A NOTE ON COOK’S WAVE-MATRIX THEOREM

F. H. BROWNELL

1. Introduction. Consider the linear operator H, defined by
{1.1) [Hul(X) = —ruwX) + V(X)u(X)

over all Xxe R,, n-dimensional Euclidean space, for each ue &,. Here
P? i3 the Laplacian and we take <, as the set of all complex valued
functions u over R, which everywhere possess continuous partials of all
orders <2 and which together with these partials are in absolute value
= QI X|)exp(—27YX[*) over R, for some polynomial @ depending on u.
Here V is a fixed, real valued, measurable function over R, subject to
additional assumptions below which will assure that H, takes <, into
X = Ly(R,) as a symmetric operator in the Hilbert space X.

Assuming that Ve L(R,) for n =3, Cook [2] has shown that the
unique existent (see Theorem I following) self-adjoint extension H of H,
has the unitary operator

1.2) W(t) = e*Ze 7

where H is the similar extension of H, and H, differs from H, only by
replacing V(X) by zero in (1.1), to have existent isometric operators W.
on X which are the strong limits of W(¢) as t— + . Moreover, W.H=
HW., the range spaces Y, = W.X reduce H, and each H eigenvector
is orthogonal to Y.. In Theorem II bellow we give a significant sharpening
of these results by weakening the restrictions upon V at o«. Thus, with
arbitrary o > 0, any function of the form C|X|™° over |¥| = b will qualify
under our assumptions (the Coulomb case C|x|™ thus being borderline),
while only such of form C|x|~**~* there will do so under Cook’s assump-
tions. In Theorem III we also generalize to dimension n = 3. Cook’s
results are used by Ikebe [4] in showing S = W#W_, the ‘‘S-matrix’’,
to be unitary with Y. = Y_ and in showing the expected connection of
the positive part of the spectrum of H with scattering theory under
considerably more stringent conditions upon V. Our n = 3 existence
result II for W. also includes that of Jauch & Zinnes ([5], p. 566), who
assume V(xX) = C|X¥|? with 1< B < 8/2, and that of Hack [3], who
replaces .||V ||, < + o for some ve[2,3) by the above noted stronger
assumption that | V(X)] < M|%|7~ over |¥| = b for some p > 0.*

2. Statements. As notation for our theorems, denote D ={X € R,||X|=b}
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* Note added in proof. See also Kuroda, Nuovo Cim., 12, (1959), p. 431-454 particularly
Theorem 4.1), p. 444.
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and Dy ={X¥e R, |X| =b}, |¥| =[>_}-.2]"*. Also for real r =1 and
measurable w over D, let f(u, D) = lu]’dp,,] with g, m-dimensional

Lebesgue measure, and define ||ul|, = f(u, R,) and .||u||, = f.(u, D})
and _[|u]||, = fAu, D;) for specified real b > 0. Likewise f.(u, D)=
(ess sup |u(X)|) for measurable u over D defines ||#]|.. and .||%||. similarly.
If r 1s suppressed, this denotes v = 2, so that [|«|| and .[|u]|| are the
L(R,) and L,D;i) Hilbert space norms.
We also define on X = L,(R,) the unitary Fourier-Plancherel trans-
form operators U and U, having U = U* = U™, by

(2.) [0w]@) = lim (20)| _w(@e P dps,(3),
(2.2) [Uw](®) = lim (2n)~mSﬁw(y)eﬂ?@dyn@) :

for all we X, the limits being X norm limits. Here (X-7) = Y "-.%,¥;
is the R, inner product. We also will need to consider the set G of all
functions # of the form

2.3) u = Uw, w(y) = exp(—a’ly — Z[)

for some Z€ R, and real a > 0 depending upon . With this notation
our theorems are as follows.

THEOREM 1. Let real b > 0 and let 7 and v be extended real satisfy-
ng 2=, n2<N, N=+4+w and 2=, n/2<7, v <+ for integer
n =1, the dimension of R,. Let real valued, measurable V over R,
satisfy both

(i) ViL,< + o,

(i) VIL,< + .

Then H, in (1.1) takes &, into X = L,(R,) as a symmetric operator,
and H, possesses a unique self-adjoint extension operator H in X.

The special case of I where v = + o is our previous Theorem (T.1)
of [1], except for the enlargement of the initial domain there to <,
here; the modification needed to take care of general v is very slight.
Asg there define [Aw](®) = |y/*w(y) over y € R,, the domain =7, of A being
all we X for which |g]*w(y) is also finitely square integrable. Then A
is easily seen selfadjoint in X, and hence so is H = UAU with domain
o = U ,; moreover, H, < H is now a consequence of standard Fourier
transform theorems (or a simple use of Green’s formula). With &7 =
Uz ,, and defining [Vu](¥) = V(X)u(X), we have the following lemma.

LEMMA 2.4. Let V satisfy the hypotheses of Theorem 1. Then
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the function Vu is in X for all we <. Moreover, for each real a >0
there exists real B, > 0 such that

(2.5) 1Vull < all Hul| + Bdllul]

over ue .

Since H, € H has &7, € <7, from this lemma it follows that H, takes
<7, into X, and Green’s formula with the <7, exponential bound at o
shows that H, is symmetric. Also Hu = Hu + Vu for ue & defines H
from < into X, and H, & H follows from H, < H. Also our Lemma
2.4 (replacing Lemma T.2 in [1]) shows H self-adjoint in X without any
further change ([1], p.957). Likewise the previous approximation argu-
ment ([1], p.958) with Lemma 2.4 shows that H is the closure of H,.S H S H
and hence of H,, and likewise H is the closure of H, < H, £ H and hence
of H,. Thus H is the unique selfadjoint extension of H, and H likewise
of H, where H, and H, are the restrictions of H, and H, respectively
to &, € <, with &, the Hermite functions. Thus Theorem I will
be proved as soon as we prove Lemma 2.4 in the next section.

For our main Theorems II and III, we also need the following extension
of Cook’s [2] Lemma 2.

LemMA 2.6. If ueG (i.e. of form 2.8), then with 0 < K, < + oo
for real r =1 and real t

2.7) |[e“’7u](.i':)| = [4(a* + )] exp(—a’[4(a* + t))]7YX + 2t|2?) ,
(2.8) ”eitaunr — [4(0/4 + tz)]—(n/Z)(1,’2~1/r)(a2,,.)—n,’2r(Kn)llr ,
2.9 lle“Tull. = [4a* + )]

Moreover, for real valued, measurable V satisfying both (i) and (ii)
of Theorem 1 with extended real n and v, there results for such u both

(2.10) gf | Veitiu ||dt < + oo
(2.11) 0= 1§m || Veitty)| |
It|—oo

if 2<7m and 2 <7 < n.

Since 2 < v < n in the last part of the lemma, this only applies
when dimension n = 3. From the crucial (2.10) and (2.11) (Corollary 2
and 1 of Cook’s Lemma 2), the other arguments of Cook’s paper [2]
apply without other change and yeild all the conculsions of our follow-
ing Theorems II and III, except for the unstated by Cook orthogonality
of each H eigenvector in X to Y., which is an easy consequence of
W.H = HW, and hence H = W*HW, and the reduction of H by Y..
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Thus as soon as both Lemmas (2.4) and (2.6) are shown in the next
section, all our Theorems I, II, and III will be proved.

THEOREM II. Let m = 3 and for some real b > 0 let real valued,
measurable V satisfy both (i) and (ii) of Theorem 1 with 7 =2 and
some real v satisfying 2 < v < 3. Then there exist isometric operators
W. and W_ on X = L(R;) such that the unitary operator W(t) in (1.2)
has lim,,, .|| Wou — W(t)ul| = 0 = lim, . .|| W_u — W(t)u|| for everyuc X.
Moreover, W.H = HW,; P. = W.W are orthogonal projections whose
range spaces Y. = P, X reduce H; and every we &5 = <, satisfying
Hu = u for some scalar N is orthogonal to Y,.

This is our new version of Cook’s theorem, the special case here
v = 2 being exactly Cook’s statement. Since in most applications the
potential V will be bounded at «, and since

Lo(D;") N L(Dy") © L(D;") N Ly(D;’)

properly for v > 2 is easily seen, our version is essentially sharper than
Cook’s. As pointed out in the introduction it ‘‘almost’’ includes the Cou-
lomb potential, which Cook’s does not. (Actually, (2.10) fails for V(X) =
CIX|™, C+0.) We also remark that there would be no gain in allowing
2 <71 <38 in Il instead of specifying =2, since _|| V||, < _|| V|],[¢.(D;)]*~*/
follows from the Schwarz-Holder inequality.

THEOREM III. Let integer n = 4 and for some real b > 0 let real
valued, measurable V satisfy both (i) and (ii) of Theorem 1 with some
real 1 and v satisfying nj2 < n and n/2 < v < n. Then the Theorem
IT conclusions follow.

As above, the assumptions in III are least restrictive with 7 as small
as possible; and, for Ve L.(D;) also holding, are then least restrictive
with v as large as possible.

3. Proof of lemmas. We start by proving Lemma 2.4, considering
first the case 1 <n <38. For given a’ > 0, we see by taking w >0
sufficiently small in equation (7) of [1] and by Va* + b* = |a| + |b| that

3.1) lull. = «l| Hull + Bullull

over all ue & for some real B, = 1. Now define real r =2 if v > 2
in Theorem I (the Lemma (2.4) hypotheses) by requiring 2/v + 2/r = 1.
Then (3.1) with B, = 1 yields for ue &

Null, = MwlllulPP = el el Hull + Bullwly="

3.2) < || Hu|| + BL||u]| .
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Thus (3.2), (ii) of I, and the Schwarz-Holder inequality for the associated
powers /2 and v/2 yield
3.3) LVl = IVIEIwlE < I VIE@] Hull + Bullull? .

Also || V]|, £ [t (D) Y_|| V]|, < + o, using (i) of I and the Schwarz-
Holder inequality with » = 2, gives from (3.1)

(34 VP = [VIEullk = V@] Hull + Bullwll)?

over € 7. (8.3) and (3.4) and || Vu|]* = .|| Vul*+ _|| Vu|? and v - B* <
la| + 10| yield (2.5), with a = Ma' freely chosen > 0 by choice of «’, and
Vue X as desired if v >2. If vy=2, then _||V]|; < +~ above with
«(ii) of I yields || V||, < + o=; hence (3.1) yields (3.4) with the-script dropped,
proving (2.5) and Vu e X. Thus Lemma 2.4 has been shown if 1<% <3.

Now consider the remaining case m =4 of Lemma 2.4. Here
2=n/2<s=+4 o« for s=7 and s =, and hence real 7 = 2 and ¢ = 2
.are defined by the requirements 2/v + 2/7 = 1 and 2/7 + 2/¢ = 1 respec-
tively. Moreover, using (n + p)27' = v or 7) respectively, we see in [1] at
the top of p. 956 that +' =472y —4)7* =201 —-2/7)* =7 or 7+ =
An(2n — 47 = 2(1 — 2/n)™ = 1 respectively, and equation (8) there
becomes

(3.5) lull: = o'l Hull + Bullull,
(3.6) lull, < o'l Hul] + Blull

respectively over ue <&, with real 8, > 0 and B2 > 0 existing for each
real ' > 0. From (8.5) and (3.6) respectively, from (ii) and (i) re-
spectively of I, and from the Schwarz-Holder inequality we obtain re-
-spectively

(3.7) AVl = VB ull: = VB @] Huell + Bullully
(3.8) ANVl = IVIEull = -IVIE @I Hull + B2l wlly

over ue . Thus (3.7) and (3.8) and ||Vu|l = vV I[[Valf + || V& |} =
AVl + _|| Vul| yields (2.5), with @ = Ma' > 0 freely chosen, and Vue X
.a8 desired when n = 4, completing the proof of Lemma 2.4.

Finally we must prove Lemma 2.6. Here from the proof of I (inde-
pendently of any condition on V), we have H = UAU to be the unique
‘gelf-adjoint extension of H,. Hence ¢t = UeAJ and for u of form (2.3)
we compute directly, since the L, Fourier transform and the L, Fourier-
Plancherel transform are well known to coincide almost everywhere for
functions in L(R,)N Ly(R,),
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[ Pul(R) = @m) " | exp(—alF — 7'+ tlF + iF-DLE)

= IH{En " exp(—aiy — 2y + ity + iyw )y}
(8.9) = .
= exp(—aﬂi’l2 +47a* — it) Y (2a%; + ixj)2>

n

11 {(27r)‘”2 Sl e~ @iV dy }

7=1

— (260" — it rexp( —a(al + 47— it)" 1 (a2, + i)

From (3.9) we readily obtain (2.7), from which (2.9) is obvious and (2.8)
follows by the direct computation

|leu ||, = [4(a* + t?)]—"“[gﬂ exp(—a’rd(a* + *)7y P)d#n(?)]ur

(3.10) = [4(a* + t2)]—n/4[a—2/,-—14(a,4 + ) (K, )T

with K, — S =191y, (§) positive and finite.
Rn
Finally to prove last statement of Lemma 2.6 with conclusions (2.10)
and (2.11), we here are given V to satisfy (i) and (ii) of I with 2=<v<n

and 2 <. Thus ||V, = _||VI|[tt.(Dy)]"* " < + oo, as noted just be-
fore III, and by (2.9) for our uc G

(3.11) I VeFul| < ||V [L[4(a* + )] .

Since n > 2 here, the right side of (3.11) is in L,(—o, =) over ¢. If
v =2, then ,||V]; < + o and (8.11) with the — script replaced by +
shows .|| Ve®#u|| e L(— o, o) over t. If v > 2, then the requirement
2/v + 2/r = 1 defines real r = 2, and the Schwarz-Holder inequality for
this 7 yields from (2.8) and (ii) of I for our ue G

(312) Ve Tull < ||V [, M@ + £y ®Pin = M(at + £)

which is in L(—o0, ©) by vy<mn. Hence (3.11) and (3.12) and
lw] < Jlwll + =||w]| prove (2.10) and (2.11), and the proof of Lemma.
2.6 is complete.
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