
QUOTIENT RINGS OF RINGS WITH ZERO SINGULAR IDEAL

R. E. JOHNSON

Many papers have been written recently (see [2]-[14] of bibliography)
on extensions of rings to rings of quotients. In most of these papers,
strong enough conditions are imposed on the given rings to insure that
each has a vanishing singular ideal (first defined in [5]). It seems
appropriate at this time to collect these results and present them in as
general a form as possible. In this paper, it is assumed that each ring
has a zero right singular ideal. A subsequent paper will give the
quotient structure of a ring having a vanishing right and left singular
ideal.

1. Introduction. If i? is a ring and M is an iϋ-module, then L(R)
and L(My R) will designate the lattices of right ideal of R and iϋ-sub-
modules of M, respectively. Superscripts " r " and "Z" will be used
in designating the right and left annihilators, respectively, of an element
or subset of a ring or module. The context will always make it clear
from what set the annihilators are to be chosen.

In a lattice L with 0 and /, an element B is called an essential
extension of element A, and we write Aa'B, if and only if A c B
and C Π A Φ 0 for every C in L for which C Π B Φ 0. An element A
of L is called large if 4 c 7 . The sublattice of L of all large elements
is designated by LA.

If R is a ring and M is a right iϋ-module, then let

MA(R) = {x I x e M, xr e LA(R)} , RA = {x | x e R, xr e LA(R)} .

It is easily shown that MA(R) is a submodule of M and RA is a (two-
sided) ideal of R. The ideal RA is called the singular ideal [5; p. 894]
of R.

A ring R with zero singular ideal has the unusual property, proved
in [7; Section 6], that each AeL(R) has a unique maximal essential
extension As in L{R). The mapping s: A -> As of L(R) is shown there
to be a closure operation on L(R) having the following properties:

(1) 05 = 0,
(2) (A Π B)s = As Π Bs for each A, Be L(R), and
(3) {x-'AY = x~xAs for each xeR and A e L(R), w h e r e x~ιB = {y\yeR,

xyeB}. The set LS(R) of closed right ideals (i.e., A = As) may be
made into a lattice in the usual way by defining the union of a set of
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elements of LS(R) to be the least upper bound of the set. The result-
ing lattice LS(R), which is not in general a sublattice of L{R), is proved
to be a complete complemented modular lattice in [7; Section 6]. If
ΛΠs a right iϋ-module for which MA(R) = 0, then the closure operation
s may be defined in a similar way on L(M, R). The resulting lattice
LS(M, R) has similar properties to those of LS(R), as was shown in [7;
Section 6].

For A, B e L(R), B is called a complement of A if B D A — 0
whereas C Π A Φ 0 for every C z> B, C Φ B. If B is a complement of
4, then clearly A + δ e L A ( β ) . Furthermore, if RA = 0, then

If A is a two-sided ideal of i2 for which A Π A1 — 0, then evidently
A1 is the unique complement of A in L(i2). Since (A + Azy = A1 Π -A",
clearly A" is the unique complement of A1 in case RA = 0. In this
case, both A1 and A11 are in LS(R). By [7; 6.7], C s (#) = {A \ A ideal
of £ , A n A ! = 0,A = A"} is the center of the lattice L'(#). For each
Λ e C s(#), it is easily seen that AA - 0, that LS(A) = {£ Π A | 5 e Ls(i2)},
and that CS(A) = {B Π A | B e Cs(i2)}. Of course, LS(A) c LS{R) and
C5(A) c C W

Every regular ring R has a zero singular ideal. This is evident
because er Π eR = 0 for each idempotent e e i2. Since i2 = eJS + er,
evidently eR and βr are complements of each other and each is in LS(R).
Consequently, each principal right ideal αReLs(R).

A ring R for which RA - 0 and CS(R) = {0, R} is called (right)
irreducible. An irreducible ring need not be prime. For example, the
ring of all n x n triangular matrices over the ring Z of integers is
irreducible by [8; 3.5]. Clearly this ring has a nonzero nilpotent ideal.
By [8; 2.1], an irreducible ring is prime if and only if it contains no
nonzero nilpotent ideal.

If R is a subring of ring Q then Q is called a (right) quotient ring
of R, and write R ^ Q, if and only if qR Π R Φ 0 each nonzero Q e Q%

It was proved in [5] that each ring R for which RA = 0 has a unique
maximal quotient ring R. By [5; Theorem 2], β is a regular ring with
unity. Essentially, the definition of R in [5] was as follows:

R =z U Homβ(A, R) .

If x,y eR, then we take & = y if and only if xa = i/α for every α in
some large right ideal A c Dom x Π Dom #,

In case R is a subring of a ring Q, then we may consider Q as a
right iϋ-module. If we do so, then the assumption R g Q implies that
Rc'Q, considering i? and Q as right i?-modules. It is easily verified

The more general definition of a quotient ring in [12] and [2] is equivalent to ours
in case RA = 0.
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that if R £ Q then QA(R) = 0 if and only if RA = 0.

2 Some basic lemmas. The rest of this paper will be concerned
only with a ring R for which RA = 0. We shall prove in this section
that if Q is a quotient ring of such a ring R, then the lattices of
closed right ideals of R and Q are isomorphic.

2.1 LEMMA. If RSQ and AeL(Q), then AeLA(Q) if and only
if An ReLA(R).

Proof. If A e LA(Q) and b e R, b Φ 0, then A Π bQ Φ 0 and a =
bq Φ 0 for some α e i and g e Q. Now qC a R for some C e LA(iϋ) by
[7; 6.1]. Since QA(i?) = 0, bqC φ 0 and therefore A f) bR Φ 0. Hence
μ n ί ) n & β ^ 0 a n d i n ReLA(R).

On the other hand, let us assume that AeL(Q) and A Π ReLA(R).
For each nonzero q e Q, qC c R for some C e LA(R). If we let ί = C ί l
(A Π JR), then B e LA(R) and g£ =£ 0 since QA(J?) = 0. Hence qB Π (A
Π R) Φ 0 and we conclude that qQ a A φ 0 for each nonzero qeQ.

Thus, AeLA(Q).

2.2 LEMMA. If R^kQ and M is a right Q-module, then M is a
right R-module and MA(R) = MA(Q).

Proof. If x e M and A=xr(in Q) then A e LA(Q) if and only if A Π
ReLA(R) by 2.1. Therefore, ikfA(i2) = MA(Q).

2.3 COROLLARY. If R^Q, then QA = 0.

This follows from 2.2 if we let M = Q and use the assumption
that RA = 0.

2.4 LEMMA. If R ^ Q and M is a right Q-module such that
MA(Q) = 0, then LS(M, R) = LS(M, Q).

Proof. If A e LS(M, R) and q e Q, then qB c R for some B e
LA(R). Therefore (Aq)B c A and Aq a A by [7; 6.4]. Hence, A e
L(M, Q) and we conclude that LS(M, R) c L(M, Q).

If A e L(M, Q),xeM and Bx = {b \ b e Qy xb e A}, then xeAs if and
only if BxeLA(Q) by [7; 6.4]. Therefore, in view of 2.1, the closure
of A relative to Q is the same as its closure relative to R. Thus,
LS{M, R) = LS{M, Q).

2.5 THEOREM. If R^Q, if M is a right Q-module for which
MA(Q) = 0 and if NeLA(M,R), the LS(M, Q) ^ LS(N, R) under the
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correspondence A -• A Π N, A e LS{M, Q).

Proof. By [7; 6.8], LS(M, R) = LS{N, R). Thus 2.5 follows from
2.4.

2.6 COROLLARY. / / R ^ Q, then LS(Q) = LS(R) under the corre-
spondence A -> A Π R, A e LS(Q).

If R is an irreducible ring, so that CS(R) = {0, #}, then CS(R) =
{0, #} by 2.6. Hence -R also is irreducible. Actually, since R is regular,
R is a prime ring by [8; 2.1]. We state this result as follows.

2.7 THEOREM. / / R is an irreducible ring, then R is a prime
ring.

3 LS(R) atomic* Let us assume in this section that R is a ring
for which RA = 0 and the lattice LS(R) is atomic. We define this to
mean that LS(R) has minimal nonzero elements, called atoms, and that
each element of LS(R) contains at least one atom. It is proved in [7; 6.9]
that a nonzero element x of R is contained in an atom if and only if
xr is a maximal element of LS(R). Incidentally, (xR)s is the atom
containing x.

Two atoms A and B are said to be perspective [1; p. 118], and we
write A ~ B, if and only if A and B have a common complement. It
is easily shown in our case that A ~ B if and only if A U B contains
a third atom [1; p. 120, Lemma 3]. We proved in [7; 6.10] that A ~ B
if and only if ar — br for some nonzero ae A and b e B. If A ~ B and
B ~ C then ar = br and b\ = cr for some nonzero α e A, 6, bλ e J5 and
ceC. Since B is an atom, bR Π ί̂ ϋ? =£ 0 and there exist xfx1eR such
that bx = \xx Φ 0. Hence, (ax)r = (te) r = (Mi)7" = (c^) r. It follows that
perspectivity is an equivalence relation on the set of all atoms of LS(R).
Clearly for a finite set {A19 , An} of perspective atoms, there exist
nonzero a{ e A{ such that a\ — a] for each i and j .

For each atom A of LS(R), let A* be the union in LS(R) of all
atoms perspective to A. It is proved in [7] that A* is an ideal of R
[7; 6.7] and that A* is an atom of CS(R) [7; 6.12]. Conversely, each
atom of CS(R) is of the form A* for some atom A of LS(R).

Since CS(R) is a Boolean algebra, R is the direct union of all atoms
of CS(R). Hence, if {Af; i e Δ) is the set of all distinct atoms of C*{R),
then the ring-union S of the atoms of CS(R) is a discrete direct sum of
these atoms,

Since S* = 0, evidently S S R. Consequently, the maximal quotient
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ring of R is just the maximal quotient ring of S.
The following theorem characterizes R in terms of left full rings.

We shall call a ring R a left full ring if there exists a division ring
D and a right D-module M such that

R ~ Hom^Af, M) .

Evidently we may consider M as a {R, D)-module.

3.1 THEOREM. If R is a right irreducible ring, then R is a left
full ring. If R is right reducible, then R is a complete direct sum
of left full rings.

Proof. Consider first the case in which R is irreducible. Since R
is regular and LS(R) = LS(R), the lattice LS(R) is atomic and its atoms
are principal and hence minimal right ideals of R. Since R is prime
and has minimal right ideals, it is primitive. Let e be an idempotent
element of R such that eR is a minimal right ideal. Then M = Re
is a minimal left ideal of R and D — eRe is a division ring. Since
xReφO for each nonzero xeR by the primeness of R, evidently R
is a right quotient ring of M. However, R is a maximal right quo-
tient ring so that we must have M = R. Besides being a ring, M
may be considered to be a (R, Z))-module. Clearly the right ideals of
M are its D-submodules. Thus, M is the only large right ideal of M.
Consequently,

HonUM, M) ,

considering M as a right M-module, is the maximal right quotient ring
of M. Since x(ae) = x(eae) for each x e M and aeR, evidently

KomM(M, M) = RomD(M, M) .

Since M — R, this proves that R is a left full ring.
If R is not irreducible, then there exists a set {Ri) i e Δ] of ir-

reducible rings, each having an atomic lattice of closed right ideals,
such that

i€Λ

by our previous results. We shall not give the details, but it is easily
seen that if

S - Σ Ri , then S=Σ/Ri

where Σ ' designates the complete direct sum. Since S — R, this proves
the second part of 3.1.
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The important special case of this theorem when R is a primitive
ring was proved by Utumi [12; 5.1] and Wong [13; 4.1]. Both Utumi
and Lambek [10] have independently proved the theorem if R is
prime.

4* LS(R) finite*dimensionaL The usual assumption that RA = 0 is
made for each ring R of this section. If either the a.c.c. or the d.c.c.
holds for LS(R) then so does the other one. In fact, each is equivalent
to the assumption that LS(R) contains a maximal chain of finite length.
When this condition is satisfied, a dimension function d may be defined
on LS(R) as follows [1; p. 67]: for each AeLs{R), d(A) is the length of
the longest chain joining 0 to A. Incidentally, every maximal chain
joining 0 to A has the same length d(A). We shall assume in. this
section that such a dimension function d is defined on LS(R) and that
d(R) is finite. Since the lattice LS(R) is also complemented, each A e
LS(R) is a direct union of d(A) atoms [1; p. 105].

It is proved in [9; 3.4] that if d(R) is finite then for each a e R,
uReLA(R) if and only if ar = 0. Of course, a1 - 0 whenever aReLA(R).
Thus, D(R) = {a\ae R,aReLA(R)} is the set of regular elements of R.
Each ae D(R) has an inverse in R. For, by the regularity or R,
(ab — ΐ)a = a(ba — 1) = 0 for some b e R. Since (ab — l)r ZD aR, a large
element of LA(R), ab — 1 = 0 in view of 2.1 and 2.3. Also, ba - 1 = 0
since ar = 0 in R as well as in R. Consequently, b = a"1.

4.1 THEOREM. If R is irreducible and d(R) = n, then R is a- full
ring of dimension n.

By a full ring of dimension n we mean a ring isomorphic to
RomD(M, M) where D is a division ring and M is a right D-module of
dimension n.

If we select M— Re as in the proof of 3.1, then M ^ R and the
lattices LS(R), LS(M) and LS(R) are isomorphic by 2.6. Since the right
ideals of M are its ΰ-submodules, M is an ^-dimensional vector space
over D. Hence 4.1 follows from 3.1.

A different proof of 4.1 was given in [9; 3.6].
If R is a prime ring for which d(R) is finite, then it was proved

in [3; Theorem 10] and in [9; 3.5] that every large right ideal of R
contains a regular element. Since B = {b \ b e R, qb e R} is a large right
ideal of R for each q e R, clearly qb = a for some b e D(R) and a e R;
that is, q = ab-1. This proves the following theorem of Goldie2 [3]
(also proved in [11] and [9]).

2 That each ring considered by Goldie has a zero singular ideal is proved in [4.; 3.2].
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4.2 THEOREM. If R is a prime ring for which d(R) == n, then not
only is R the full ring of linear transformations of an n-dimensional
vector space over a division ring but also R—{ab~λ\aeR,beD(R)}.

From 3.1 and 4.1, we easily deduce the following theorem.

4.3 THEOREM. If R is a ring for which d(R) is finite, then R is
a direct sum of a finite number of finite-dimensional full rings.

A ring R is called semiprime if it contains no nonzero nilpotent
ideal. We recall that if S is the direct sum of the atoms of CS(R),
then S ^ R. Since each nonzero ideal of R has nonzero intersection
with some atom of CS(R), evidently R is semiprime if and only if each
atom of CS(R) is prime. The following theorem was recently proved by
Goldie [4].

4.4 THEOREM. If R is a semiprime ring for which d(R) is finite,
then not only is R a direct sum of a finite number of finite-dimen-
sional full rings but also R = {ab~λ \ a e R, b e D(R)}.

The first part of 4.4 follows directly from 4.3. To prove the second
part, Jet S = ^ © — ©22* be the sum of the atoms of CS(R). Then
R = § = jRiφ •©#*. If qi e R, then q{ = afc1 for some α< e R{ and
b, e D(Ri) by 4.2. Thus, if q = qλ + + qk, a = a, + . . + ak, and
b = &! + + bk, q = a 6"1. This proves the second part of 4.4.

A converse of 4.4 has been given by Goldie [5; 4.4], He proved
that if R is a ring for which d(R) is finite and R = {αfr11 a e R, b e
D(R)}, then R is semiprime. Naturally, this implies the following
converse of 4.2: If R is a ring for which R is a finite-dimensional full
ring and R — {ab'1 \ae R,b e D(R)} then R is prime.
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