A NOTE ON COOK'S WAVE-MATRIX THEOREM

F. H. Brownell

1. Introduction. Consider the linear operator H_0 defined by

(1.1)
$$[H_0 u](\vec{x}) = -V^2 u(\vec{x}) + V(\vec{x}) u(\vec{x})$$

over all $\vec{x} \in R_n$, *n*-dimensional Euclidean space, for each $u \in \mathcal{D}_0$. Here V^2 is the Laplacian and we take \mathcal{D}_0 as the set of all complex valued functions u over R_n which everywhere possess continuous partials of all orders ≤ 2 and which together with these partials are in absolute value $\leq Q(|\vec{x}|)\exp(-2^{-1}|\vec{x}|^2)$ over R_n for some polynomial Q depending on u. Here V is a fixed, real valued, measurable function over R_n subject to additional assumptions below which will assure that H_0 takes \mathcal{D}_0 into $X = L_2(R_n)$ as a symmetric operator in the Hilbert space X.

Assuming that $V \in L_2(R_n)$ for n=3, Cook [2] has shown that the unique existent (see Theorem I following) self-adjoint extension H of H_0 has the unitary operator

$$(1.2) W(t) = e^{itH}e^{-it\widetilde{H}}.$$

where \widetilde{H} is the similar extension of \widetilde{H}_0 and \widetilde{H}_0 differs from H_0 only by replacing $V(\vec{x})$ by zero in (1.1), to have existent isometric operators W_{\pm} on X which are the strong limits of W(t) as $t \to \pm \infty$. Moreover, $W_{\pm} \tilde{H} =$ HW_{\pm} , the range spaces $Y_{\pm}=W_{\pm}X$ reduce H, and each H eigenvector is orthogonal to Y_{\pm} . In Theorem II bellow we give a significant sharpening of these results by weakening the restrictions upon V at ∞ . Thus, with arbitrary $\rho > 0$, any function of the form $C|\vec{x}|^{-1-\rho}$ over $|\vec{x}| \ge b$ will qualify under our assumptions (the Coulomb case $C|\vec{x}|^{-1}$ thus being borderline), while only such of form $C|\vec{x}|^{-3/2-\rho}$ there will do so under Cook's assumptions. In Theorem III we also generalize to dimension $n \ge 3$. Cook's results are used by Ikebe [4] in showing $S = W_+^* W_-$, the "S-matrix", to be unitary with $Y_{+} = Y_{-}$ and in showing the expected connection of the positive part of the spectrum of H with scattering theory under considerably more stringent conditions upon V. Our n=3 existence result II for W_{\pm} also includes that of Jauch & Zinnes ([5], p. 566), who assume $V(\vec{x}) = C|\vec{x}|^{-\beta}$ with $1 < \beta < 3/2$, and that of Hack [3], who replaces $|V| |V| < +\infty$ for some $\gamma \in [2,3)$ by the above noted stronger assumption that $|V(\vec{x})| \leq M|\vec{x}|^{-1-\rho}$ over $|\vec{x}| \geq b$ for some $\rho > 0.*$

2. Statements. As notation for our theorems, denote $D_b^+ = \{\vec{x} \in R_n | |\vec{x}| \ge b\}$

Received May 31, 1961. This research was supported by National Science foundation, grant NSF-G11097.

^{*} Note added in proof. See also Kuroda, Nuovo Cim., **12**, (1959), p. 431-454 particularly Theorem 4.1), p. 444.

and $D_b^- = \{\vec{x} \in R_n | |\vec{x}| \leq b\}$, $|\vec{x}| = [\sum_{j=1}^n x_j^2]^{1/2}$. Also for real $r \geq 1$ and measurable u over D, let $f_r(u,D) = \left[\int_D |u|^r d\mu_n\right]^{1/r}$ with μ_n n-dimensional Lebesgue measure, and define $||u||_r = f_r(u,R_n)$ and $_+||u||_r = f_r(u,D_b^+)$ and $_-||u||_r = f_r(u,D_b^-)$ for specified real b>0. Likewise $f_\infty(u,D) = (\text{ess sup } |u(\vec{x})|)$ for measurable u over D defines $||u||_\infty$ and $_+||u||_\infty$ similarly. If r is suppressed, this denotes $\gamma=2$, so that ||u|| and $_+||u||$ are the $L_2(R_n)$ and $L_2(D_b^+)$ Hilbert space norms.

We also define on $X = L_2(R_n)$ the unitary Fourier-Plancherel transform operators U and \tilde{U} , having $\tilde{U} = U^* = U^{-1}$, by

$$(2.1) \qquad \qquad [\widetilde{U}w](\vec{\mathbf{y}}) = \lim_{T \to +\infty} (2\pi)^{-n/2} \int_{DT} w(\vec{\mathbf{x}}) e^{-i(\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})} d\mu_n(\vec{\mathbf{x}}) \;,$$

(2.2)
$$[Uw](\vec{\mathbf{x}}) = \lim_{T \to +\infty} (2\pi)^{-n/2} \int_{DT} w(\vec{\mathbf{y}}) e^{i(\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})} d\mu_n(\vec{\mathbf{y}}) ,$$

for all $w \in X$, the limits being X norm limits. Here $(\vec{x} \cdot \vec{y}) = \sum_{j=1}^{n} x_j y_j$ is the R_n inner product. We also will need to consider the set G of all functions u of the form

(2.3)
$$u = Uw, \ w(\vec{y}) = \exp(-a^2|\vec{y} - \vec{z}|^2)$$

for some $\vec{z} \in R_n$ and real a > 0 depending upon u. With this notation our theorems are as follows.

THEOREM I. Let real b>0 and let η and γ be extended real satisfying $2 \leq \eta$, $n/2 < \eta$, $\eta \leq +\infty$ and $2 \leq \gamma$, $n/2 < \gamma$, $\gamma \leq +\infty$ for integer $n \geq 1$, the dimension of R_n . Let real valued, measurable V over R_n satisfy both

- (i) $-||V||_{\eta} < + \infty$,
- (ii) $_{+}||V||_{\gamma} < + \infty$.

Then H_0 in (1.1) takes \mathcal{D}_0 into $X = L_2(R_n)$ as a symmetric operator, and H_0 possesses a unique self-adjoint extension operator H in X.

The special case of I where $\gamma = +\infty$ is our previous Theorem (T.1) of [1], except for the enlargement of the initial domain there to \mathcal{D}_0 here; the modification needed to take care of general γ is very slight. As there define $[Aw](\vec{y}) = |\vec{y}|^2 w(\vec{y})$ over $\vec{y} \in R_n$, the domain \mathcal{D}_A of A being all $w \in X$ for which $|\vec{y}|^2 w(\vec{y})$ is also finitely square integrable. Then A is easily seen selfadjoint in X, and hence so is $\widetilde{H} = UA\widetilde{U}$ with domain $\mathcal{D} = U\mathcal{D}_A$; moreover, $\widetilde{H}_0 \subseteq \widetilde{H}$ is now a consequence of standard Fourier transform theorems (or a simple use of Green's formula). With $\mathcal{D} = U\mathcal{D}_A$, and defining $[Vu](\vec{x}) = V(\vec{x})u(\vec{x})$, we have the following lemma.

LEMMA 2.4. Let V satisfy the hypotheses of Theorem I. Then

the function Vu is in X for all $u \in \mathcal{D}$. Moreover, for each real $\alpha > 0$ there exists real $\beta_{\alpha} > 0$ such that

$$(2.5) ||Vu|| \leq \alpha ||\widetilde{H}u|| + \beta_{\alpha}||u||$$

over $u \in \mathscr{D}$.

Since $\widetilde{H}_0 \subseteq \widetilde{H}$ has $\mathscr{D}_0 \subseteq \mathscr{D}$, from this lemma it follows that H_0 takes \mathscr{D}_0 into X, and Green's formula with the \mathscr{D}_0 exponential bound at ∞ shows that H_0 is symmetric. Also $Hu = \widetilde{H}u + Vu$ for $u \in \mathscr{D}$ defines H from \mathscr{D} into X, and $H_0 \subseteq H$ follows from $\widetilde{H}_0 \subseteq \widetilde{H}$. Also our Lemma 2.4 (replacing Lemma T.2 in [1]) shows H self-adjoint in X without any further change ([1], p.957). Likewise the previous approximation argument ([1], p.958) with Lemma 2.4 shows that H is the closure of $H_1 \subseteq H_0 \subseteq H$ and hence of H_0 , and likewise \widetilde{H} is the closure of $H_1 \subseteq H_0 \subseteq H$ and hence of H_0 , where H_1 and H_1 are the restrictions of H_0 and H_1 respectively to $\mathscr{D}_1 \subseteq \mathscr{D}_0$, with \mathscr{D}_1 the Hermite functions. Thus Theorem I will be proved as soon as we prove Lemma 2.4 in the next section.

For our main Theorems II and III, we also need the following extension of Cook's [2] Lemma 2.

LEMMA 2.6. If $u \in G$ (i.e. of form 2.3), then with $0 < K_n < +\infty$ for real $r \ge 1$ and real t

$$(2.7) \quad |[e^{it\widetilde{H}}u](\vec{x})| = [4(a^4 + t^2)]^{-n/4} \exp(-a^2[4(a^4 + t^2)]^{-1}|\vec{x} + 2t|\vec{z}^2) ,$$

$$(2.8) \qquad ||e^{it\widehat{H}}u||_r = [4(a^4+t^2)]^{-(n/2)(1/2-1/r)}(a^2r)^{-n/2r}(K_n)^{1/r},$$

(2.9)
$$||e^{it\widetilde{H}}u||_{\infty} = [4(a^4 + t^2)]^{-n/4}.$$

Moreover, for real valued, measurable V satisfying both (i) and (ii) of Theorem I with extended real η and γ , there results for such u both

(2.10)
$$\int_{-\infty}^{\infty} \mid\mid Ve^{it\widetilde{H}}u\mid\mid dt < +\infty \; ,$$

$$0 = \lim_{|t| \to \infty} ||Ve^{it\widetilde{H}}u||,$$

if $2 \leq \eta$ and $2 \leq \gamma < n$.

Since $2 \le \gamma < n$ in the last part of the lemma, this only applies when dimension $n \ge 3$. From the crucial (2.10) and (2.11) (Corollary 2 and 1 of Cook's Lemma 2), the other arguments of Cook's paper [2] apply without other change and yield all the conculsions of our following Theorems II and III, except for the unstated by Cook orthogonality of each H eigenvector in X to Y_{\pm} , which is an easy consequence of $W_{\pm}\tilde{H} = HW_{\pm}$ and hence $\tilde{H} = W_{\pm}^*HW_{\pm}$ and the reduction of H by Y_{\pm} .

Thus as soon as both Lemmas (2.4) and (2.6) are shown in the next section, all our Theorems I, II, and III will be proved.

Theorem II. Let n=3 and for some real b>0 let real valued, measurable V satisfy both (i) and (ii) of Theorem I with $\eta=2$ and some real γ satisfying $2 \leq \gamma < 3$. Then there exist isometric operators W_+ and W_- on $X=L_2(R_s)$ such that the unitary operator W(t) in (1.2) has $\lim_{t\to +\infty} ||W_+u-W(t)u||=0=\lim_{t\to -\infty} ||W_-u-W(t)u||$ for every $u\in X$. Moreover, $W_\pm \widetilde{H}=HW_\pm$; $P_\pm=W_\pm W_\pm^*$ are orthogonal projections whose range spaces $Y_\pm=P_\pm X$ reduce H; and every $u\in \mathscr{D}=\mathscr{D}_H$ satisfying $Hu=\lambda u$ for some scalar λ is orthogonal to Y_\pm .

This is our new version of Cook's theorem, the special case here $\gamma=2$ being exactly Cook's statement. Since in most applications the potential V will be bounded at ∞ , and since

$$L_{\infty}(D_b^+)\cap L_2(D_b^+)\subset L_{\infty}(D_b^+)\cap L_{\gamma}(D_b^+)$$

properly for $\gamma>2$ is easily seen, our version is essentially sharper than Cook's. As pointed out in the introduction it "almost" includes the Coulomb potential, which Cook's does not. (Actually, (2.10) fails for $V(\vec{\mathbf{x}})=C|\vec{\mathbf{x}}|^{-1},\ C\neq 0$.) We also remark that there would be no gain in allowing $2\leq \eta<3$ in II instead of specifying $\gamma=2$, since $|V||_2\leq |V||_{\eta}[\mu_n(D_b^-)]^{1/2-1/\eta}$ follows from the Schwarz-Hölder inequality.

THEOREM III. Let integer $n \ge 4$ and for some real b > 0 let real valued, measurable V satisfy both (i) and (ii) of Theorem I with some real η and γ satisfying $n/2 < \eta$ and $n/2 < \gamma < n$. Then the Theorem II conclusions follow.

As above, the assumptions in III are least restrictive with η as small as possible; and, for $V \in L_{\infty}(D_b^+)$ also holding, are then least restrictive with γ as large as possible.

3. Proof of lemmas. We start by proving Lemma 2.4, considering first the case $1 \le n \le 3$. For given $\alpha' > 0$, we see by taking $\omega > 0$ sufficiently small in equation (7) of [1] and by $\sqrt{a^2 + b^2} \le |a| + |b|$ that

$$||u||_{\infty} \leq \alpha' ||\widetilde{H}u|| + \beta'_{\alpha'} ||u||$$

over all $u \in \mathscr{D}$ for some real $\beta'_{\alpha'} \geq 1$. Now define real $r \geq 2$ if $\gamma > 2$ in Theorem I (the Lemma (2.4) hypotheses) by requiring $2/\gamma + 2/r = 1$. Then (3.1) with $\beta'_{\alpha'} \geq 1$ yields for $u \in \mathscr{D}$

(3.2)
$$||u||_{r} \leq [||u||_{\infty}^{r-2}||u||^{2}]^{1/r} = ||u||^{2/r}(\alpha'||\tilde{H}u|| + \beta'_{\alpha'}||u||)^{1-2/r}$$
$$\leq \alpha'||\tilde{H}u|| + \beta'_{\alpha'}||u||.$$

Thus (3.2), (ii) of I, and the Schwarz-Hölder inequality for the associated powers r/2 and $\gamma/2$ yield

$$|V(3.3)| = |V(u)|^2 \le |U(u)|^2 \le |U(u)|^2$$

Also $||V||_2 \le [\mu_n(D_b^-)]^{1/2-1/\eta} ||V||_{\eta} < +\infty$, using (i) of I and the Schwarz-Holder inequality with $\eta \ge 2$, gives from (3.1)

$$|V_{\alpha}(3.4)| = |V_{\alpha}|^{2} \leq |V_{\alpha}|^{2} ||U_{\alpha}||^{2} \leq ||V_{\alpha}|^{2} ||U_{\alpha}||^{2} \leq ||V_{\alpha}||^{2} ||U_{\alpha}||^{2} + ||U_{\alpha}||^{2} ||U_{\alpha}||^{2}$$

over $u \in \mathcal{D}$. (3.3) and (3.4) and $||Vu||^2 = ||Vu||^2 + ||Vu||^2$ and $||Vu||^2 = ||Vu||^2 + ||Vu||^2$ and $||Vu||^2 = ||Vu||^2 + ||Vu||^2$ and $||Vu||^2 = ||Vu||^2 + ||Vu||^2 + ||Vu||^2$ and $||Vu||^2 = ||Vu||^2 + ||Vu||^2 +$

Now consider the remaining case $n \ge 4$ of Lemma 2.4. Here $2 \le n/2 < s \le +\infty$ for $s=\eta$ and $s=\gamma$, and hence real $\tau \ge 2$ and $\mu \ge 2$ are defined by the requirements $2/\gamma + 2/\tau = 1$ and $2/\eta + 2/\mu = 1$ respectively. Moreover, using $(n+\rho)2^{-1} = \gamma$ or η respectively, we see in [1] at the top of p. 956 that $r' = 4\gamma(2\gamma - 4)^{-1} = 2(1-2/\gamma)^{-1} = \tau$ or $r' = 4\eta(2\eta - 4)^{-1} = 2(1-2/\eta)^{-1} = \mu$ respectively, and equation (8) there becomes

$$\|u\|_{arepsilon} \leq lpha' \|\widetilde{H}u\| + eta'_{lpha'} \|u\|$$
 ,

$$||u||_{u} \leq \alpha' ||\tilde{H}u|| + \beta''_{\alpha'} ||u||$$

respectively over $u \in \mathscr{D}$, with real $\beta'_{\alpha'} > 0$ and $\beta''_{\alpha'} > 0$ existing for each real $\alpha' > 0$. From (3.5) and (3.6) respectively, from (ii) and (i) respectively of I, and from the Schwarz-Hölder inequality we obtain respectively

$$(3.7) \qquad \qquad _{_{+}} || \, Vu \, ||^{_{2}} \leqq \, _{_{+}} || \, V \, ||^{_{2}}_{\gamma} \, || \, u \, ||^{_{2}} \leqq \, _{_{+}} || \, V \, ||^{_{2}}_{\gamma} \, (\alpha' || \, \widetilde{H}u \, || \, + \, \beta'_{\alpha'} || \, u \, ||)^{_{2}} \, \, ,$$

over $u \in \mathcal{D}$. Thus (3.7) and (3.8) and $||Vu|| \le \sqrt{\frac{}{+}||Vu||^2 + -||Vu||^2} \le \frac{}{+}||Vu|| + \frac{}{-}||Vu||$ yields (2.5), with $\alpha = M\alpha' > 0$ freely chosen, and $Vu \in X$ as desired when $n \ge 4$, completing the proof of Lemma 2.4.

Finally we must prove Lemma 2.6. Here from the proof of I (independently of any condition on V), we have $\widetilde{H} = UA\widetilde{U}$ to be the unique self-adjoint extension of \widetilde{H}_0 . Hence $e^{it\widetilde{H}} = Ue^{it\widetilde{H}}\widetilde{U}$ and for u of form (2.3) we compute directly, since the L_1 Fourier transform and the L_2 Fourier-Plancherel transform are well known to coincide almost everywhere for functions in $L_1(R_n) \cap L_2(R_n)$,

$$[e^{it\widetilde{H}}u](\vec{\mathbf{x}}) = (2\pi)^{-n/2} \int_{R_n} \exp(-a^2|\vec{\mathbf{y}} - \vec{\mathbf{z}}|^2 + it|\vec{\mathbf{y}}|^2 + i(\vec{\mathbf{y}} \cdot \vec{\mathbf{x}})) d\mu_n(\vec{\mathbf{y}})$$

$$= \prod_{j=1}^n \left\{ (2\pi)^{-1/2} \int_{-\infty}^{\infty} \exp(-a^2(y - z_j)^2 + ity^2 + iyx_j) dy \right\}$$

$$= \exp\left(-a^2|\vec{\mathbf{z}}|^2 + 4^{-1}(a^2 - it)^{-1} \sum_{j=1}^n (2a^2z_j + ix_j)^2\right)$$

$$\prod_{j=1}^n \left\{ (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-(a^2 - it)y^2} dy \right\}$$

$$= [2(a^2 - it)]^{-n/2} \exp\left(-a^2|\vec{\mathbf{z}}|^2 + 4^{-1}(a^2 - it)^{-1} \sum_{j=1}^n (2a^2z_j + ix_j)^2\right).$$

From (3.9) we readily obtain (2.7), from which (2.9) is obvious and (2.8) follows by the direct computation

$$(3.10) \begin{aligned} ||e^{it\widetilde{H}}u||_{r} &= [4(a^{4}+t^{2})]^{-n/4} \left[\int_{R_{n}} \exp(-a^{2}r4^{-1}(a^{4}+t^{2})^{-1}|\vec{\mathbf{y}}|^{2}) d\mu_{n}(\vec{\mathbf{y}}) \right]^{1/r} \\ &= [4(a^{4}+t^{2})]^{-n/4} [a^{-2}r^{-1}4(a^{4}+t^{2})]^{n/2r} (K_{n})^{1/r} \end{aligned}$$

with $K_n = \int_{R_n} e^{-|\vec{\mathbf{y}}|^2} d\mu_n(\vec{\mathbf{y}})$ positive and finite.

Finally to prove last statement of Lemma 2.6 with conclusions (2.10) and (2.11), we here are given V to satisfy (i) and (ii) of I with $2 \le \gamma < n$ and $2 \le \eta$. Thus $-||V||_2 \le -||V||_\eta [\mu_n(D_b^-)]^{1/2-1/\eta} < +\infty$, as noted just before III, and by (2.9) for our $u \in G$

$$(3.11) \qquad \qquad -||Ve^{it\widetilde{H}}u|| \leq -||V||_{2}[4(a^{4}+t^{2})]^{-n/4}.$$

Since n>2 here, the right side of (3.11) is in $L_1(-\infty, \infty)$ over t. If $\gamma=2$, then $_+||V||_2<+\infty$ and (3.11) with the - script replaced by + shows $_+||Ve^{it_H}u|| \in L_1(-\infty, \infty)$ over t. If $\gamma>2$, then the requirement $2/\gamma+2/r=1$ defines real $r\geq 2$, and the Schwarz-Hölder inequality for this r yields from (2.8) and (ii) of I for our $u\in G$

$$(3.12) \quad {}_{+} || Ve^{it\tilde{H}} u || \leq {}_{+} || V ||_{\gamma} M'(\alpha^4 + t^2)^{-(n/2)(1/2 - 1/r)} = M(\alpha^4 + t^2)^{-n/2\gamma},$$

which is in $L_1(-\infty, \infty)$ by $\gamma < n$. Hence (3.11) and (3.12) and $||w|| \le ||w|| + ||w||$ prove (2.10) and (2.11), and the proof of Lemma. 2.6 is complete.

REFERENCES

- 1. F. H. Brownell, Pacific J. Math., 9, (1959), 953-973.
- 2. J. M. Cook, Journ. Math. Phys., 36, (1957),82-87.
- 3. M. N. Hack. Nuovo Cimento, series 10, 9, (1958), 731-733.
- 4. T. Ikebe, Arch. Rat. Mech. & Anal., 5, (1960), 1-34.
- 5. J. M. Jauch & I. I. Zinnes, Nuovo Cimento, series 10, 11, (1959), 553-567.