QUOTIENT RINGS OF RINGS WITH ZERO SINGULAR IDEAL

R. E. JOHNSON

Many papers have been written recently (see [2]-[14] of bibliography)
on extensions of rings to rings of quotients. In most of these papers,
strong enough conditions are imposed on the given rings to insure that
each has a vanishing singular ideal (first defined in [5]). It seemns
appropriate at this time to collect these results and present them in as
general a form as possible. In this paper, it is assumed that each ring
has a zero right singular ideal. A subsequent paper will give the
quotient structure of a ring having a vanishing right and left singular
ideal.

1. Introduction. If Ris a ring and M is an R-module, then L(R)
and L(M, R) will designate the lattices of right ideal of R and R-sub-
modules of M, respectively. Superscripts ‘“‘r’’ and “I”’ will be used
in designating the right and left annihilators, respectively, of an element
or subset of a ring or module. The context will always make it clear
from what set the annihilators are to be chosen.

In a lattice L with 0 and I, an element B is called an essential
extenston of element A, and we write A C’B, if and only if Ac B
and C N A+#0 for every C in L for which C N B+ 0. An element A
of L is called large if A c’I. The sublattice of L of all large elements
is designated by LA.

If Ris a ring and M is a right R-module, then let

MAR)={x|x eM, 2" ¢ LAR)}, R*={x|xecR, o"cL*R)}.

It is easily shown that M4(R) is a submodule of M and R4 is a (two-
sided) ideal of R. The ideal R4 is called the singular ideal [5; p. 894]
of R.

A ring R with zero singular ideal has the unusual property, proved
in [7; Section 6], that each Ae L(R) has a unique maximal essential
extension A° in L(R). The mapping s: A — A° of L(R) is shown there
to be a closure operation on L(R) having the following properties:

1) 0°=0,

(2 (AN B)=A°nN B* for each A, Be L(R), and

B) (xA)y=ux"A°foreachx c Rand A € L(R), wherex'B={y|y e R,
zye B}. The set L(R) of closed right ideals (i.e., A = A®) may be
made into a lattice in the usual way by defining the union of a set of
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elements of L°(R) to be the least upper bound of the set. The result-
ing lattice L°(R), which is not in general a sublattice of L(R), is proved
to be a complete complemented modular lattice in [7; Section 6]. If
M is a right R-module for which M4(R) = 0, then the closure operation
s may be defined in a similar way on L(M, R). The resulting lattice
LM, R) has similar properties to those of L*(R), as was shown in [7;
Section 6].

For A, BeL(R), B is called a complement of A if BN A=0
whereas C N A # 0 for every C D B,C # B. If B is a complement of
4, then clearly A + Be L*(R). Furthermore, if R* =0, then Be
L:(R).

If Aisa two-sided ideal of R for which A N A' = 0, then evidently
4' is the unique complement of A in L(R). Since (A + AY) = A' N A",
clearly A" is the unique complement of A’ in case R4 =(. In this
case, both A" and A" are in L’(R). By [7; 6.7], C°(R) ={A|A ideal
of R,LAN A'=0, A = A"} is the center of the lattice L*(R). For each
A e C3(R), it is easily seen that A% = 0, that L*(4) = {B N A| Be L3(R)},
and that C*(A)={B N A|BeC*(R)}. Of course, L(4) c L¥(R) and
CiA4) c C(R).

Every regular ring R has a zero singular ideal. This is evident
because e¢" N eR =0 for each idempotent eec R. Since R=¢R + ¢,
evidently eR and e¢" are complements of each other and each is in L(R).
Consequently, each principal right ideal aR e L*(R).

A ring R for which R4* =0 and C%R) = {0, B} is called (right)
irreducible. An irreducible ring need not be prime. For example, the
ring of all » x n triangular matrices over the ring Z of integers is
irreducible by [8; 3.5]. Clearly this ring has a nonzero nilpotent ideal.
By [8; 2.1], an irreducible ring is prime if and only if it contains no
nonzero nilpotent ideal.

If R is a subring of ring Q then @ is called a (right) quotient ring
of R, and write R < @, if and only if ¢gR N R # 0 each nonzero g€ Q.
It was proved in [5] that each ring R for which B4 = ( has a unique
maximal quotient ring R. By [5; Theorem 2], Risa regular ring with
unity. Essentially, the definition of R in [5] was as follows:

R = U Homg(4, RB) .
4€LA(R)
If z,ye R, then we take & = y if and only if xa = ya for every a in
some large right ideal A € Dom x N Dom y.

In case R is a subring of a ring @, then we may consider @ as a
right R-module. If we do so, then the assumption R = Q implies that
R '@, considering R and Q as right R-modules. It is easily verified

The more general definition of a quotient ring in [12] and (2] is equivalent to ours
in case R4 =0.
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that if R < @ then QA(R)=0 if and only if R4 = 0.

2. Some basic lemmas. The rest of this paper will be concerned
only with a ring R for which R4 = 0. We shall prove in this section
that if @ is a quotient ring of such a ring R, then the lattices of
closed right ideals of R and @ are isomorphic.

2.1 LEMMA. If R=Q and AcL(Q), then Ae LAQ) if and only
if A N Re LA(R).

Proof. If AcL*Q) and be R, b+ 0, then ANbHQ+0 and a =
bg + 0 for some ac A and g€ Q. Now ¢qC C R for some C e LA(R) by
[7; 6.1]. Since Q4(R) =0, bgC # 0 and therefore A N bR + 0. Hence
(ANR NOBR=+=0and AN Re LA(R).

On the other hand, let us assume that 4 € L(Q) and A N Re LA(R).
For each nonzero qe @, qC < R for some Ce LA(R). If we let B=C N
(A N R), then Be LA(R) and ¢B # 0 since Q*(R) =0. Hence ¢BN (A
N R)#+ 0 and we conclude that ¢@ ¢ A # 0 for each nonzero qc Q.
Thus, A e LA(Q).

2.2 LEMMA. If R=<Q and M is a right Q-module, then M is a
right R-module and MA(R) = M*(Q).

Proof. If xe M and A=x"(in @) then A e LA(Q) if and only if 4 N
Re LAR) by 2.1. Therefore, M4(R) = M*(Q).

2.3 COROLLARY. If R =< Q, then Q* = 0.

This follows from 2.2 if we let M = Q and use the assumption
that R4 = 0.

2.4 LEMMA. If R=<Q and M s a right Q-module such that
MAQ) = 0, then L*(M, R) = L*(M, Q).

Proof. If AcL’(M,R) and ge€@, then gBC R for some B¢
LA(R). Therefore (Ag)Bc A and AqC A by [7; 6.4]. Hence, A<
L(M, Q) and we conclude that LY (M, R) Cc L(M, Q).

If Ace L(M,Q),xe M and B, =1{b|be@Q, xbe A}, then ze A* if and
only if B,e LA(Q) by [7; 6.4]. Therefore, in view of 2.1, the closure
of A relative to @ is the same as its closure relative to R. Thus,
Ls(M, R) = L*(M, Q).

2.5 THEOREM. If R=Q, if M 1is a right Q-module for which
MA*@Q) =0 and if NeL*(M, R), the LX(M, Q)= L*(N, R) under the
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correspondence A— A N N, Ae L:(M, Q).

Proof. By [7; 6.8], L(M, R) = L*(N, R). Thus 2.5 follows from
2.4.

2.6 COROLLARY. If R = Q, then LQ)= L(R) under the corre-
spondence A — A N R, Ae L(Q).

If R is an irreducible ring, so that C*(R) = {0, R}, then C(R) =
{0, 1?} by 2.6. Hence R also is irreducible. Actually, since R is regular,
Risa prime ring by [8; 2.1]. We state this result as follows.

2.7 THEOREM. If R is an trreducible ring, then R is a prime
ring.

3. L(R) atomic. Let us assume in this section that R is a ring
for which R4 = 0 and the lattice L°(R) is atomic. We define this to
mean that L°(R) has minimal nonzero elements, called atoms, and that
each element of L°(R) contains at least one atom. It is proved in [7; 6.9]
that a nonzero element x of R is contained in an atom if and only if
2" is a maximal element of L°(R). Incidentally, (xR)° is the atom
containing x.

Two atoms A and B are said to be perspective [1; p. 118], and we
write A ~ B, if and only if A and B have a common complement. It
is easily shown in our case that A ~ B if and only if 4 U B contains
a third atom [1; p. 120, Lemma 3]. We proved in [7; 6.10] that A ~ B
if and only if a” = b" for some nonzero ac€ A and be B. If A ~ B and
B~ C then a"=b" and b} = ¢" for some nonzero acA,b b eB and
ceC. Since B is an atom, bR N bR + 0 and there exist z, z, ¢ R such
that bx = bz, # 0. Hence, (ax)” = (bx)" = (bx,)" = (cx,)". It follows that
perspectivity is an equivalence relation on the set of all atoms of L5(R).
Clearly for a finite set {A4,, ---, A,} of perspective atoms, there exist
nonzero a; ¢ A; such that a] = aj for each 7 and j.

For each atom A of L(R), let A* be the union in L(R) of all
atoms perspective to A. It is proved in [7] that A* is an ideal of R
[7; 6.7] and that A* is an atom of C%(R) [7; 6.12]. Conversely, each
atom of C*(R) is of the form A* for some atom A of L*(R).

Since C*(R) is a Boolean algebra, R is the direct union of all atoms
of C°(R). Hence, if {A};ic 4} is the set of all distinct atoms of C*(R),
then the ring-union S of the atoms of C°(R) is a discrete direct sum of
these atoms,

S=73 AF.

1€4

Since S' =0, evidently S =< R. Consequently, the maximal quotient
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ring of R is just the maximal quotient ring of S.

The following theorem characterizes R in terms of left full rings.
We shall call a ring R a left full ring if there exists a division ring
D and a right D-module M such that

R = Hom,(M, M) .

Evidently we may consider M as a (R, D)-module.

8.1 THEOREM. If R is a right irreducible ring, then R is a left
Sull ring. If R is right reducible, then R is a complete direct sum
of left full rings.

Proof. Consider first the case in which IA2 is irreducible. Since R
is regular and L%(R) = L*(R), the lattice L*(R) is atomic and its atoms
are principal and hence minimal right ideals of K. Since R is prime
and has minimal right ideals, it is primitive. Let e be an idempotent
element of R such that eR is a minimal right ideal. Then M = Re
is a minimal left ideal of R and D = eRe is a division ring. Since
xRe+0 for each nonzero zeR by the pringeness of R, evidently R
is a right quotient ring of M. However, R is a maximal right quo-
tient ring so that we must have M = K. Besides being a ring, M
may be considered to be a (R, D)-module. Clearly the right ideals of
M are its D-submodules. Thus, M is the only large right ideal of M.
Consequently,

Hom, (M, M) ,

considering M as a right M-module, is the maximal right quotient ring
of M. Since x(ae) = x(eae) for each x € M and a € R, evidently

Hom, (M, M) = Hom,(M, M) .

Since M = }?, this proves that R is a left full ring.

If R is not irreducible, then there exists a set {E; ¢t e 4} of ir-
reducible rings, each having an atomic lattice of closed right ideals,
such that

SR <R
1€4
by our previous results. We shall not give the details, but it is easily
seen that if
S=SR,, then S=S'R,
1€4 1€4

where 3 designates the complete direct sum. Since S = R, this proves
the second part of 3.1.
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The important special case of this theorem when R is a primitive
ring was proved by Utumi [12; 5.1] and Wong [13; 4.1]. Both Utumi
and Lambek [10] have independently proved the theorem if R is
prime,

4. L, (R) finite-dimensional. The usual assumption that R4 = 0 is
made for each ring R of this section. If either the a.c.c. or the d.c.c.
holds for Ls(R) then so does the other one. In fact, each is equivalent
to the assumption that L°(R) contains a maximal chain of finite length.
When this condition is satisfied, a dimension function d may be defined
on L°(R) as follows [1; p. 67]: for each A e L’(R), d(A) is the length of
the longest chain joining 0 to A. Incidentally, every maximal chain
Joining 0 to A has the same length d(4). We shall assume in this
section that such a dimension function d is defined on L°(R) and that
d(R) is finite. Since the lattice L°(R) is also complemented, each A€
L*(R) is a direct union of d(A) atoms [1; p. 105].

It is proved in [9; 3.4] that if d(R) is finite then for each aceR,
aRe LA(R) if and only if a” = 0. Of course, a’ = 0 whenever aRe L*(R).
Thus, D(R)={a|a € R, aR< LA(R)} is the set of regular elements of R.
Each acD(R) has an inverse in R. For, by the regularity or R,
(@b — 1)a = a(ba — 1) = 0 for some be R. Since (ab — 1)" D aR, a large
element of LA(R), ab — 1 =0 in view of 2.1 and 2.3. Also, ba —1 =10
since " = 0 in B as well as in R. Consequently, b = a~,

4.1 THEOREM. If R is irreducible and d(R) = n, then R is a full
ring of dimension mn.

By a full ring of dimension n we mean a ring isomorphic to
Hom, (M, M) where D is a division ring and M is a right D-module of
dimension 7.

If we select M = Re as in the proof of 3.1, then M < R and the
lattices L°(R), L*(M) and LS(R) are isomorphic by 2.6. Since the right
ideals of M are its D-submodules, M is an m-dimensional vector space
over D. Hence 4.1 follows from 3.1.

A different proof of 4.1 was given in [9; 3.6].

If R is a prime ring for which d(R) is finite, then it was proved
in [3; Theorem 10] and in [9; 3.5] that every large right ideal of R
contains a regular element. Since B= {b|bec R, gbe R} is a large right
ideal of R for each qe 1?»’, clearly ¢b = a for some be D(R) and acK;
that is, ¢ = ab™'. This proves the following theorem of Goldie’ [3]
{(also proved in [11] and [9]).

2 That each ring considered by Goldie has a zero singular ideal is proved in [4; 3.2].
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4.2 :I'HEOREM. If R is a prime ring for which d(R) = n, then not
only is R the full ring of linear tramsformations of an wm-dimensional
vector space over a division ring but also R={ab™*|a € R, b e D(R)}.

From 3.1 and 4.1, we easily deduce the following theorem.

4.3 THEOREM. If R is a ring for which d(R) is finite, then R is
a direct sum of a finite number of finite-dimensional full rinmgs.

A ring R is called semiprime if it contains no nonzero nilpotent
ideal. We recall that if S is the direct sum of the atoms of C*(R),
then S < R. Since each nonzero ideal of K has nonzero intersection
with some atom of C*(R), evidently R is semiprime if and only if each
atom of C*(R) is prime. The following theorem was recently proved by
Goldie [4].

4.4 THEOREM. If R is a semiprime ring for which d(R) is finite,
then mot only is R a direct sum of a finite number of finite-dimen-
stonal full rings but also R = {ab™"|ac R, bec D(R)}.

The first part of 4.4 follows directly from 4.3. To prove the second
part, let S = RP---PR, be the sum of the atoms of C°(R). Then
R=8= EEB- . ~EB}?,,. If ¢,eR, then ¢, = a;b;* for some a;cR;, and
b;e D(R) by 4.2. Thus, if ¢q=¢,+ - +¢,a=0a, + +-+ +q, and
b=b,+ .-+ 4+b,q=ab?. This proves the second part of 4.4,

A converse of 4.4 has been given by Goldie [5; 4.4]. He proved
that if R is a ring for which d(R) is finite and R = {ab~'|acR,be
D(R)}, then R is semiprime. Naturally, this implies the following
converse of 4.2: If R is a ring for which R is a finite-dimensional full
ring and R = {ab~'|a ¢ R, be D(R)} then R is prime.
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