ON CERTAIN FINITE RINGS AND RING-LOGICS

ApiL YAQUB

Introduction. Boolean rings (B, x, +) and Boolean logics (=Boolean
algebras) (B, N, *) though historically and conceptionally different, are
equationally interdefinable in a familiar way [6]. With this equational
interdefinability as motivation, Foster introduced and studied the theory
of ring-logics. In this theory, a ring (or an algebra) R is studied modulo
K, where K is an arbitrary transformation group in R. The Boolean
theory results from the special choice, for K, of the “Boolean group”,
generated by * =1 — 2 (order 2, 2** = x). More generally, in a com-
mutative ring (R, %, +) with identity 1, the natural group N, generated
by =1+« (with 2"=2 — 1 as inverse) proved to be of particular
interest. Thus, specialized to N, a commutative ring with identity
(R, x, +) is called a ring-logic, mod N if (1) the + of the ring is
equationally definable in terms of its N-logic (R, x,”,”), and (2) the +
of the ring is fixed by its N-logic. Several classes of ring-logics (modulo
suitably chosen groups) are known [1; 2; 7], and the object of this manu-
script is to extend further the class of ring-logics. Indeed, we shall
prove the following:

THEOREM 1. Let R be any finite commutative ring with zero radical.
Then, R is a ring-logic, mod N.

1. The finite field case. Let (R, x, +) be a commutative ring with
identity 1. We denote the generator of the natural group by #~ =1 +
%, with inverse 2~ = « — 1. Following [1], we definea x b = (¢~ x b")”,
It is readily verified that ax b = a + b + ab.

Let (F,,, x, +) be a finite field with exactly p* elements (p prime).
We now have the following:

THEOREM 2. (FLk, x, +) is a ring logic (mod N). Indeed, the ring
(field) + 1is given by the following N-logical formula:

1.1) @ +y = {(@yz” )} x (@)} .

Proof. It is well known that in the Galois field F,, we have
(1.2) e t=1,aeF,,a+0.

we now distinguish two cases:
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Case 1. Suppose «# = 0. Then, by (1.2), the right-side of (1.1)
reduces to {x(l + y2**?)} x 0 =2 + y2*" ' =2 +y, since ((x** 7)) =
17y =0;a x .0 =a. This proves (1.1).

Case 2. Suppose x =0. Then, 2 =1 + x = 1. -Hence, the right
side of (1.1) reduces to 0 x {y((07)*} = ¥ = 0 +y == + ¥, since ((x”*))* =
0y =1; 0x _a=a. Again, (1.1) is verified. Hence, (¥, %, +) is
equationally definable in terms of its N-logic. Next, we show that
(F,k, x, +) is fized by its N-logic. Suppose then that there exists
another ring (F,k, %, +'), with the same class of elements F,k and the
same “x” as (F,k, x, +) and which has the same logic as (F,k, x, +).
To prove that +’' = +. Again, we distinguish two cases.

Case 1. Suppose £ = 0. Then, using (1.2), we have ¢ +'y =21 +’
Yyt = 2(yx?*?)" = (1 + ya*"*) = x + y, since, by hypothesis, 2~ =
1+x=1+"2.

Case 2. Supposex =0. Then, 2 +'y=0+'y=y=0+y =2 +y.
Therefore, +' = +, and the theorem is proved.

COROLLARY. (F,, x, +), the ring (field) of residues (mod p), p
prime, 18 a ring-logic (mod N) the + being given by setting k=1 in
1.1): '

1.3 z 4+ y = {(x@yz* "))} x Jy((x>)7)}.

2. The general case. In attempting to extend Theorem 2 to any
finite commutative ring with zero radical, the following concept of inde-
pendence, introduced by Foster [3], is needed.

DEFINITION. Let A = {A,, A,, ++++, A,} be a finite set of algebras
of the same species Sp. We say that the algebras A4,, 4,, ---, A, satisfy
the Chinese restdue condition, or are independent, if, corresponding to
each set {®;} of expressions of species Sp (¢ =1, -+, n), there exists at
least on expression ¥ such that ¥ = @, (mod 4;) (¢ =1, --+,n). Byan
expression we mean some composition of one or more indeterminate-
symbols &, .-+, in terms of the primitive operations of A,, 4,, ---, A,;
¥ = @ (mod A), also written ¥ = ¢(A), means that this is an identity
of the Algebra A.

We shall now extend the concept of ring-logic to the direct sum of
certain ring-logics. We shall denote the direct sum of the rings A4, and
A, by A, P A,. The direct power A™ will denote APAP .- P A (m
summands).
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THEOREM 3. Let (A, x, +), +-+, (4, X, +) be a finite set of ring-
logics (mod N), and let the N-logics (A;, x,”,7), +++, (4, x,”, ) be in-
dependent. Then A =A@ --- P APt 1is also a ring-logic (mod N).

Proof. Since A; is a ring-logic (mod N), there exist an N-logical
expression @; such that, for every x,,y,c¢A,(t =1, -+, ¢),

mi + yv, = @1 = q)z(xw y’L; X!Ay V) .

Since the N-logics are independent, there exists an expression X such
that

P(mod A,)
P(mod 4,) .

Therefore, for every x;, y;€ A; (2 =1, --+, t),

T4y =p=X=X@,ys5 x,7,7,).
Hence, the N-logical expression X represents the + of each A,. Since
“+” and “x” are component-wise in A, therefore, for all z, y € A,

v +y =Xy x,7,).

Hence, A is equationally definable in terms of its N-logic. Next, we
show that A is fixed by its N-logic. Suppose there exists a4’ such
that (A4, x, +') is a ring, with the same class of elements A and the same
“x” as the ring (4, x, +), and which has the same logic (4, x,”, ") as
the ring (4, x, +). To prove that +' = +.

Now, let @ = (@, ***, Giupy Gary ** ) Bomyy =+ *, Wyyy =%, Amy) €A, A mew
4+’ in A defines and is defined by new +)in A4,, +;, in A4,, ---, +!in A4,,
such that (4;, x, +%) isa ring (¢ =1, ---,¢); i.e., for a,bec A,

(2~1) a+'b= (auy sty oy ooy gy "') +’(bm ) b217 ccy bm "‘)
= (a'u +{b117 sy Oy +;b217 sy, Oy _I-:btl! "') .

Furthermore, the assumption that (A4, x, +’) has the same logic as
(4, x, +) is equivalent to the assumption that (4,, x, +!) has the same
logic as (4,, x, +), and similarly for (4;, x, +) and (4;, x, +) (1=2,
«++,t). Since (4,,,% +) is a ring-logic, and hence with its + fixed,
it follows that +)= +; similarly +,;=+,---, +,=+. Hence, using
(2.1), +' = +, and the proof is complete.

A careful examination of the proof of Theorem 3 shows that the
independence of the logics was not used in the “fixed” part of the proof.
Hence, we have the following

COROLLARY. Let (4,, x, +), ++-, (4, X, +) be a finite set of ring-
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logics (mod N). Then, AP - P A™ is fixed by its N-logic.

We now examine the independence of the logics (F7iik;, x, +) (i =
1, -+, t).

THEOREM 4. Let p,, «--, p, be distinct primes, and let Ftk; be the
m; direct power of the Galois field F,k; (i =1, ---,t). Then the logics
(Fpik;, x,7, ) (@ =1, -+, t) are independent.

Proof. Let m; = pjt, and let P(¢) = [I%-,n;, 5 # 4. Let F,=F,k,
(t=1,---,t). Clearly, P(¢) and n, are relatively prime. Hence, there
exist integers r; > 0, s; > 0 such that »,P(1) — s;n; = 1. Define e(x) and
o(x) as follows:

g(w) = gmnThm s 5(x) = e(w) x_((e(@))7)" .

It is easily seen that d(x)=1,xcFr(r=1,--+,t). Let «™* =
(+++ ((®"))" +++)", k iterations. Then one easily verifies that for ¢ + j,

1 (mod F/)

w,; = wz(x) = (3(43)),\%” = 0 (mod F"‘J) )

Now, to prove the independence of the logics (F"t, x,”, ) (1 =1, ---,1),
let {6} be any set of t expressions of species x,”,”; i.e., a primitive
composition of indeterminate-symbols in terms of the operations x,”,~
Let X = 0w, x 0w, X _+++ X 0w, Then it is easily seen that X=0]
(mod Fimi)(t=1,+++,t),sincea x _0=a =0 x _a, and the theorem is proved.

We are now in a position to prove the following theorem (see intro-
duction).

THEOREM 5. Any finite commutative ring B with zero radical s
a ring-logic (mod N).

Proof. First, if R consists of one element, then R = {0}. Clearly,
R is a ring-logic (mod N) in this case, since a +b =a x b, for example.
Hence, assume that R has more than one element. It is well known
(see [5]) that any finite commutative ring R with zero radical and with
more than one element is isomorphic to the complete direct sum of a
finite number of finite fields F,k,, -+, F, k;: ie., R F, kD --- D
F,k,. Now, by Theorem 2, each (F,k; x, +) is a ring-logic (mod N).
Hence, by the corollary to Theorem 3, F,k, @D -+ P F, k, is fixed by
its N-logic. Therefore, by the above isomorphism, E, too, is fixed by
its N-logic, and there only remains to show that the + of R is equation-
ally definable in terms of its N-logic. To this end, we distinguish two
cases.
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Case 1. Suppose p,, -+, D, are all distinct. By Theorem 2, (Fplki, X, +)
is a ring-logic (mod N) (¢ =1, ---,%t). By Theorem 4 (with m, = .. =
m, = 1), the N-logics (F,k;, X, ", ") are independent (: =1, ---, t). There-
fore, by Theorem 8 (with m, = --- = m, = 1), the direct sum F,k, P
««« @ F,k, (and hence R, by the above isomorphism) is a ring-logic
(mod N). Hence, in particular, the + of R is equationally definable in
terms of its N-logic.

Case 2. Suppose p,, +--, », are not all distinct. Let ¢, ---, ¢, be
the distincet primes in {p,, -+, p,}. Since the Galois fields F,k;, and
F,k; are both subfields of F,k;k;, it is easily seen that F, kD .-- P
F,k, is a subring of a direct sum of direct powers of F, .h; (1 =1, «--, 7);
ie., F,b, D -+ D F,k, is a subring of Fh, D --- D F;rh,, for some
positive integers h,, +--, h,, m,, +++, m,. Now, the rest of the proof is
similar to that of Case 1. Thus, by Theorem 2, (F,h;, x, +) is a ring-
logic (mod N) (2 =1, --+, 7). By Theorem 4, the N-logics (F,h;, x,”, ")
are idependent (1 =1, ---, 7). Hence, by Theorem 8, F*h, D -+ B F,'h,
is a ring-logic (mod N). Therefore, in particular, the + of Fyh, @ -+ P
Frh, is equationally definable in terms of its N-logic. Hence, afortiori,
the + of the subring F,k @ --- @D F,k, (and therefore the + of R,
by the above isomorphism) is equationally definable in terms of the N-
logic of R. Therefore, R is a ring-logic (mod N), and the theorem is
proved.

3., p-rings and p*-rings. We shall now make an attempt to gener-
alize Theorem 3, and apply this generalization to p-rings and p*-rings.
We first observe that the proof of Theorem 3 does mot depend on the
cardinality of the powers m,;. Furthermore, the proof still remains valid
if one considers a subdirect sum of subdirect powers of A, instead of
the complete direct sum of direct powers of 4; (t =1, «+-,%). In view
of this, Theorem 3 can now be cast in the following more general form.

THEOREM 3'. Let (Ai, X, +), -++, (A, X, +) be a finite set of ring-
logics (mod N), and let the N-logics (A;, x,”, ), ==+, (A, X,”,) be inde-
pendent. Let A be any subdirect sum with identity of (not necessarily
finite) subdirect powers of A; (¢t =1,.--,t). Then A is a ring-logic
(mod N).

Now, it is well known (see [2;4]) that every p-ring (p prime) is
isomorphic to a subdirect power of F,, and every p‘ring (p prime) is
isomorphic to a subdirect power of F, . Hence, by letting ¢ =1 and
A, = F, (respectively, F,) in Theorem 3', we obtain the following corol-
lary (compare with [1; 2]).
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COROLLARY. Any p-ring with identity, as well as any pt-ring with
identity, is a ring-logic (mod N).

In conclusion, I wish to express my gratitude to the referee for
his valuable suggestions.
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