ON CONFORMAL MAPPING OF NEARLY
CIRCULAR REGIONS

DIETER GAIER

Introduction. A Jordan curve C in the w-plane, starshaped with
respect to w = 0 and represented in polar coordinates by o(0)e®®, will be
said to satisfy an e-condition (¢ = 0) if

(i) po(0) is absolutely continuous in {— w, + 7)
(0.1)

(ii) f%’(g)!g ¢ for almost all 6 in {— 7, + 7).

Sometimes the condition
(0.2) 1<p0)=<1+c¢forall din<—=x + 7>

will be added.

Let w = f(2) be the conformal mapping of |z] < 1 to the interior
of C such that f(0) =0, £'(0) > 0. Then one can ask: How “close” is
f(z) to the identity mapping z? This question has been studied by many
authors, notably Marchenko [3] and, more recently, by Warschawski
[9—14] and Specht [7]. For example, Marchenko stated :

THEOREM A. If C satisfies an e-condition and also (0.2), then
(0.3) [f(2) —2| = K-e¢ (lz]=1)

for a universal constant K.

Furthermore, estimates for M,|f(z) — 2] and M,|f'(z) — 1] have been
given [9] where we write, for example,

1@ = 211, = ML1E) — 21 = { = 7| free) — e, b

P>0;lzl=7r<1).

In this connection, the theorem of M. Riesz [6] on conjugate harmonie
functions is of importance.

THEOREM B. Let f(2) = u(2z) + iv(z) be regular in |z| <1 and
v(0) =0, so that v(z) is a “mnormed conjugate” of u(z). Then for
every p > 1

(0.4) M,[v(z)] = A,M,[u(2)] (Iz] =r<1),
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where A, is a constant that depends on p only; one can take A, =1,
A, =2p(p=2) and A, = A, for p?* +p*=1. 1If the right-hand
stde of (0.4) is bounded in 0 < r < 1, then f(re*) has radial boundary
values of class L, almost everywhere and (0.4) holds for r = 1.

In this paper we would like to make a few remarks about March-
enko’s theorem and about estimates for M, [f'(z) —1]. First, we give
a new proof of Theorem A which we hope is slightly simpler than
Specht’s [7] while giving only a slightly larger constant K. Next we
ask whether we could replace the condition (0.1.ii) by the assumption
of convexity of C and still get (0.3). A counter example is constructed
in I.2. Then Specht’s method of proof is used to give a localized version
of Theorem A, in which the s-condition is fulfilled only for a part of C.

In the second part of the paper we obtain new estimates for
M,[f'(z) —1]. Their source is a sharp and best possible estimate for

Yﬁ[()’(go)]’-"’dcp where 0(@) = arg f(e®). It avoids the restriction ¢ < 1 of
0

Warschawski [9] and gives all values of p for which M,[0'(®)] < o or
M,[f'()] remains bounded for all » =|z| < 1.

PArT 1

I1.1. New proof of Marchenko’s theorem. While Specht’s approach
to Theorem A depends on a suitable integral representation of () — @
([7], p. 187), and Warschawski’s on an estimate of M,[f'(¢*?) — 1] ([9],
p. 566), our proof will depend on a sharp estimate of M[0'(p) — 1].
We shall prove :

THEOREM 1. If the Jordan curve C satisfies an e-condition and
also (0.2) for some ¢ =0, then |f(z) —z| < K(e)-¢ im |z| £ 1, where
K(e) <38.7 for all e = 0 and lim K(¢) = /1 + 7*/3 ~ 2.1.

€E—>0

Specht’s proof yields another function K(¢) with K(¢) < 3.3 and
lim K(¢) = 1/1 + (21og 2)* ~ 1.7. The best possible bounds are not known.
€—>0

In order to prove the theorem, we need the following

LEMMA. Let F(x) be absolutely continuous in <0, 27>, periodic
with 27 and SZNF(x) dx =0, and assume F'(x)e Ly0, 27). Then for
0
all « in K0, 27)

(1.1) | F(z)| < 1—}% | F'(@)ll, .
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This lemma is also used in Friberg’s thesis ([2], p. 14ff). The

constant —~_ cannot be improved as F(x) = YTy + i(O <x £27)
13 4 2 6

shows.

Proof. 1t suffices to estimate F'(0). For that we expand F(x) in

its Fourier series F(z) = .2, (a, cos nx + b, sin nx) and get

FO)| =30 =S e, -0 = [Swal{Sep:.
The first factor is at most [Zi"nz_(_a’,i + b)) =12 F'(x) ||, by Parse-
val’s equality, the second is 7/1/6.

Proof of the theorem. Putting f(e*¥) = p(0) e, 0 = 0(®), we first
estimate |0(p) — @ | if ¢ is assumed to be < 1. By the lemma, it is
sufficient to estimate |[|0'(®) — 1]|,. To do this, we note that log(f(z)/z) =
w(z) + 1v(z) is regular in |z| < 1, continuous in [z]| =1, and »(0) =0
since f'(0) > 0, so that v is a normed conjugate of u: v = K[u]. On
|z] =1 this gives

(1.2) 0(p) — ¢ = K[log p(0(®))], 0(p + k) — (¢ + k) = K[log p(0(® + h))]

and hence

op+h) —0@) ;| _ K[log 0(0(® + h)) — log 0(9@))] .
h h

By (0.1), for all  and 2 >0

[log p(0(p + 1)) — log p(0(@) | = ||

”—'(t)dt| <c|0(@ +h)—69)]
6 (@) p

and therefore

2

(g |[AEED=0D) )] ), 26| AN = 00)

Now we claim that

2
—-1.

2

(1.4) l 0(p + h}i — 0(p) 1

|* _ l 0(¢ + h) — 6(9)
s h

To show this,we write the left-hand side as

E{[aeshmte T L [[oe ot

1

— 2
27h

|, 10 + 1) = (@ + W) = [6(9) — 2] + hde .
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Since (@) — @ is periodic with 27, the last term is — 2, and (1.4) fol-
lows. Together with (1.3) we get |[[0(® + k) — 0(@)][h — 1]|; < /(1 — &)
for all » > 0. But since C is rectifiable, (@) is absolutely continuous
[5] and hence 6'(p) exists almost everywhere, and Fatou’s lemma yields
now for h— 0

) -1 =5
(1.5) 10@) = 1l = o=t

This, incidentally, is a best possible estimate ; see Theorem 6.
Now we apply our lemma to F(®)= 0(p) — @, the condition

S:”F(g))dg?:O following from (1.2), and we get for all ¢

T € 2
(1.6) |[0(p) — p| = VIvi—=

From this we obtain an estimate of |f(z) —z|. An elementary
consideration gives

(1.7) /) —z2 =&+ (1 + e)0(p) — @] on |2] =1;
note that 1 < |f(e*)| <1 +e. Together with (1.6) we obtain

1.8 2) —z| < 5{1 z’ }1/2

(1.8) ) 2l = e {1+

for |2z| =1 and hence, by the maximum principle, for |z| < 1; this is
valid whenever ¢ < 1. For all ¢ < 20/27 the factor of ¢ is < 3.7 ; for
€ > 20/27 we have

|f(z)—z|§1+e—|—1:2+s<—g%—e+e=3.7e.

This proves K(¢) =3.7 for all e =0, and (1.8) gives lim._, K(¢) =11 + 7%3.

Specht ([7], p. 188) obtains |0(p) — ¢ | < &2 log 2 + ¢). Combining
this for ¢ £0.9 with |f(z) — 2| =e+ |0(p) —®|(|z]| =1) and taking
|f(z) —2] <2+ ¢ for ¢ > 0.9, one obtains K(¢) = 8.3 for all ¢ > 0; for
e—>0 use (1.7).

1.2. Convex regions. Our next problem is to decide whether
Marchenko’s theorem remains valid if the condition |p’/o| < € is replaced
by the convexity of C. To study a suitable counter example, it will be
convenient to use the following localization theorem.

1 This also follows directly from [}6']]s < (1 — 2)~1'%([8], p. 26) and ||6’ — 1]| =||¢"||2~1,
but we wanted to give an independent proof of (1.5).

2 The application of Warschawski’s inequality ([8], p. 18) would have given a slightly
larger bound for K in Theorem 1,
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THEOREM 2. Let C: p(0)e® be a Jordan curve, starshaped with
respect to w =0 and contained in 1 < |w| =1 +c¢, and let w = f(2)
with f(0) =0, f'(0) >0 map |z| <1 conformally to the interior of C;
put 0(p) = arg f(e).

Then to every 8, 0 < § < &, corresponds a constant D = D(8) such
that

19 [100) — 2l — | log oo etg Lt = D -
27 Jo-s 2 1

for all @, the integral being a Cauchy principal value.

Proof. Since 6(p) — @ is a normed conjugate of log 0(0(®)) (see
(1.2)), we have

B s »
op) —p = —1—§W log p(0(t) ctg ® —Lar = L SW + J-[Y + SW ] .
21 Jo-r 2 21 Jo-s 27 Llo—= o+s

In the last term |ctg[(p — t)/2]| is bounded by ctg [6/2] while 0 < log
0(0(t)) < e. This proves (1.9) with D(8) = ctg [8/2].

Furthermore, we shall use another theorem of Marchenko ([3], p.
289) which, in the generalization by Warschawski ([10], p. 343), reads
as follows. Let R be a simply connected region containing w = 0 whose
boundary is contained in 1 <|w| <1+ ¢ Let N be such that any
two points in R with distance < ¢ may be connected in R by an arc
of diameter < \. If f(z) is the normalized mapping of |z| <1 to R,
then

(1.10) |f(z) —z| < Me|loge| + M

for two absolute constants M and M,. Ferrand ([1], p. 133) states
without proof that one can take M = 1/m as the best possible con-
stant ; note that in her paper the boundary is assumed to be in
1—c¢=|w| =1+ e.-Obviously A < 3¢ if R is starshaped with respect
to w = 0.

Now we shall study the following family of conformal maps. Let
the Jordan curve C = C(e)(0 < ¢ < 1/2) be defined as follows :

lw| =1 if —r<argw =0,
lw|=1+¢ if0<92§argw§%+x,Where0</c<%and
sing =1/(1 + ¢),

and where these two circular arcs are connected by straight line seg-
ments, The angle 6, will also depend on ¢ and is subject to
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(1.11) 0,>0and—2% 1 o (6-0).
¢|log el

Let w = f(2) map |z| < 1 to the interior of C with f(0) =0, f(0) >0
and let

flem) = 1= e, fle') = (1 + e)e’™
By (1.10) we have for all @ and ¢
(1.12) |0(p) — | = Mel|loge| + O(e)

in particular @, — 0, @, —> 0(¢ - 0). We therefore get from Theorem 2

emw@=%ymwwmw%“M+%y
T J-xl2 2

_ . 1 (+ — @, _L_ +xr/2 .
620 = 9.1 = o | " log (0t et L5 P dt + 06 > | 4 060

1

note that 0(0(t)) =1 for ¢t in < x/2, », >. The last integral is equal
to

t

1@&+@Ymag;%ﬁdn:mmy%~¢Me+0@.
@2

Here we have by (1.11) and (1.12)
— @ =0,— 0, + Oe|loge]) = (6, — 6,)(1 + o(1)) = 6,1 + o(1)) ,
so that altogether we obtain

(1.13) lwm-¢n>ﬂ%@b+ow (c—0).

Before we specialize (1.13), we remark that for the regions consid-
ered here

(1.14) |f(2) — 2| = [0(p) — @] + O(e) (z =€) .

We have namely on [z] =1

2gin 2 7 6(@) P < |f(?) — 2| <2sin H(go)z 4 (f2)]—1).

By (1.12), |0(p) — | = O(e|log ¢]) and (1.14) follows.
We now make two special choices of 6, = 6,(¢), always subject to

(1.11). For our first choice 0,(c) = ¢|log ¢ |* we obtain from (1.13) and
(1.14)
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1fe) — 2| = EH0gel g 4 o) (z=e"; e—0).
T

Thus we proved that the best constant M in (1.10) must satisfy M = 1/=x,
in agreement with Ferrand.

Next we choose 8, such that 1 = (1 + ¢) cos ¢,, which makes C(¢)
convex. If we insert 6, = 1/2¢ + O(¢) in (1.13), we obtain

o) —z =102l q o)) e =en;e0).
2T

THEOREM 3. If C(¢) is the family of convex curves defined by cos
0,(¢) = [1/1 + €], we have

max | fz) — 2| = £l g 1 51y (c—0).
1211 27

In particular, Theorem A does not hold if the condition | p'(6)/p(0)| < ¢
18 replaced by the convexity of C.

1.3. Localization of the theorem of Marchenko. In I.1 we have
seen that Theorem A can be proved with a quite satisfactory constant
K by a “global” method, a method involving means rather than the
function itself. Nevertheless, Specht’s proof of Theorem A, directly
aiming at |6(p) — @ |, has besides giving a slightly better constant the
advantage of being useful to obtain a localization of Theorem A, where
[[0'/p]] < ¢ is known only for a part of C.

We begin with the following localization of Specht’s representation
theorem ([7], p. 187).

THEOREM 4. Let C : p(0)e® be a Jordan curve, starshaped with
respect to w = 0 which satisfies :

(i) 1 =p0)=1+c¢ for all 0 and some ¢ > 0 ;

(ii) 0(0) has bounded difference quotients for @ in {a, b>.
Then to every & > 0 corresponds an &, = &(8) > 0 and a constant N(J)
such that for ¢ < e, we have

(1.15) |[o(p) — ¢l — = Szlogl sin ___“9)2— P

0'(0) .
p(&)del < NG) - ¢,

Sor all @ wm {a + 8, b — 8> for which 0'(p) and o' (0(p)) exist and
0'(¢) #+ 0, i.e. for almost all @ in {a + 8, b — &.

Here t = t(0) is the inverse function of 0(t), and the integral exists
as a Lebesgue integral,



156 DIETER GAIER

Proof. For our fixed 6 > 0, choose ¢(8) such that @ = 6~'(a) and
B =07'b) satisfy |a —a| < 8/2,|8 —0b| <8/2; this is asserted by
(1.10) or (1.12) as soon as ¢ < 5. Then we can write

0?) — » = - | llog p(6(t)) — log p(0(@))] ctg Z—Ldt

B _
:—1—8[ ]ctgudt—l—O(s);
27 Jo 2
compare Theorem 2. Now one applies partial integration to the inte-
gral as in Specht’s proof, and (1.15) follows.

Now we can prove the following localization of Theorem A.

THEOREM 5. Let C : p(0)e™ be a rectifiable Jordan curve, starshaped
with respect to w = 0 which satisfies

(i) 1 =p6) =1+ ¢ for all 0 and some € = 0,
(i) o0 +7)—p0)] < p0)]|7]|e for all 8 in <a, b and all real t.
Then to every & > 0 corresponds a constant K,(8) such that

1.16) |f(r) —2| =K/@©)-¢ for z=¢% @ im {a + 8, b —35>.

Proof. 1t suffices to prove this for small e. Condition (ii) implies
that we can estimate the integral term in (1.15) by
1

p+r .
—¢ —-S log ism
T Jeo-=

< ¢e2log2 + ¢)

t"“(,p ’
5 l&‘(t)dt

A

(1.17) ¢ !%Sjlog !sinﬂg-)zif' dﬁl

(see [7], p. 188). Hence |0(p) — @ | < K,(8) - ¢ for almost all ¢ in
{a + 8, b —&>. By continuity, this holds for all @ in <{a + d, b — &,
and (1.16) follows.

REMARK. By a simple approximation argument it is seen that the
rectifiability of C, needed for the last inequality in (1.17), is not neces-
sary for the validity of Theorem 5.

PaArT II
II. 1. Sharp estimates for the means of 6'(p). Our aim is now to
give an estimate for M,[f'(z) — 1] if C satisfies an e-condition. As a

first step we prove the following

THEOREM 6. Let C: p(0)e®® be a Jordan curve, starshaped with
respect to w = 0, which satisfies an e-condition for some ¢ = 0, and
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let w = f(z) with f(0) =0 map |z| <1 conformally to the intertor of
C. Then 0(p) = arg f(e**) satisfies

2.1) lonerdn < oif 0= p < E .
0 2 arctg ¢
More precisely, we have
(cos arctg ¢)? . T
2 <=2 2w gfl1ls p << —2
(2.2) 517; SJ [6(p)]?de ~— cos(p arctg e) S P 2arctg e
0
=1 fo0=p=1
and
2.3 L g“w'(cp)]’p dop < L
2w Jo (cos arctg €)? cos(p arctg ¢)
if 0sp< —2 |
) b 2arectg ¢

Moreover, the bounds in (2.2) and (2.3), as well as the upper bound
for p in (2.1), are best possible.

REMARKS. a. It easily follows from F. Riesz’s theorem ([5], p. 95),
that not only 6 = 0(p) but also its inverse @ = ®(6) is an absolutely
continuous and monotonically increasing function, whenever C satisfies
an ¢-condition for some e = 0. The substitution @ = @(d) in (2.1) is
therefore permissible® and gives

1 1

27 S [0()]Fdp = o S PO if 0 < p <
27 Jo 27 Jo

T
2arctg e’

so that (2.2) and (2.3) contain also estimates for the means of ¢'(6).
In particular, since x/(2 arctg ¢) > 1, (2.3) is always applicable for p =1,
and we obtain that ¢'(0)e L, whenever C satisfies an e-condition for
some ¢ = 0. (For 0'(p)e L, we need ¢ < 1.)

b. For p =2 the bounds in (2.2) and (2.8) become (1 — &)™ (see
[8], p. 26) and (1 + &)’/(1 — ¢&°).

Proof. We begin with three preliminary remarks. First, we have
10'(0))o(0)) < ¢ for all 6, for which 0'(0) exists. For by (0.1)

R Y
log p(0 + k) — log ()| = Mdt,s n,
log (0 + 1)~ log o) = |[," £3at| <]
for all 8 and h %= 0; this implies our proposition.

¢ See C. Caratheodory, Vorlesungen iiber reelze Funktionen, Leipzig und Berlin, 1927,
pages 563 and 556.
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Next, since C is rectifiable, we know by F. Riesz’s theorem ([5],
p. 95; see also [16], p. 157 ff.) that

(i) f(e*) is absolutely continuous, so that [df(e*)/de*] exists almost
everywhere and is integrable ; furthermore

(i) f'(»eH, ie. rxlf’(’r‘ew)ld@ =A< o for all »<1.

We claim that

(2.4) fl(re®) — -C%(;# as r — 1, for almost all @ .

To prove this, let f'(re*) — h(e*)(r — 1, almost all @), so that by (i)
h(e¥) is integrable and SZ:UF '(re*) — h(e**) | dp — 0(r — 1). Therefore, for
any fixed @,

Lf(ren) — f(r)] — 7 S:Gh(ei"’)ie’i“’drp = S;"“[ F(re) — h(e#)]ie#dp — 0 (r— 1)
that is
flem) = 11) + | "neyievds .

Differentiation yields [df(e**)/de*] = h(e**) almost everywhere, which is
(2.4). From now on we shall put |df(e*)/de”] = f'(e**) whenever this
exists.

Finally, since f'€ H, and f’ = 0, one knows (see, e.g., [4], p. 56)
that f’(e’?) vanishes only on a null set.

To start the proof of theorem, let M be the set of all ¢ in 0, 27>
for which (i) f'(e™) exists and is # 0 and (ii) lim,_, f'(re*) = f'(€*?) ; by
our above remarks, M is of measure 27.

We consider now the function g(z) = 2f'(2)/f(z), regular and =+ 0
in [z] <1, g(0) =1, and put

F(z) = log g(z) = log | g(z)| + 1arg g(z) = u(z) + 10(z) ,

which is regular in |2| < 1 and vanishes at z = 0. We study u(z), v(z)
foy |z|— 1.
(a) Since

zf,(z): 1— - 0'(0(9)) o — pie M
(2.5) =1 - S0 0w) (2 = ¢, pe M)

we have 0'(p) # 0(@pe M) and furthermore

i — ! _‘lz_ — el(g)) —
| g(re*) | 0(@)Il+ - zl o8 B6@) (r—1, pe M)
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where 5(g) denotes the angle between arg w = 6 and the normal to C
at (0(6), 8). Hence

i) 0,((p) — i r > )
u(re?) — log w05 B0)) u(e'?) (7 1, pe M) .

(b) On the other hand we have for v(z)

v(re?) = arg g(re*) — arg f'(e") + ¢ — arg f(e)
= B(0(p)) = v(e*) (r—1, e M).

In particular, B(9) exists for 0 =0(p), @€ M, and hence by our first
remark |B{0{p))| < arctg e(pec M).

(¢) This implies that |v(re*)| < arctge for » < 1. For v(re”) is
harmonic in » < 1 and clearly répresents the angle between arg w = 0
and the normal to the level curve corresponding to |[z| = 7, which is
again starshaped. Thus |v(re)| < w/2, and v(re’) can therefore be
represented by its Poisson integral in » < 1. Since the boundary values
are =< arctge, also |v(re®)| < arctg e(r < 1).

For the main part of the proof, we apply a method of Zygmund
([15], p. 286). Let » > 0 and consider

1 eth(z) 1

(2.6) 1=e="" = ——S dz = ——S exr*Peog[pv(2)]de .
271 Jiel=r<t 2 27 Jizi=r<1

By (¢) and our assumption on p, we have |[pv(z)| < p arctge < 7/2, so

that the integrand in the last integral is positive for all » <1 and o.

Recalling (a) and (b), an application of Fatou’s lemma yields

1 S e=r4cog[pv(e)|de < 1
2w Ju
that is
1 Ho\]Er 08 [pB(O(9))]
@) AU

Now we note that | 8(6(®)) | < arctg e(pe M), and the fact that

o8 PI_ . monotonically decreasing in 0 < < 7w/2p if p >1

(cos z)” increasing in 0 <2 <7/2if0<p<1.

This proves our estimates (2.2) and (2.3)

We now show that our bounds are best possible. More precisely :
For every e = 0 and for every p with 0 < p < n/(2 arcty €), there exists
a curve C such that Theorem 6 holds with equality in (2.2) and (2.3),
respectively.

For ¢e =0, and for e >0, 0 <p =<1 in (2.2), we simply let C be



160 DIETER GAIER

lw| =1, 0'(p) =1. For ¢ >0 and the other two cases in (2.2) and (2.8)
we consider the curve C: o(0) = e*%(] 6|) < 7), which is composed of two
pieces of logarithmic spirals that meet in w =1 and w = —e*". Let
f(2) be such that f(1) =1 and f(— 1) = — e™.

We claim that for this mapping we have equality in (2.7) whenever
0 < p < xm/[(2arctge). Since tg B(0(p)) = + ¢ for all @ + 0, «, this would
immediately give equality in (2.2) and (2.3).

To prove equality in (2.7), we study the behaviour of f'(z) in |[2z] < 1.
The curve C is composed of two analytic arcs meeting at angles a7
and a,wr with a;, =1 + [2/n]arctge and a, =1 — [2/z]arctge. By a
theorem of Warschawski (|13], p. 835), we have therefore

(2.8) F@)e — 1) Ee €, 0z = 1)
and f'(2)(z +1)" ¥t C, # 0z > — 1),

for unrestricted approach within |z| < 1. Thus,
f’(z)(z + 1)(2[7:) aretg € and lfl(z)]—l(z ___1)(2/1‘:) arctg €

are continuous in |z| =<1, and we have for ¢, 0 <r <1, 0< |p| < T,

o const Hogi®) |- const
If (7‘6 (’a)l é (ﬂf _ |¢,)(2/n)arctge and lf(’re ¢)| 1 é Wm '

Therefore, if 2p arctg e < w, exp{=* pu(re®)} = | g(re”)|** is bounded
by an integrable function, uniformly for all » in 0 < < 1, so that
Lebesgue’s convergence theorem can be applied to (2.6) for » — 1, giv-
ing equality in (2.7).

Finally, also the bound on p is best possible. For this we simply
note that by (2.5) and (2.8)

[0'(@)] | @ @ uetee = D, > 0 near @ =0
and 0'(@) . (TL' . ]@ l)+(21n)urczgs :_>: I)2 > 0

near @ =m, so that for p = w/(2 arctge) the functions [6'(®)]? and
[6'(®)]7* are not integrable.

COROLLARY. Under the assumptions of Theorem 6, we have for
0=r<i1

2.9) L S"[fr(mi«:) trdep < MAX PO ,r g <) <

or cos (p arctg ¢) -

T 4
2arctge

For p = /(2 arctg ¢), the left-hand side meed mot be uniformly bounded
m0=r<l.

4 See also a similar estimate for smooth curves ([11], p. 254).
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For the proof we note that by (2.6)

1= LS [ 9(2) [ cos [p v(z)] do .
2w Jizl=r<1
Recalling |pv(2)| < parctg e and that |z/f(z)|*? assumes its minimum

for [z]| = 1, we arrive at (2.9).

II.2. An estimate for M,[f'() —1]. Theorem 6 enables us to
derive an estimate for the mean of f'(z) — 1, which is small for small e.

THEOREM 7. Let C:p(0)e® be a Jordan curve, starshaped with
respect to w = 0, which satisfies an e-condition and which lies in the
ring 1= |w|<1+¢ for some ¢ =0. Let w=f(z) with f(0)=0,
F0) >0 map |z]| <1 conformally to the interior of C. Then we have
Jor all r with 0 =r <1

Vomit\ cos arctg ¢ ¢ .
(2.10) M,[f'(re?) — 1] < {(1 ) }(1 LA e

T

fl<p < ———,
4 P 2 arctg ¢

where A, denotes the constant in Riesz’s Theorem B. The upper bound
Jor p 1s best possible®.

This improves a theorem of Warschawski ([9], p. 566) with respect
to the restrictions on ¢ and p.

Proof. We first estimate M,[{z f'(z)/f(z)} — 1] (see [9], p. 565) and
write by (2.5)

21 1 (g(o)— 1) — i 2O g — i
I 1=("(») -1 ’L‘O(e)@(@) (z=e").

Since the left-hand side vanishes at z = 0, Riesz’s theorem gives

110() ~ 1) = 4,M, [ ECT o) | < 4, M0 - <.

With (2.2) and Minkowski’s inequality we obtain
@.11) M[M —1]=a+4)mle@)- e
S(e?)

<(1+A4 cos arctg ¢ .
= ») [cos (p arctg &)]'»

5 For 0<p=<1 an estimate can be obtained by an application of Holder’s inequality.
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Next, we use the estimate

M) — 1] §(1+€)Mp[%’g2—l]+M,,[f%—l] (zl=r<1),

where the last term is < (1 + A,)e* ¢; see [9], p. 564-566. Combining
this with (2.11) and using the monotonicity of M,[{zf"(2)/f(z)} — 1] with
respect to r, we arrive at (2.10).

For p = w/(2arctg e), M,[f'(re”?) — 1] need not be uniformly bound-
ed in 0 =r < 1. To see this, one has to modify our example in II.1
slightly in an obvious way so that it satisfies also 1 < p(f) =1 + ¢;
note that only the angle ma, is of importance.
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