)* =
Bi

2rk, where k is an integer. There exists a path from & to v which
does not meet [B.. But if k= 0, then every path from F(§) to F(3)
meets F'(B)). But F' is univalent, so k = 0.

Proof of (b). We consider first the function F,, and omit the
analogous proof for F,,. First, it is evident that 27 = S dpf = S d(argF.,)
Y Y

and r(F) = exp ¢y,(p,,) = const. Certainly F,(¥) is a circle traced once
in the positive direction, and (1) of No. 5 is satisfied. Condition 3 is
verified in a similar manner and (2) is trivial.

To verify the Condition 4, we consider the extended version of the
argument principle, and reason in a manner analogous to Ahlfors [1],
p. 203.

7. DEFINITION. The multiple-valued functions P,, are defined as
P, =p,, + ip}. However P,, — P, is single-valued, and the principal
analytic functions are expressible as F), = expP;,, © = 0,1. We also fix
the following terminology: 7(F') denotes the ratio r,(F')/rs(F) and g, (F)

denotes the complementary logarithmic area ——SE log| F'(z) |d(argF'(2)), a

nonnegative quantity when Fe A,.

THEOREM 3. F,, maximizes 27 logr(F') + . (F') among all Fe A,.

F\, minimizes 2rlogr(F) — p,(F) among all Fe A, .

P, =v'F,, - F,, maximizes [, (F) among all FeA, .

F,|F,, maximizes 4z log r(F') — Dy, (log| F') among all quotients of
Junctions in A,.

P,, — P, maximizes 4n|Re(F(2,) — F'(z))] — Dy (F) among all an-
alytic functions on W, the real part of which is constant on §,constant
on 7, and 0 at &, Here z, and z, are on ¥ and & respectively.

Proof. We have log|F,.(2)| = Du.(2), so it follows from Corollary 1
of Theorem 1 that log|F,,| maximizes the functional 27mc(p) — S_ pdp*
Bn

among all pe H,. But according to Theorem 2, when FeAd,, the
log| F'(z)| € H,. Hence F,, maximizes the functional 27 log »(F) + p.(F)
among all FeA,. The proof of the second part of this theorem is
analogous, and so is the proof of the third part when it is shown that
P, =V'F, - F,, Iis of class 4,, a fact that is proved in the appendix.

It is easily seen that log| Fi./Fi, | = Do — D1., hence according
to Corollary 4 of Theorem 1, log|Fi,/F,,| maximizes 4me(p) — Dy, ()
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among all pe H,(0). If F = G/H, where G and He A,, then it follows
from Theorem 2 that log|G | and log | H| € H,, and we have S d(log| F|)* =
b

S d(argF) = g d(argG/H) = 0. Other similar calculations show that
Y Y

log| F'(2)| € H,(0). Thus F%,/F}, maximizes 47 log r(F') — Dy, (log| F'|) among
all quotients of functions in A4,.

The extremal property of P,, — P,, follows from Corollary 4 as well
when it is observed that Re(P,, — P..) = Do, — DPix, and that ReFe H,(0)
when F'is analytic on W,.

The following corollary of Theorem 3 will be useful when we are
considering geometric properties of conformal maps of W.

COROLLARY. The functional r(F) is maximized, uniquely up to a
rotation, by F,, and minimized, uniquely up to a rotation, by F,, among
all FeA,.

Proof. 1t follows from the definition of F,, given in No. 6. that
d(argF,,) = dpg, which is0 on 5,. Since t,(F) = 0, we have 27 log r(F) <
2rlog r(F') + p(F) < 2x log r(Fy,) + t.(F.,) = 2r log r(Fy,), that is, r(F')
is maximized by Fj,.

Analogous reasoning shows that F}, minimizes »(F') among all Fe A4,.

In order to establish the uniqueness, we let »(F') = r(F,,) for some
Fe A, Then an application of Theorem 3 yields 0 < ¢.(F) = p.(F,,) < 0,
which means that F' also maximizes the functional 27 logr(F') + p,(#)
among F'e A,. But an application of the deviation formula of Theorem
1 shows that D, (log|F/Fi,|) =0, from which it follows that F = cF\,
with |e¢] = 1.

III. Extremal Properties of Principal Harmonic Functions.

8. We propose in the present section, to develop for domains of
infinite connectivity, extremal theorems which will generalize the results
of §1 for finite connectivity. An essential role is played by the

Reduction Theorem (Sario [4]).

Assume that Z and Z, are classes of functions with domains W,
an arbitrary open Riemann surface, and W,, an exhausting subregion
of W, respectively. In addition, suppose that real-valued functionals
m and m,, defined on Z and Z,, satisfy the following conditions.

(R1) If W, c W, and if fe Z,, then f|, cZ .
Here W, may be replaced by W, and Z, by Z.

(R2) If {f.} is a sequence the elements of which belong to Z,, and
if {f.} converges uniformly to fe Z,, then m,(f,) converges to m,(f).

(R3) m(f) = limm,(f), for any fe Z.
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(R4) There exists a function f,€ Z, such that f, minimizes the
functional m, among all fe Z,.

(R5) For k < h, and fe Z,, mf) = m,(f) .

(R6) The family {f,;f. minimizes m, among fe< Z,} is a normal
family, and the limit functions belong to Z.

Then any limit function f = lim,_.f, minimizes m among all f e Z,
and value of minimum s m(f) = lim, .m,(f.).

The proof of the reduction theorem is established by selecting an
exhaustion of W, and can be carried out for a bordered surface W as
well, as soon as an exhaustion is known to exist.

9. Let W be an open planar bordered Riemann surface, {W,} an
exhausting set, § and v separated boundary components, all as described
is no. 1.

LEMMA 1. The families {p,.} and {p..} are normal.

Proof. If {Fi,} ({Fi.}) is a normal family, then so is {p,} ({p..})-
Hence it suffices to show that for every compact set S, there exist a
constant M and and integer N such that |F,,(z)| < M (| F..(z)] < M) for
all n > N and all ze S. Let S be any compact subset of W and choose
n sufficiently large so that S < W,. Forany zeS and W, c W,, since
Fy,(7) is the outer contour of an image annulus we have 27 log| F|,(2)/
rs(Fip)| =< 27 log (r(Fy,)) + t.(Fyy). But according to Theorem 3, the right
hand side is bounded by 27 log (7(F%.)). We now recall that | Fi,({)| = 1»
that is 75(F,,) < 1. Hence |F,,(2)| is bounded for all z¢ S and for all
» = n, and the family {F},} is normal.

As for {F},}, we have

27 log| F1.(2)[r5(F1,) | = 27 log (r(F},)) = 27 log (r(Fy,)) .

The second inequality follows from the Corollary of Theorem 3. We
conclude that {F},}is bounded on any compact set S and is normal. This
completes the proof of Lemma 1.
An immediate consequence of Lemma 1 is that the family {p,.} is
normal.
10. LEMMA 2. If m < n', then the tnequality
S_ pdp* = g pdp*
B B’
holds for all pe H,(h + k).

Proof. We apply the first form of Green’s formula to the region
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W, — W, and find

EE 'pdp* - SE pdp* = DWﬂ'—Wn(p) = 0.

DEFINITION. H(h + k) is the class of functions p, harmonic on W,
satisfying

(1) p(2) = ci(p) = const. for zev with S dp* = 2rn(h + k),
Y
(2) p)=0,
(3) p(z) = e(p) = const. for z e with Sadp* = —2n(h + k), and

(4) S dp* =0 where ¢ is any cycle which is homeomorphic to a

circle and which does not separate 8 and 7. A cycle o is said to separate

S and v if every path from & to 7 intersects g. Let H denote the class
H().

DEFINITION. For any pe H(h + k), Sgpdp* is understood to be

limg_ pdp*. The existence of this limit is guaranteed by the monotoni-

n—e ) By

city condition of Lemma 2.

LeEMMA 3. If the sequence {p,; p, € H,(h + k)} converges on compact
subsets to p’, then p’ e H(h + k).

We recall that a sequence {f,} converges on compact sets if for every
compact set S, there exists an N such that {f,; 7 = N} converges uni-
formly on S.

Proof. The convergence p, — p’ is uniform on compact sets. The
conditions (1), (2), and (8) for H(k + k) can therefore be inferred from
those of H,(h + k). Let ¢ be any cycle which does not separate § and
v. Then there exists n such that the compact ¢  W,, and we have

g~ b18 + ZaiB«E

where the 3; are homologous to components of the border of W, (Ahlfors
and Sario [1]). We embed W, in the complex plane with v as an outer
boundary, and fill in the ‘‘holes’’ whose boundaries are the g)s. Now
o — b8 =0A, and every path from & to ¥ meets ¢. This is a contradic-
tion, unless b, = 0.

Using the uniform convergence of {p,} along with Green’s theorem,
we obtain

g dp* = limS dp? = limgz dpr = limZaiL,dp;f ~0.
o T JZa;B ]

n—oo n—oo ¢ n—o
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DEFINITION. A harmonic function p,, is defined as the limit of any
sequence of the normal family {p,..} Which converges on compact sets.

THEOREM 4. p,, minimizes the functional S_pdp* — 2n(h — k)c(p)
among all pe H(h + k). ’

The minimum wvalue of this functional s —2mw(h’c(p,) — ke(py)).

The deviation of this functional from its minimum value 1is
D(p — p,,) and the mintmizing function s unique.

11. There exists a subsequence {p,...} of {Dnx} Which converges to
Dne On compact sets and satisfies lim, . _.pui. = D, + kp, where »; =
lim, oP;n, © =0,1. The uniqueness of Theorem 4 then allows us to as-
sume that p,. = hp, + kp, for all » and k.

Proof. That p,, minimizes and gives the functional the value
—2m(h’e(p,) — k*c(p,)) will follow from Theorem 1 if we can verify
(R1) — (R6) of the reduction theorem. The functionals m, and m are

taken to be S pdp* — 2n(h — k)c(p) and Sapdp — 2n(h — k)e(p) respec-

tively, while the classes Z, and Z are H,(h + k) and H(h + k).
If pe H(h + k), then p|,, satisfies the Conditions 1,2, and 3 for

Hy(h + k). Since no B(W,) separates & and 7, Sﬁ dply: =0 and (4

is satisfied. Hence ply, € H,(h + k) and (R1) is verlﬁed The uniform

convergence of f, to f makes (R2) evident, and the functional S_pdp* —
B

2n(h — k)e(p) is defined as limnwg_ pdp* — 2n(h — k)e(p), asrequired by
(R3). e

Theorem 1 shows that (R4) is satisfied, and Lemma 2 of no. 10 shows
the same for (R5). That the family {p,..} as defined in no. 2 is
normal, follows from Lemma 1 of no. 9, and that the limiting functions
belong to H(k + k) is then a consequence of Lemma 3 of no. 10. Thus
by the reduction theorem, the limit function, p,,, minimizes the limit
functional among pe H(kh + k) and the minimum value of the limit
functional is the limit of minimum values.

12. In order to establish the deviation formula, we first denote
the functional of Theorem 1 by +, and consider its value on the func-
tion Pe = Pur + € (P — Pnr). Upon expanding, we find
(2) Pve) = | Pudpic — 270 — Bo(pas) + alh)e

+ 628_ ® — Pu)d(® — Dr)*,

Bn
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where for each 7, this is a polynomial in &, and a,(n) is the coefficient
of the ¢ term. But the last integral is

. 0= 2do = py* = | @ = pudd® = 2" = Dy (0 — ps).
Bn By t8+y
The first equality follows from the fact that » and p,. both belong to
H(h + k). Therefore, in the sense of limits, we write

Sg(p — Pp)A(D — D))" = D(D — Dus)

where D is the integral over the entire bordered surface W. In a
similar fashion, we find

(3) | Puudni, — 22(h — Ke(pu) = D(oye) — 4rhe(m)

By an earlier part of this theorem, the left hand side of equation (3)
is finite. Thus we have that D(p,,) < oo.
We assume that D(p — p;) is finite. By the triangle inequlity for

the Dirichlet integral (Courant [1]), D(p), and consequently | pdp* are

both finite. Now in equation (2), with ¢ =1, consider the limit as
n— oo, The limit of every term, except a,(n), exists and is finite.
Hence the same can be said of lim, .a,(n). But Y«(p.) = lim,_ .y, (p.)
has, by part (1) of our theorem, a relative minimum for & = (0. There-
fore, lim,..a,(n) = 0, and the deviation formula (p) = (p,,) + D(p —
Dne) results when ¢ = 1 is substituted into equation (2) after taking
limits.

When D(p — pni) = <o, this formula holds in the sense that y(p) = <«
as well. This completes the proof of Theorem 4.

IV. Extremal and Geometric Properties of Principal Analytic Func-
tions.

Extremal properties for harmonic functions defined on a surface of
finite connectivity were used in § 2 to establish extremal properties of
analytic functions, also defined on a surface of finite connectivity. In
the present section, we exploit the extremal properties of harmonic
functions, now defined on a surface of infinite connectivity, for the
purpose of establishing both extremal and geometric properties of analytic
functions.

13. A competing class of analytic functions is defined as follows.

DEFINITION. A is the class of analytic functions on W such that
(1) F(7) is a circle traced once in the posititive direction, (2) |F(¢)| =
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1, (8) F(d) is a circle traced once in the negative direction, and (4) F

is univalent on W,

THEOREM 5. For any Fe A, log|F|e H. Furthermore F,= exp(p;
+1pHed, 1=0,]1.

No ambiguity will result in referring also to Fj, and F) as princtpal
analytic funmctions.

Proof. For any Fe A, consider log|F'|, which clearly satisfies (1)~(8)
of the definition of H in no. 10. Then let S d(log| F'|)* = 0 for ¢ not

separating & and . If S d(log| F'|)* = 2rk, k an integer, then F'(o)

separates F'(§) and F'(y). But F is univalent on W and we have the
contradiction that o separates 8 and 7. This means that log|F|e H.

Let F; = exp(p; + ipf), © = 0,1. Conditions 1-3 for A are easily
verified. An application of the extended argument principle to any
exhausting subregion W, shows that F) is univalent on § Uy, when
univalence is established at interior points. For interior points of W,
F; can be represented as exp(p; + 1p}) = lim,_.exp(p;, + tp}) = lim, .. Fl,.
So each F; is univalent by Theorem 2 and the well-known Hurwitz
theorem.

14. The following five theorems are concerned with analytic funec-
tions constructed from the harmonic functions p, and p,w hich are
uniquely defined by Theorem 4.

DEFINITION. F is an annular radial (circular) slit mapping of W
provided that F(W) is an annulus minus a point set each component of
which is a radial (circular) slit or point. Let {w;ry(F) < |w]| <
r(F,)} — F(W) be denoted by S;, 7 =0, 1.

DEFINITION. For a surface of infinite connectivity, the comple-
mentary logarithmic area ((F') is defined as lim, ../, (F) for any Fe A.
That this limit is defined independently of an exhaustion follows from
Theorem 5 and Lemma 2.

THEOREM 6. F, = exp(p, + 1p;) maximizes 2rlog(r(F)) + t(F)
among all Fe A,

The value of the maximum is 2rwlog(r(Fy)).

The deviation from the maximum is D(log|F|F,|), and the maxi-
mizing function is unique up to a rotation.

The 2—-dimensional Lebesgue measure of the point set S, is 0.

F, is an annular radial-slit mapping.
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Proof. We apply Theorem 4 with 2 =1,k =0 and obtain that
log| F,| minimizes X_ pdp* — 2me(p) among all pe H. According to The-
B

orem 5, we may use Theorem 4 on logarithms of functions in 4 as well,
that is, F, maximizes the functional 27log (r(F")) + ((F') among all Fe A4,
the maximum value of this functional is 27 log(7(F})), and the deviation
from the maximum is D(log|F/F,]).
As for the 2-dimensional Lebesgue measure of S, consider the
annulus
{w; ro(Fy) = |w] = r(Fy)}

and set ¢t = log w. The transformation mapping w into log w is denoted
L, and the image of {w; r;(F,) < |w]| < r(F})} under L is called R. Now
it is easily seen that

LS, = A [CALE(W.))].

where C,, is understood to mean complement with respect to R. L(Fy(W.,))
is compact and closed in R, and this means that Ci[L(Fy(W,))] is open
and measurable. Hence, LS, a countable intersection of measurable
sets, is measurable. Its measure M is then given by

M(L(S) = lim p1,(F) ,

where p,(F}) is defined in no. 7. But according to an earlier part of
this theorem, the term on the right is 0. When we observe that L,
defined on the cut annulus, preserves sets of measure zero, we conclude
that the 2-dimensional Lebesgue measure of S, is zero.

Suppose that the complement, with respect to {w; rs(F,) < |w| <
r(F,)}, of Fy(W) is a point set, the components of which are not all
radial slits or points. The full annulus

{w; ro(Fy) = ]wl = ry(Fo)}

minus such a component, denoted 7, is called W,. We embed W,in the
Riemann sphere S* and consider the simply connected point set S* — 7,
which can be mapped conformally onto the complement of a unit disc.
Let E be this conformal mapping, and denote by v” and §” the sets
E(8,) and E(7,), where 8, = Fy(8) and v, = Fi(v). Now E(W,) is of finite
connectivity, so we can apply Theorem 2 to construct a radial-slit mapping
@ of E(W,) onto an annulus, minus one radial slit, with inner boundary
@(8") and outer boundary @(v”’). @ is normalized by |[PoEoF(¢)| =1,
and belongs to A4, for E(W,). We then apply the corollary of Theorem
3 to # and find that 2wlog (r(®)) > 2rlog (r(E)) = 2xlog (r(F,). Then
the map poFEoF|, where E and @ are properly restricted, belongs to A.
But 27log (r(poEoFy)) = 27 log(r(®)) > 2rlog (r(F,)). This is a contradic-
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tion, for according to an earlier part of this theorem F,, up to a rota-
tion, uniquely maximizesthe functional 27 log (7(F})) in A. This completes
the proof of Theorem 6.

COROLLARY. The primeipal analytic function F, maximizes the
Sfunctional r(F') among dll Fe A.

Proof. The maximim value of the functional in Theorem 6 is 27
log (r(F})), that is y(F)= 0. The proof is complete when we observe
that p#(F') is nonnegative for all F'e A.

THEOREM 7. F =exp(p, + 1pf) mimimizes 2rmlog(r(F)) — M(F)
among all Fe A.

The value of the mnimum 1s 27 log (r(F7)).

The deviation from the minimum is D(log| F|F}|), and the mini-
mizing function is umige up to a rotation.

The 2-dimensional Lebesgue measure of the point set S, is zero.

F, is an annuler circular-siit mapping.

The proof is analogius to that of Theorem 6 and uses h =0, k = 1.

COROLLARY. The primcipal analytic function F, minimizes the
Sfunctional r(F) among oll Fe A.

THEOREM 8. P=VF,. F, maximizes ((F) among all Fe A.

The value of the mximum s p(P).

The deviation from the maximum s D(log|F/P|), and the maxi-
mizing function is unigre up to a rotation.

The proof uses h=1/2, k = 1/2.

THEOREM 9. @ =F/F, maximizes 4mlog (r(F')) — D(log| F|) among
all quotients of functions in A.

The value of the mrimum 1s 27 log (r(Q)).

The deviation from the maximum is D(log| F/Q]).

Proof. When the wndition » =1, k = —1 is substituted into The-
orem 4, it is easily seenthat the technique of Theorem 3 will establish
Theorem 9.

Consider the multipl-valued functions P, = p, + ip; and P, = p, +
ipf. The difference of these functions has zero flux around any cycle
of W and is single-valued.

THEOREM 10, P,-P, maximizes
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4r[Re(F(2,) — F(2))] — D(F')

among all analytic functions on W the real part of which is constant
on 8, constant on v, and 0 at £. Here z,, and 2z, are on v and & re-
spectively.
The value of the maximum is —2xRe[(Py, — P)(2,) — (P, — P)(z,)].
The deviation from the maximum is D(F — (P, — P,)).

The proof again applies Theorem 4, with # =1 and &k = —1, as well
as the observ_ation that Re(P,— P) =p,— p, and ReFe H when F is
analytic on W.

V. The Existence of Distinct Principal Analytic Functions.

15. We consider the problem of determining conditions under which
there exist two different principal analytic functions on the planar
bordered Riemann surface W of no. 1. The principal analytic functions
under consideration are defined in no. 13, and have properties described
in Theorems 5, 6, and 7 of no. 14. The following concepts are dealt
with in Ahlfors and Sario [1].

DEFINITION. Two compact sets in the plane, each with connected
complement, are said to be equivalent if their complements are con-
formally equivalent.

For the remainder of this chapter, we let £ be a compact plane set
with connected complement.

THEOREM (Ahlfors and Sario [1]). The complement of E is of class
0.p of and only if every set which is equivalent to E has 2-dimensional
Lebesgue measure 0.

DEFINITION. Let U be any open set which contains E, and suppose
that a function F'is analytic on U — E. F is said to be a removable
singularity for F if there exists analytic extension of F' to U.

THEOREM (Ahlfors and Sario [1]). FE is a removable singularity for
all functions of class AD in a neighborhood of E tf and only if the
complement of E (with respect to the Riemann sphere) is of class 0,,.

16. DEFINITION. A planar bordered Riemann surface W as de-
scribed in no. 1 is said to have rigid radius when 7(F) is constant for

every F in the class A of no. 13.

THEOREM 11, Let F, and F, be the principal analytic functions
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belonging to A. The surface W has rigid radius if and only if F, =
cF,, where |c| = 1.

Proof. If W has rigid radius, then according to Theorems 6 and
7, both F; and F, minimize the same functional. Hence F| = c¢F,, with
l¢] =1, On the other hand, if F = cF}, we conclude from the corollaries
of Theorems 6 and 7 that F, maximizes, and F, minimizes the functional
r(F') among all F'e A. Bzcause |¢| = 1, we have that the radius is rigid.

6. AD-Removability.

17. Our next condition for distinguishing F, from F) is most natu-
rally stated if we take the bordered Riemann surface W to be a plane
region, with v and & as outer and inner boundaries respectively. In
addition, we let W, denote the plane point set bounded by v and §, with
E the difference W, — W.

THEOREM 12. Let F, and F, be the principal analytic funetions
of mo. 18. Then F, = cF,, with |c| =1, if and only if S* — Eec0,p.

Sufficiency. F, and F, map a neighborhood U of E onto an open
set of finite area and are of class AD in this neighborhood of E. Then
according to no. 15, the principal analytic functions may be extended to
all of W. If the extension F; of F, satisfies Fi(z,) = w, for some w,
with r5(F,) < |w,| < r(F), then

dF, dF;

. PN _ _
@7i) SM—_—FE—wO (@) gm___._Fi_wO 1, i=0,1.

Since F, e A, the second integral is 1 and the extensions are univalent.
This means that F, o F;* is a conformal mapping of a full closed annulus,
and in fact that r(F}) is equal to 7(F,). We have F, = cF}, with |¢| =1,
as a consequence of Theorem 11.

Necessity. If S* — E'is not of class 0,5, then, according to no. 15,
there exists a one to one conformal mapping with positive complementary
area. Such a mapping will have positive complimentary logarithmic area

as well. Therefore, according to Theorem 8, (1 F,-F)) is positive, and
Theorem 6 guarantees that F, # cF..

APPENDIX

An argument of Ahlfors and Beurling [1] (p.111), which will be
referred to and not repeated, is crucial in the proof of:

18. THEOREM 11. The amnalytic function P,=V'F,.F, 1is of
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class A,.

Proof. Verification of the Conditions 1,2, and 3 for A, of no. 5
is immediate. Only (4) remains to be checked. If log F}, and log F,
are considered in the roles of ¢ and p of Ahlfors and Beurling [1],
p. 111, then log V'F, -F,, may be considered in the role of i(g + p).
We observe that d(log F,,)/d(log F,,) is well defined on the approximating
W,. Hence, by the technique of Ahlfors and Beurling already cited, we
may conclude that Re(d log F.,/d log F},,) is of constant sign with no zeros
in W,. This implies that the image of each contour 3; is a convex
curve, and each image is traced once as each (3; is traced once. This
also implies that each of the curves F'(83,) is traced in the same direc-
tion, and this direction will be determined now for one F'(3,).

We observe that for each 1, P,(8,) is a compact set, and we may
then choose w,; and w! so that w, is that point of P,(8;) which is closest
to P,(v) and w; is that point of P,(¥) which is closest to P,(3;). We
now assume that the [3; are indexed so that min{d(w;, w}); =12, ---,
k(n)} is d(w,, wi) where d(w, w') is the usual Euclidean distance from w
to w’. That is to say, P,(3,) is as close to P,(7) as any of P,(8,), «--,
P.(B.). The line segment I’ joining w, to w{ is a univalence path for
P, in the sense that each point of /" is taken exactly once by a point
of W,. Clearly P, is one to one on P;'I', and we may conclude that
B, and P,(5,) are similarly oriented. The reasoning in the paragraph above
then establishes that each P,(3;) is oriented as is P,(5,), and in fact, for
each ¢ we have that the winding number for points inside P,(B;) is —1.

An application of the argument principle is now all that is needed
to show that P, is univalent on Int W, U § U 7.
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