ON THE NUMBER OF PURE SUBGROUPS

PAUL HILL

A problem due to Fuchs [3] is to determine the cardinality of the set \(\mathcal{P} \) of all pure subgroups of an abelian group. Boyer has already given a solution for nondenumerable groups \(G \) [1]; he showed that \(|\mathcal{P}| = 2^{|A|} \) if \(|G| > \aleph_0 \), where \(|A| \) denotes the cardinality of a set \(A \). Our purpose is to complement the results of [1] by determining those groups for which \(|\mathcal{P}| \) is finite, \(\aleph_0 \), and \(c = 2^{\aleph_0} \). In the following, group will mean abelian group.

Lemma 1. If \(G \) is a torsion group with \(|G| \leq \aleph_0 \), then \(|\mathcal{P}| = c \) unless

\[
G = p_1^{\omega} \oplus p_2^{\omega} \oplus \cdots \oplus p_n^{\omega} \oplus B,
\]

a direct sum of (at most) a finite number of groups of type \(p^{\omega} \) and a finite group, where \(p_i \neq p_j \) if \(i \neq j \). If \(G \) is of the form (1), then \(|\mathcal{P}| \) is finite.

Proof. The latter statements is clear, and if none of the following hold

(i) \(G \) decomposes into an infinite number of summands

(ii) \(G \) contains \(p^{\omega} \oplus p^{\omega} \) for some prime \(p \)

(iii) \(|B| = \aleph_0 \), where \(B \) is the reduced part of \(G \),

then \(G \) is of the form (1). Moreover, if (i) holds, then obviously \(|\mathcal{P}| = c \). Every automorphism of \(p^{\omega} \) determines a pure subgroup of \(p^{\omega} \oplus p^{\omega} \), and distinct automorphisms correspond to distinct subgroups. Since \(|A(p^{\omega})| = \text{automorphism group} | = c \), it follows that \(p^{\omega} \oplus p^{\omega} \) has \(c \) pure subgroups. Thus if (ii) holds, \(|\mathcal{P}| = c \) since \(p^{\omega} \oplus p^{\omega} \) is a direct summand of \(G \). Finally, if (iii) holds and if (i) does not, then the following argument shows that \(|\mathcal{P}| = c \). We may write \(B = C_1 \oplus B_1 = C_1 \oplus C_2 \oplus B_2 \), and continuing in this way define an infinite sequence \(C_* \) of cyclic groups such that no \(C_i \) is contained in the direct sum of any of the others. The direct sum of any subcollection of these cyclic groups is a pure subgroup of \(B \) and, therefore, of \(G \).

An interesting corollary is noted: there is no torsion group with exactly \(\aleph_0 \) pure subgroups.

Lemma 2. If \(G = F \oplus B \) is the direct sum of a torsion free group

Received January 31, 1961. This research was supported by the National Science Foundation.

\(^1\) This is precisely the proof of Boyer that such a group has \(c \) subgroups [2].
F of rank r and a finite group B with $|G| \leq \aleph_0$, then $|\mathcal{P}|$ is finite, \aleph_0, or c, depending on whether $r = 1$, $1 < r < \infty$, or $r = \infty$.

Proof. First, assume that $B = 0$. Let H be the minimal divisible group containing G. The correspondence $D \to D \cap G$ is one-to-one between pure (divisible) subgroups D of H and pure subgroups of G. Thus only divisible groups G need be considered, and the proof is already clear except, possibly, the relation $|\mathcal{P}| \leq \aleph_0$ for the case $1 < r < \infty$. However, let R^* denote the direct sum of $r - 1$ copies of R, the additive rationals. Since $G = R^* \oplus R$, any pure subgroup P of G is a subdirect sum of a subgroup S^* of R^* and a subgroup S of R. Moreover, S^* and $S^* \cap P$ are pure in R^*; S and $S \cap P$ are pure in R. Since $|A(R)| = \aleph_0$, it follows by induction that $|\mathcal{P}| \leq \aleph_0$.

Now consider the case $B \neq 0$. The lemma has already been proved if $r = \infty$, so assume that r is finite. Any pure subgroup P of $G = F \oplus B$ is a subdirect sum of a pure subgroup E of F and a subgroup A of B. Since $E \cap P$ has index in E which divides the order of B, there are only a finite number of choices of $E \cap P$ for a given E (and consequently only a finite number of choice of P). Thus the lemma is proved.

The theorem follows almost immediately from the lemmas.

Theorem. For any group G, $|\mathcal{P}| \leq \aleph_0$ if and only if: $G = F \oplus T$ where T is torsion of the form (1) and F is torsion free of finite rank $r \geq 0$; further if the prime p is in the collection $\pi = \{p_1, p_2, \ldots, p_n\}$ of the decomposition (1) of T, then F has no pure subgroup which can be mapped homomorphically onto p^α. In all other cases, $|\mathcal{P}| = 2^{[\alpha]}$. Moreover, $|\mathcal{P}|$ is finite if and only if either $r = 0$ or $r = 1$ and T is finite.

Proof. Suppose that $|\mathcal{P}| \neq 2^{[\alpha]}$. Then $|G| \leq \aleph_0$ and the torsion part T of G is of the form (1). Hence G splits into its torsion and torsion free components, $G = F \oplus T$. Also, F is of finite rank $r \geq 0$. And there exists no homomorphism of a pure subgroup of F onto p^α where $p \in \pi$ (since there would be c such homomorphisms, each determining a pure subgroup of G). But suppose that $G = F \oplus T$, where F and T satisfy the given conditions. Let T' denote the divisible part of T and set $F' = F \oplus B$, where $T = T' \oplus B$. Since B is finite, $|\mathcal{P}(F')| \leq \aleph_0$ is given by Lemma 2. Evidently, a pure subgroup P of G is the direct sum of a divisible subgroup of T' and a subdirect sum of a pure subgroup of F' and a finite subgroup of T'. Thus $|\mathcal{P}| \leq \aleph_0$.

If $r = 1$, then $|\mathcal{P}(F \oplus p^\alpha)| \geq \aleph_0$, for there are at least \aleph_0 homomorphisms of F into p^α, each determining a pure subgroup. In view of Lemmas 1 and 2, this completes the proof of the theorem.
ON THE NUMBER OF PURE SUBGROUPS

REFERENCES

3. L. Fuchs, Abelian groups, Hungarian Academy of Sciences (1958), Budapest.

THE INSTITUTE FOR ADVANCED STUDY