AN IMBEDDING SPACE FOR SCHWARTZ
DISTRIBUTIONS

DoNALD E. MYERS

1. Introduction. We consider here a facet of the problem of justi-
fying the methods of the operational calculus and in particular the use
of the “Dirac Delta Function’’. L. Schwartz’s ‘“‘Theorie des Distribu-
tions’’ [6] is the most complete exposition to date on generalized fune-
tions but the operational calculus as such is largely omitted. B. Van
Der Pol [8] discusses the latter but not in the context of distributions.
Ketchum and Aboudi [4] suggested using unilateral Laplace Transforms
to construct a link between Schwartz’s theory and the operational calculus.
This paper will enlarge on the latter suggestion. Two principal results
are obtained. An imbedding space is constructed and a comparison be-
tween the topologies is made.

Let S denote the strip ¢, < R(2) < 0., in the complex plane. Con-
sider the one parameter family of functions {e*’}, where the parameter
z ranges over S and —o <t < . This family is not a linear space
but each member possesses derivatives of all orders. In a manner analo-
gous to Schwartz we define an Lg-Distribution to be an analytic complex-
valued functional on the above family of functions, where by analytic
we mean with respect to the parameter z. If a is any complex scalar
and F, o are two such functionals then we require that F'-e* L g.¢* —
(F + 0):0%, and (aF)-e* = F-(ae’*). The latter property then allows
us to define the derivative in a manner similar to that of Schwartz,
that is F'-e* = F.(¢*) = F-.ze** =zF-¢*. It also follows that the
Laplace Transform supplies an integral representation of some of the
functionals. The other Lg-Distributions define generalized functions for
similar integral representations. That is, each function analytic for z € S
has for its values, the values of an Lg-Distribution acting on a function
e®* and the Ls-Distribution has an integral representation utilizing the
symbolic inverse Laplace Transform of the analytic function. In most
of this paper we deal only with analytic functions whose inverse trans-
forms exist but the definitions and theorems will be stated without this
restriction where possible. Following a practice used by other authors,
we will call the inverse Laplace Transform, symbolic or not, an Ii-
Distribution rather than the functional. Because of the relation between
the functional and an analytic function we concentrate on the latter and
utilize the already known properties of such functions. By emphasizing
the integral representations rather than the functionals we utilize the
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Riesz Representation Theorem for continuous linear functionals to es-
tablish a correspondence to Schwartz Distributions.

As stated above each functional has a representation by an analytic
functions, using this we will define convergence in a fashion similar to
that of Schwartz. That is, a sequence of Ls-Distributions will converge
if the sequence of values, when operating on an arbitrary member of
the one-parameter, converges. Because of the parameterization this
definition can be stated directly in terms of the representations by the
analytic functions.

2. Lg-Distributions.

DEFINITION 1. If an Lg-Distribution is determined by an analytic
function f(z), then f(2) is its bilateral Laplace Transform. Denote this
Lg-Distribution by [f(?)]. or f;. Further, abbreviate Lg-Distribution by
Ls'D-

DerFINITION 2. The derivative of an L¢D, [f(2)], = f; is the LD,
[2f(®)]: = f,. For a fixed S, the set of all Ls-D’s is metrized by a
Frechet type metric on the transforms. See [7], page 137. TFor a pair
of functions f(z), g(z) analytic in S, denote the metric by Ny(f, g). The
following property of this metric could have been used a definition since
it is the only property used in this paper.

THEOREM 3. A sequence of functions, all analytic in S, converges

with respect to the metric N if and only if the sequence converges
uniformly on every compact subset of S.

DEFINITION 4. ps(f}, 9.) = Ns(f, 9) where f,, g, are the L;-D’s whose
transforms are f(z), g(z) respectively.

DEFINITION 5. If f(2), analytic in S, is the bilateral Laplace Trans-
form of a point-function F'(t), then F'(t) is called a Point-Function Lg-D
or P.F.Ls-D.

THEOREM 6. If Fi(t),7=0,1,2,8, --- all possess bilateral Laplacs
Transforms analytic in a strip S, 0, < R(z) < a,, and

lemrora <o,
[ emm) par < o

Sfor all ¢, then let
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oo 1/2
AF, F) = || e 1R — Pty e
0 1/2
n [S_ o2t | F(t) — Fy(2) |? dt] .
If d(F;,, F;) — 0 as ¢ — o then
Fi(t) — Fiy(t) as P.F.Lg-D’s.
Proof. Write the transform of F(t) — Fi(t) as
| _eemess i t) — Fulat
+ S“e—”z-vne;—vw[F,.(t) — Fyt))dt .
0

By the Cauchy-Schwartz Inequality

| fi(z) — fo(2) |

< [z o PO — R ]

+[__1_S°°64w | Fit) — Fyt) I dt]m .

2[R(z) — a,] e
If
_ 1 1
06) = rax Wz(R(z) oy /2«:2 - R(z))J
then

|fi@) | = 9(2)9(F;, F)

and hence f,(z) — fy(z) uniformly on each compact subset in Sif d(F}, F}) —
0 as t— oo,

An interpretation of Theorem 6 might be that if {e~"1*F(t)} converges
in L0, o] to e *F(t) and {e"**F;(t)} converges in L,[co, 0] to e 2 F(t)
and each F)(t) has a bilateral Laplace Transform then the sequence of
P.F.Ls-D’s converges with respect to the metric ps.

THEOREM 7. Let fi(2),7=0,1,2,8, --- be an infinite sequence of
Sfunctions analytic in a strip S, 0, < R(z) < 0, and further suppose
there exists a C such that | fi(z)| < Ce ™! for some 7, > 0, i all of
S. If Ns(f;, fo) =0 as j— oo then F;(t) — Fy(t) uniformly on every
bounded interval in the t-line. F,(t) denotes the inverse bilateral Laplace
Transform of fi(z).

Proof. The hypothesis is sufficient to ensure the existence of the
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inverse transform of each f;(z),[2]. That is,
Fit) = | " e fi(w + iw)ldy

foro, < x<o,.

Then
B0 ~ Ft)| = o= || el + i) — e + i)ldy|
+ ;_il Sp e[ fix + 1) — fole + y)ldy |
TlJ)-e
+ ﬁ’ij S“ei‘ﬂ[f(x +iy) — filw + in)ldy | .
2r P

2672 C"g
g

0

For ¢ >0, and a < ¢ < b, let p be such that < ¢/2 and J such

and J such that [ ] N(f5, ) < €/2 for § > J, then

| Fy(t) — Fiyt)| < eforj > and
a<t<b.

THEOREM 7.1. If in Theorem 7, o, < 0 < 0, then F(t) — F,(t) uni-
formly for —oo <t < oo,

DEFINITION 8. For each Lg-D, f;, define f,., to be [e*f(z)],.

THEOREM 9. If f, is an arbitrary Ls-D then

o L2 =5 )~ 0as 0.
Proof. By definition
fi =12 f2)],
Sien = [€"f(2)],
so that
fiszti_

- [e’”f(Z) —f(2) — zf(z)]

t

[+ 1]
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and since

uniformly on each compact set in S as h— 0, the theorem is proved.

DEFINITION 10. An Lg-D f, is said to have point-values F(t) for
¢ <t <d if there exists a o(f) such that for some £k, f(z) = 2%9(2), g(?)
being the bilateral Laplace Transform of o(t) and finally that ¢"%(t) =
F(t) for (c <t <d).

For example [1], has zero-point values in every open interval, in
the t-line, that does not contain the point ¢ = 0. Since

Ht) = 1, ¢t > 0 has for
0,t>0

its transform 1/z and [1], = [z%]t finally H'(t) =0 for all ¢t 0. [1], is
the “Dirac Delta Function’’.

THEOREM 11. If {.f.} ts a sequence of Ls-D’s converging to an Lg-D
of: then {,f®} converges to f* for all k=10,1,2, .-

Proof. By definition {,f,} converges to
oS S max |2 J(2) — of(2) | — 0

as n— o for all compact K S. Since in the complex plane, a set is
compact < if it is closed and bounded, there exists an M, for each
K|z| < M, for z¢ck.

Then max Lf(2) — o fR)| — 0

| Mg |®|,f(2) —f()| >0 as m— o for each fixed
positive integer k apply Definition 2.

ExamMPLE. The following will be used as a counter-example in the
last section. Consider the Taylor-expansion for

3 Ny
e,_,___l_z+z_2_z _|~..._|_(_1)z

21 31 ar

le7*], is the ‘‘Delta Dirac Function’ translated so that Lg-D has zero
point-values for all ¢ except for

t=1 (12 = EXp, - C Dy,
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The latter Ly-D has zero point-values for all ¢ = 0. Since the Taylor
Series converges for all z and hence uniformly for compact sets the
series of Ls-D’s converges

3. General Li-Distribution. The set of all Lg-D’s for any fixed
S does not contain a subset isomorphic with the set point-functions having
pointvalues a.e. For example, the function F(t) =1 does not have a
transform even though it is continuous for —o <t < . However
each member of the sequence of functions

Fi() =1, (—t=t=<1)
=0, t>1, t< —i
i=0, 0,1,2,8,4, +++)

does possess a transform. Further for each open interval (¢,d) only a
finite number of the elements of the sequence have different point-values
than F(t) in (¢, d). The sequence represents F(t).

DErFINITION 12. A sequence {.f,} of Ls-D’s is called Fundamental
if for each open interval (¢, d) there exists an integer N such that for
n>N,fi — . ofpr=20,1,2,3,--- is an Lg-D with zero point-values in
(¢, d). Fundamental sequence of Ls-D in abbreviated by F.S.S.

DeriniTION 13. Two F.S.8.s, {,0.} and {,f.} are said to be Similar
if for each open interval (¢, d) there exists an integer N such that for
n > N,g, — .f, is an Lg-D with zero pointvalues in (¢, d).

LEMMA 14. The Similarity defined in Definition 13 for pairs of
F.S.S.’s is an Equivalence relation and 1is tnvariant under addition

and differentiation.

THEOREM 15. The equivalence classes under the Similarity relation
are called G.Lg-D’s or General Lg-D’s. They form an Abelian group,
closed with respect to scalar multiplication and differentiation.

The Representation Theorem.

THEOREM 16. Let A denote the entire complex plane, then there is
a subset, D, of the set of all G. L,;D’s that is isomorphic with the
set of all Schwartz Distributions. The isomorphism is invariant with
respect to addition, scalar multiplication and differentiation.

(a) By definition, a Schwartz Distribution is a linear functional on
the space of infinity differentiable point-functions with compact supports
and is continuous when restricted to the set. Each Schwartz Distribu-
tion has an integral respresentation when restricted to a bounded closed
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interval, [3]. This representation has the form
b (r
D) = (~1y| Foys“at

where F'(t) is continuous on [a, b] and r is an integer dependent on [a, bl
and the distribution D,. ¢(f) is any function with support the closed
interval [a,b]. Let [a,, b,] be a sequence of intervals where — o —

O =a,=b,=<b,, > o as n—> . For each n there is an F,(¢) and
an r,. Let

G.(t) = (—1)F,(), (@, =t =0,
=0, t>b, t<a,).
Then let

£i) = |e G, (vt

It remains to be shown that the sequence {,f.} is an F.S.S. and that
the equivalence class is independent of the sequence of covering intervals.
The G.Ls-D determined is the representative of D,.

(b) Let I be an arbitrary open interval in the ¢-line, denoted (¢, d).
There exists an N then such that for n > Nla,, b,] D (¢, d). Let F.(¢),
F,. (%), 7, r,+, be the continuous functions and integers given for the
representation of the distribution D, on the intervals [a,, b,] and [a,.,,
b..,] respectively. Using Halperin’s notation, let Sfa,, b,] denote the
class of testing functions associated with the interval [a,, b,] that is, if
¢ e Sla,, b,] then ¢*(t) is zero for t ¢ [a,, b,], and ¢*'(t) exists for all
tela,b,] for £k =0,1,2,3, ---. It is seen that Sla,, b,] C S[a,,,, Bussl-
If ¢’ € S[a’nv bn] - S[an{pv bn Pp] then

D) = (~1+| "y byt

= (_1)rn+pgb” “’Fﬁp(t)qwnm(t)dt

Sntp
or
by
S [F,()p"(t) — (—=1)n+r7nF, (t)p"+P(t)]dt = 0
since
¢*(t) = 0 for ¢ ¢a,, b,] .
Let

T.F(t) = S F.(0)do
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T*-F(t)=T-[T- F,@)].

Then if 7,,, = 7,
0= Sbn[(_l)fn+p*rnT7'n+P"n . Fn(t)qS(t)(T”*‘P) - Fn+p(t)¢(7'”+?)(t)]dt :

It follows then that
(_1)7n+p_TnTT7L+P‘Tn . Fn(t) — Fni-p(t)

is a polynomial Q,(¢) of degree m =< 7r,,, —1 for a, <t <b,. Similar
results are obtained if », = r, + ».
bt

" ertgrni *G,,(t)dE

on+p

viaf @) = 1) = |

- Sbne“”z’nGn(t)dt :

Using @..(t) we have

a

winf@) = o f@) =\ e, (B)dt

In+p

+ ane_ztzfn § me(t)dt

n

+ S:”pe‘”zWH’GMp(t)dt .

The first integral can be considered as the transform of the 7,.,th
derivative of a function with zero point-values exterior to the interval
[@,.p @,] and hence interior to the interval (c, d). The second integral
can be considered as the transform of the r, ,th derivative of a poly-
normial of degree less than or equal to »,,, — 1. Hence the Lg-D
determined has zero pointvalues on the interior and exterior of the inter-
val [a,, b,] and hence on the interior of (¢, d). This L¢-D may not have
zero point-values at ¢t =a, or ¢t =b,. Finally then the third integral
considered as a transform determines an Ly — D with zero pointvalues
exterior to the interval [b,, b,:,] and hence on the interior of (c, d).
winft — ofi 18 an Lg-D with zero pointvalues on the interior of (¢, d),
if » > N. The sequence constructed in part (a) is an F.S.S.

(¢) Suppose [a,, b,] and [c,, d,] are two expanding sequence of closed
intervals covering the real line. Let {,f.} and {,9.} be the F.S.S.’s
obtained from the consturuction of part (a) using the former sequences.
Let I be an arbitrary open interval in the t-line. Then there exists
integers N}, N? such ,,,f; — .f. for n < N; and ,4,9, — .9, for n < N}
Ls-D’s with zero point-values for ¢ el. Further there exists an integer
M>sla,, b,] C[Cyx,dy] for » = M and N = N;. Consider
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'nf! — a0 = nft - Kft + Kft - th + th — a9

where K is the largest of N}, N} M. For n > K then the first differ-
ence on the right is an Lg-D with zero point-values for teI since
{»fi} is an F.S.A. The second difference can be shown to be an Lg-D
with zero point-values for ¢ € I by the method of part (b). Finally the
third difference is an Ls-D with zero point-values for teI since {,0.)
is F.S.A. The two F.S.A.’s are similar and hence determine the same
G.L,.-D. The correspondence between the Schwartz Distribution and
the G.L,.-D. is one-to-one. The invariance of this isomorphism with
respect to addition, differentiation and scalar multiplication follows from
Lemma 14.

4. A Topology for G.L-D’s

DEFINITION 16. An F.S.S. {,fi} is said to have point-values F(t)
for te(c, d), an open interval, if there exist an integer N, such that
for n > N, ,f, is an LgD possessing pointvalues F(f) for ¢te(c,d). A
G.Ls-D is said to have pointvalues F(t) for ¢ e (c, d) if there is an F.S.S.
unit equivalence class possessing that property.

DeriNiTION 17. Let {,fi}, +++, {»fi}i» + =+ be a sequence of F.S.S.’s.
Denote the nth element of the jth F.S.S. by (,f;);. Then sequence is
said to converge to the sequence of Ls-D’s {,f},, if for &> 0 there
exist integers N, J. such that o [(.f); (.f)] <& when n > N, 5> J.

DEeFINITION 18. Let D,, D,, --- be a sequence of G.Ls-D’s. Further
suppose L,, L,, -+ is a sequence of F.S.S.’s each having support [a, b]
and that for each 7 =1, 2, --- L; represents D; is (a,b). That is, for
some F.S.S. in D;, the difference of L; and the F.S.S. has zero point-
values in (a, b). Then if L,, L,, --+ is convergent in the sense of Defi-
nition 17, D,, D,, --- is said to converge to D, where D, is the G.L,-D.
determined by L.

THEOREM 19. If a sequence of Schwartz Distributions is convergent
wn an open interval (a, b) in Schwartz’s sense then the sequence of G.Lg-1D’s
isomorphic to the respective Schwartz Distributions ts convergent in
the interior of every closed interval contained in (a, b).

Proof. Let D, D,, --+ be a sequence of Schwartz Distributions con-
vergent in Schwartz’s sense in (a, b). For any closed interval [c, d] con-
tained in (a, b) there exists a sequence of representation

D9) = (1| Fopo) -t
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for ¢ € S[c, d]. Since the sequence D, D,, --. is convergent there exists
one integer 7, which can be used in all the representations and also the

limit representation.
For each j, construct the F.S.A. {,f.}; where {,f.}; = (f,); and

(f); = [Sje_"Gj(t)]Cdtl

where

Gi(t) = (1) Fy¢) , c=t=d
=0, otherwise .

Since the sequence of Distributions is convergent
lim T F(t) = Fy(t) [uniformly [¢, d]] 7 — o
K= ’ sz’ce‘“[T”Gj(t) — Go(t)]dt‘
< |d —cle | T™G(t) — Gu(®) [ d™] .
It follows that

K =[(f(2); — (f(2))| = Me
forg > dJo, M=|d —cle*1|g,]|.

Then (f(2)); = (f(2)), uniformly on every compact set in the strip o, <
R(z) < 0, and hence in the metric p;. By definition then (f,); — (f.),
and hence

{ofidey =+, {nfi}sy + <+ converges to {,f:}, in the interior of (¢, d). The
sequence of G. Ls-D’s converges for t < (c, d).

The example given earlier for a series representation of ‘“Delta’”
Distribution with a discontinuous at ¢ = 1 converges in the sense defined
herein but not in Schwartz’s sense. The Lg-D [¢7*], and its series
representation furnish a solution to the differential equation

floe =1 = @) + f@) + LB 20
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