
ITERATIONS OF GENERALIZED EULER FUNCTIONS

G. K. WHITE

1. Introduction. In this paper p and q will denote primes. We
recall that a function f(n) of an integral variable n ^ 1 is said to be
multiplicative, if

(1) f(mn)=f(m)f(n)

whenever (m, n) = 1, and additive, if

(2) f(mn)=f(m)+f(n)

whenever (m, n) = 1. If however f(n) satisfies (2) for all integers m ̂  1,
n ^ 1 we shall say that f(ri) is completely additive. Consider a multi-
plicative integral-valued function f(n) > 0 and put

( 3 ) fin) = n, fin) - f{n), , fr(n) = f[fr-ln)],

We shall say that f(n) is of finite index if, to each n > 1, there is an
integer C — C(n) such that

> 1 f or r ^ C

- 1 f or r > C ,
(4) fin)

in which case we put C(l) = 0.
The familiar Euler function

(5) φ(n) = 1_
m^n pin \ Ύ)

(m,n)=l

is an example of such a function, since φ(n) < n. For this case (f = <p),
properties of the corresponding function C(n) were investigated by Pillai
[1], who attributes the problem to Vaidyanathaswami. Later, Shapiro
[2, 3, 4] observed that this particular C{n) satisfied the condition

fl for m, n both even
(6) C(mn) = C(m) + C(n) + \^ \

(0 otherwise ,

and went on to obtain, inter alia, a certain class (S) of multiplicative
functions f(n) of finite index satisfying (6). In a restricted sense, (S)
consists of functions similar in form to φ(n); for example they satisfy

for all positive integers x, n.
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Our first purpose is to impose mild conditions on ψ(n) to ensure that it
has a finite index, the characterization of all such functions being an
unsolved problem.

THEOREM 1. Let ψ(n) be any multiplicative integral-valued function
satisfying

(7 ) (i) qlf{pι) ^q^p for all p, q

and all t ^ 1 ,

(8 ) (ii) pϋ X f{pl) for any p or any t ^ 1 .

Then ψ(n) is of finite index.
We shall refer to the class of functions ψ(n) admitted by (7) and

(8) by the letter (W) if, by analogy with the Euler function, they also
satisfy1

( 9 ) ψ(n) = 0 (mod 2) f or n > 2 .

It is evident that not all members of (W) satisfy (6); for example

(10) ψ(n) = 28in)

where δ(n) is the number of different odd prime factors of n, and C(3) =
C(5) = C(15) = 1. Our main purpose is to isolate the members of (W)
which do satisfy (6), thereby enlarging the class (S) obtained by Shapiro
{loc. cit. 3). Theorem 2 does, in fact, prescribe necessary and sufficient
conditions, but before stating it we need some further notation. Our
calculations are a little simpler if we introduce the function c(ri), where

,„.,. , , [C(n) + 1 if n is even
(11) c(n) = ., . „

(C(n) if n is odd ,
for then, by (6), c(n) is completely additive.2 By (7) and the multiplica-
tive property of f, we have

(12) f(n) = Π PMp n)

for some λ(p, n) ^ 0 defined for all n ^ 2 and all p ^ n. Then, (7), (8)
and (9) may be expressed alternatively as

(13) λ(ί, pι) = 0 for all q > p ,

(14) X(p, p')<t,

(15) λ(2, n) > 0 for n > 2.

Assigning arbitrary values to ψ(p)f subject only to conditions (7), (8)

1 We remark that condition (9) may be generalized, if (6) and (11) are reformulated.
2 Note that C(n) is additive, but not completely. Note also that c(l) = C(l) = 0, while

(9) and (11) imply that c(n) > 0 for n>l.
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and (9), the λ(g, p) are then determined uniquely by (12), for all q < p
and p. We define inductively a new function Γ(p) over the primes, by

(1 if p = 2 ,
( 1 6 ) Γ{p) = Σ Mg, p)Γ(q) if p > 2 .

\q<p

For n Ξ> 1 and odd £>, we introduce the linear relations

(17) λ(2, r ) + Σ r(q)X(q, pn) = nΓ(p)

which represents, for each n > 1, a restriction on the values of λ(2, pn),
λ(3, pw), « ,λ(p, pw). Note that (17) is an identity for n = l, while for
n > 1 it possesses at least one solution, namely

(18) X(q, pn) =
V ' ' ( 0 if ? > 2 .

For p = 2, we set

(19) f(2") - 2"-1 for n ^ 1

We are now in a position to state our main theorem:

THEOREM 2. Then let ψ(n) be any multiplicative function satisfying
(7), (8) and (9).

(i) // c(n) is completely additive, c{p) — Γ(p).
(ii) c(n) is completely additive if, and only if, ψ(n) satisfies (17)

and (19).
I should like to thank Dr. J. H. H. Chalk for his help in the prepa-

ration of this paper, and to thank also Dr. A. H. Stone for valuable
comments on an earlier draft.

2. Proof of Theorem 1. Suppose n > 1. If we express n = Π;P;*
then ψ(n) = IL hKPϊOL by the multiplicative property. Let pnQ denote
the greatest prime factor of n. Then no prime p > pnQ can divide ψ(n)
and pln^ \ ψ{n). Hence no prime p > pnQ can divide any ψr{n)[r = 0,1, •]
and the greatest power of pnQ dividing ψr(n), if not zero, exceeds by at
least one the greatest power of pno dividing ψr+1(n). Hence there is an
integer r0 such that P%0|ψv0(w). Then either ψrQ(n) = l or the greatest
prime factor of ψrQ{n) is pn± < pnQ. If ψro(n) Φl, we can repeat the
process and determine an integer ru such that pnil( ψrj/W Hence either
ψri(n) = 1 or the greatest prime factor of ψri(n) is p%2 < pnι. In this
way, we obtain a decreasing sequence of primes pnQ > pnχ > pn2 >
which clearly terminates at, say p%s, when ψra(ri) — 1. Since ψ(l) = 1,
C = r s — 1 has the desired property.
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3. The main lemma We use the following property of the function
c(n):

(c(n) — 1 if n is even,
(20) c[ψ(n)] = .

(c(n) if n is odd,

which follows immediately from (4), (9) and (11). For any p, let

(21) S(p) = {n-.q/n^q < p} , (n > 0) .

Then S(p), being the set of all positive integers whose prime factors
are < p, is closed under multiplication. Moreover, if c(mn) = c(m) +
c(n) for all m, n in S(p), then

(22) c(l) = 0

and

(23) c[ΐlqΊ

The lemma which follows will provide an important step in the induction
proof of Theorem 2.

LEMMA 1. Suppose that ψ(n) satisfies (17) for all odd p and all
n ^ l . Let pλ < p2 < denote the odd primes. Suppose also that,
for some k ^ 1,

(24) c(p) = Γ(p) for all peS(pk).

and

(25) c(mn) — c(m) + c(n) for all m, n in S(pk)

Then

(26) ( i ) c(p) = Γ(p) for all peS(pk+1)

(27) (ii) cip'n) = c{pι) + c{n) if

P = Pk,t^0,ne S(p)

(28) ( i i i ) c(p*) = tc(p) i f p = p k , t ^ 0

(29) (iv) c(mn) = c(m) + c(n) for all m, n in S(pk+1)

Proof, (i) By (24), it suffices to prove that c(pk) = Γ{pk). But,
with p = pk, we have

c(p) = c[f(p)] =c[H q^*] = Σ λ(ϊ, p)c(q)

by (20), (12), (14), (23) and noting that f(p) e S(p). By (24), c(?) =
for all q < p and so c(p) — Γ(ί>), by (16).
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(ii) The case t = 0 is obvious. Proceeding by induction on t, assume
that

c(psn) = c(ps) + c(n) for all s < t

and all n e S(p) .

Since f{pι) = mpr for some m e S(p) and some r < ί, by (13) and (14),
we have

= c[mprψ(n)]

— c(pr) + c[mψ(n)] , by our induction

hypothesis

= c(pr) + c(m) + c[ψ(n)] , by (25)

= c(prm) + c[ψ(n)] , (on using the

hypothesis again!)

c[ψ(n)] .

Hence, by (20), c{pιn) — c(pc) + c(ri), and (ii) follows directly.
(iii) The cases t — 0,1 are obvious. By induction on t, we assume

that

c(ps) = sc(p) for all s < t .

Then, by (20) and (ii),

c(pι) = clψip1)]

— *ΎP 1 1 H J

q<p

Since λ(p, pc) < t by (14), we can apply our inductive hypothesis to the
first term. Hence

c(pι) = λ(p, pJ)c(p) +
Q<P

on using (25) on the second term. By (i), c(q) = /τ(g) for g S p, so that

*) - Σ λ(g,

by (17), and (iii) is immediate.

(iv) Let m = p^mlf n = p X , where p = pk and m^ nx are in
Then
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c(mri) — c[plί+

= (μ +

= Mr
= dm)

G.

>mxnj =

v)c(p) +

)) + c(mi

) + c(m1)

+ c(n) ,

K. WHITE

c(^+») + c(mini) ,

c{m,) + φ O ,

)} + {vc(p) + c(%i)} ,

'} + MPV) + c(%i)} f

by

by

anc

by

by

(ϋ)

(ϋi)

1(25)

(iii)

(ϋ).

This completes the proof of (iv), and so of Lemma 1.

4. Proof of Theorem 2. Suppose that ψ(n) satisfies (7), (8), (9),
(17) and (19); we will deduce that c(n) is completely additive (and inci-
dentally that c(p) = Γ(p)). Consider the hypotheses of Lemma 1 in the
case k = 1, when S(3) consists of all powers of 2. Since ψ(2ι) = 2t~1

for ί ^ 1, we have

(30) c(24) = 1 + 0(2') - t ,

whence

(31) e(2) - 1 = Γ(2) ,

by (16). By definition c(l) = 0, so that for any integers s ^ 0, t ^ 0,
we have

(32) c(28 2ι) = c(28+t) = s + t = c(2s) + c(2ι) .

Thus the hypotheses (24) and (25) of Lemma 1 are valid for the par-
ticular case k = 1 and we conclude that

(33) c(p) = Γ(p), c(mn) = c(m) + c(n)

hold for all p, m, n in S(5); which permits up to repeat the argument.
Proceeding by induction on k we deduce, finally, that (33) holds for all
primes p and all positive integers m, n.

Conversely, we suppose now that c(n) is completely additive, and
ψ(n) satisfies (7), (8) and (9). We prove now that ψ(n) satisfies (17)
and (19) and that c(p) = Γ(p). By (20) and the completely additive
property of c(n) we have

(34) c(p) = c[ψ(p)] = Σ Mq, P)c(q) = Γ(p) ,

(35) c[ψ(ί>£)] = c(p() = tc(p) = tΓ{p) ,

(36)

for all odd p and all ί ^ l . By (7) and (8), ψ(2) = 1, and so from (11)
and (16),
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e(2) = 1 = Γ(2) .

We may combine this result with (34) to replace c(q) by Γ(q) in (36).
Then (35) and (36) together imply (17). By (7), with p = 2,

ψ(2z) = 2U , for some integer u ^ 0 .

Hence, using c(2) = 1 and (20), we have

w = C(2U) = c[f (20] = c(2f) — 1 = ί — 1 ,

which implies (19). Thus, Theorem 2 is established.

5 Remarks, (1) We remark that our subclass of W (whose c(n)
is completely additive) admits functions ψ(n) of the type

if p = 2 ,

it P>2,

where ί ^ 1 and I — l{pι) is any integer between 1 and t. Note, in
particular, that the special case lip1) = 1 includes the Euler function.

(2) In passing, it is worthy of notice that a converse problem,
(where given any completely additive c(n) with c(n) > 0 for n > 1 we
seek the set of all multiplicative functions ψ{n) satisfying (7), (8) and
(9) and having this c(n) as their counting function), is a direct conse-
quence of Theorem 2. The solution may be expressed in the form

- 1 if p = 2

J J [g2-β t β )]λ ( ί »t) i f p > 2 ,

provided that ψ(pι) = 0 (mod 2) for p > 2. Inspection of relations (17)
and (18) shows that our set is never empty.

(3) Given any multiplicative ψ(n) satisfying (7), (8) and (9) and
having a completely additive c(n), it is evident that the relation c(p) =
Γ(p) provides an alternative method for evaluating c(n), for each n.
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