
IDEMPOTENT MEASURES ON SEMIGROUPS

J. S. PYM

Introduction. Some interest has been shown in the problem of
determining idempotent measures on topological groups and, more recently,
on semigroups. Wendel [10] seems to have opened the subject in 1954
with the pleasing result that the positive idempotent measures on a
compact group were precisely the (normalized) Haar measures of compact
subgroups. In 1959 Rudin [6] showed that the same result held for
locally compact abelian groups, and in 1960 Cohen [1] determined all
idempotents (real and complex) on such groups. Glicksberg [2] (1959)
showed that, on a compact abelian semigroup, to be the Haar measure
of a compact subgroup was equivalent to being a positive idempotent.

In the present paper, the problem is considered for locally compact
semigroups.

The problem is solved for the general locally compact group by
Theorem 4.1 of §A, in which it is also shown that the support of an
idempotent measure on certain types of locally compact semigroups (which
include compact semigroups) is a compact kernel (definition in §B). In
§B we describe the structure of compact kernels, giving results obtaing
by Wallace [9] as a preliminary to describing the idempotent measures
on them in §C. The relationships between invariant and idempotent
measures are given in Theorems C4.1 and C5.1. Section C closes with
a discussion of primitive idempotents which we see in §D are important
in the structure of the semigroup of measures on a compact semigroup.

There is some slight overlap between the results given here and
those published recently by Collins (Proc. Amer. Math. Soc. 13 (1962),
442-446, and Duke Math. J., 28 (1961), 387-392).

I wish to thank the referee for his many helpful comments on this
paper.

A Idempotent measures on locally compact semigroups*

1. The set of bounded, Borel measures on a locally compact semigroup
S forms a Banach algebra when it is given the norm it acquires as the
dual of β(S) (the space of complex-valued continuous functions of compact
support on S with the uniform norm) and when multiplication is defined

S r
\ <p{%y) dμ(x) dv(y) for φ e ®. The measure

s }s

μ is said to be concentrated on a set E if, whenever the support of
φ, (Sφ), is disjoint from E, μ(φ) = 0. The support (Sμ) of μ is the
smallest closed set on which it is concentrated.
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A measure μ may also be considered as a set function on the Borel
sets in S; we shall make use of both definitions. We shall always suppose
that μ is in the set of positive, bounded measures, @(S), when \\μ\\ —
μ(S) and Sμ is the smallest closed set F for which μ(F) = \\μ\\.

©(S) forms a semigroup under convolution in which 11 μ* v \ \ = \ \ μ \ | 11 μ \ |,
whence if μ is idempotent, \\μ\\ = 1.

The most important result on supports is

1.1 PROPOSITION. If μ, v e ©(S), Sμ*v==Sμ Sv (the bar denotes closure).
Wendel [10] Lemma 4 proved this result for compact groups;

Glicksberg [2] Lemma 2.1 has shown it for compact abelian semigroups.

Proof. The following are evident: if μx ^ μ2, then Sμi 3 Sμ2,
μλ*v ^> μ^ v and v*μλ ^ v*μ2 for each y e S . Now Glicksberg's proof
appiles verbatim to show that if μ and v have compact supports, Sμ^ =
Sμ Sv. In the general case, let α, & be any points in Sμ, Sv respectively,
and let Z7, V be any compact neighborhoods of α, 6. Denoting the
restriction of μ to Z7 by //„ we have μ*v ^ Ae«*vβ whence
S^VZD Sμu S^Ό3ab. So Sμ.*vZ) Sμ-Sv, and since a support is closed,

Conversely, let £7 be any open set with ?7 Π Sμ Sv = 0 and let £>

have Sφ c C7. Then if μ*v(φ) = \ \ φ(xy)dμ(x)dv(y) is to be nonzero,
JSJS

there must exist x and y which satisfy xeSμ, y e S v and #?/ e Sφ simul-
taneously; but this is impossible. We deduce that Sμ*v is in the complement
of Uj and we conclude by noting that we may take U to be the complement
of Sμ Sv.

1.2 COROLLARY. / / μ is idempotent, Sμ Sμ =Sμ; in particular, Sμ

is a subsemigroup.

2. We now restrict the class of semigroups we consider by insisting
that they satisfy the condition:

2.1 (L) Given any two compact subsets A and B of S, there is a
third K=K(A, B) for which xφ K=^xAf]B= 0 .

There is a corresponding condition (R) referring to multiplication on
the right by x. The two are obviously equivalent if S is commutative;
they are not in general, as we shall see.

Examples. Every compact semigroup satisfies both (L) and (R), for
we may then always take K — S. They are also satisfied by groups
(K = BA"1) and by closed subsemigroups of groups (K = S Π BA~λ).
They need not be satisfied by open subsemigroups: take S to be (0, o°)
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with addition and the usual topology, and A = B = [1,2]; then
{x: xA n B Φ 0} = (0,1] which is contained in no compact subset.

If [0,1] is given the discrete topology and if multiplication is defined
by x. y = x we find that it satisfies (L)—take K = B—but not (R)—take
A = B. A dual example shows we can satisfy (R) but not (L).

Our semigroups from now on are assumed to satisfy (L); there will
be dual results for those which satisfy (R). (L) ensures that certain
transformations of functions in ̂ ^(S) (the space of continuous functions
which vanish at infinity) are themselves in ^oo (we use the notation
f\x) = f(xa); fa(x) = f(ax)):

2.2 PROPOSITION. If fe c<^Jβ), fae rέ?<Jβ).

Proof. Let ε > 0 be given. Take A = {a}, B = {x: \f(x)\ ^ ε}; then
if χ$K(A,B), \f(xa)\ < ε .

2.3 PROPOSITION. If fe ^^S), and μ e @(S), f\x) = μ(fx) e <^Jβ).

Proof. Let ε > 0 be given. Then there are compact sets A and B
with μ(A) ̂  \\μ\\ - ε and \f(x)\ < ε for x$B. Then for x$K{A, B)

^ t \f(w)\dμ{y)
JS

^\ \f\dμ + \ I/I di«^
JS\A JS\[y:χyβB}

which will yield the required result.
We deduce from (2.3) that | / ' | assumes its supremum onS. Then

2.4 PROPOSITION. Let μ be idempotent; let / be positive; and let/ '
assume its supremum at ae S. Then f\ax) — f\a) for all x e SΛ.

Proof. We have

f\a) = \ f(ax)dμ(x) = ί ί f(axy)dμ(x)dμ(y)
j S j S J S

- ί \ f(axy)dμ(y) dμ(x) - ( f\ax)dμ(x)
JS JS JS

whence f\ax) = f'(a) a.e. (μ) and since / ' is continuous, f\ax) = f'(a)
for x e Sμ..

3. We now turn to results on the supports of idempotents.

3.1 PROPOSITION. Let μ be idempotent. If for some positive / e c^p

OOf
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/ ' assumes its supremum at α, aSμ is compact.

Proof. C = {x:f\x) = sup / ' = f\a)} is compact since / ' vanishes
at oo; by (2.4), aSμ c C.

The crucial result of this section is

3.2 PROPOSITION. Let μ be idempotent. If S is compact or is locally
compact and satisfies the left cancellation law, Sμ. is compact.

Proof. The compact case is trivial, for Sμ is a closed subset of S.
If S is not compact, we remark that if μ is idempotent on S, its

restriction to its support Sμ is again idempotent. Moreover, Sμ is a
semigroup (1.2) which, being closed, is locally compact, and which clearly
satisfies both (L) and the left cancellation law if S does. The above
results therefore hold when S is replaced by Sμ..

This enables us to find, using (2.3) and (3.1), anαeSμ such that aSμ

is compact. Now aSμ is obviously a semigroup, and hence aSμ is also.
We can now use Numakura's Lemma 2L [3] which states:

Let X be a compact semigroup satisfying the left cancellation
law, and let B be a closed subset of ^. If p e X and pB c B, then
pB = B.

The conditions of this lemma are satisfied if we take X = B = aSμ

and p = ax for any x e Sμ. We deduce that ax>aSμ = aSμ 3 aSμ, whence
by the left cancellation law, x*aSμ ID Sμ. Since both {x} and aSμ are
compact, their product is compact, and so Sμ, being closed, is compact.

3.3 COROLLARY. Sμ-Sμ = Sμ.

Proof. This follows from (1.2) and the fact that the product of two
compact sets is closed.

Being a compact semigroup, Sμ has a minimal (two sided) ideal
(Numakura [3] Theorem 2) and in fact

3.4 PROPOSITION. Under the conditions of (3.2), Sμ is its own
minimal ideal.

The proof follows closely Glicksberg's proof (Theorem 2.2) [2] for
the abelian case.

Proof. Let / denote the minimal ideal of Sμ and suppose Sμ\I φ 0 •
Then first, there exist both ze Sμ and a positive φ e £(S) which

vanishes on 7, for which φz does not vanish on Sμ: for if not, for every
positive φe® vanishing on I and all z e Sμ, φ(zx) = 0 for all x e Sμ, so
ψ(y) — 0 for y — zx e S^ S^ — Sμ; i.e. if φ vanishes on I, it vanishes on
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Sμ, which would imply I = Sμ, a contradiction. For this φ and z,

KΦz) > 0. Now φ\x) — \ φ(xy)dμ(y) clearly vanishes on I. But φf assumes
Js

its supremum at some point a e S and (2.4) on aSμ. ID α/, so there is an
x0 in a I c I for which φf(x0) = sup φ'(x). Hence 0 = φ'(x0) ^ φ\z) =
μ(φz) > 0, which is a contradiction. So Sμ = I.

4.

4.1 THEOREM. A positive idempotent measure on a locally compact
group is the Haar measure of a compact subgroup, and conversely.

Proof. By (3.2), if μ is idempotent, Sμ, is a compact semigroup, and
since it satisfies both cancellation laws, it is a group (Numakura [3],
Theorem 1).

Now, the restriction of μ to Sμ is also idempotent, and so all the
above propositions hold with S replaced by Sμ.. In particular, when Sμ

is a group, (2.4) states merely that μ is left invariant on Sμ, i.e. is its
Haar measure.

The converse is clear.

B The structure of compact kernels.

1. The results of this section were given in a slightly more general
form (see (4) below) by Wallace [9], We give them here in order to
establish our notation, and because Wallace gave no proofs.

The minimal ideal of a compact semigroup is known as its kernel.
We have seen (A3.4) that the support of an idempotent measure is a
compact semigroup which is itself such a kernel, and in order that we
may describe these measures completely, we investigate their structure.

Let S be a compact kernel. Then Numakura [3] has shown that,
if e and / are any idempotents in S, Se satisfies the right cancellation
law and fS the left; eSf is a group; any two such groups are either
identical or disjoint; and S is the union of all such groups. (Lemma 9
and Theorem 3)

Now let g be any idempotent in S, and let e be any idempotent in
Sg. Then if x e Sg, xe2 = xe, whence by the right cancellation law,
xe = x; i.e. e is a right identity for Sg. We immediately deduce that
the set E of idempotents in Sg forms a subsemigroup. Similarly, the
set F of idempotents in gS forms a subsemigroup, each element of which
is a left identity for gS.

2. We write G = gSg and we can then state our algebraic structure
theorem:
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2.1 THEOREM. There is a biunique map S<—>E x G x F which
becomes an algebraic isomorphism when multiplication is defined in
E x G x F according to (2.3) below.

This is a reformulation of Rees [4], Theorem 2.93.

Proof. First, if el9 e2eE and flf f2 e F, exSfx = e2Sf2 implies ex = e2

and Λ = /2; for we have eλSg = exSfiQ = 2̂»S/2g = β2S#; the first of these
includes eλg — ex as an idempotent, the last e2; but since they are both
the same group, there can only be one and so ex — e2. Similarly, fx — f2.

Secondly, every group e'Sf{er, f e S) is identical with a group
eSf(e e E, fe F); for let e = e'xg, f = gyf be the identities of the groups
e'Sg, gSf respectively: then eSf = e'xgSgyf c e'Sf and since therefore
eSf n e'Sf' Φ φ, eSf - e'Sf.

Now, since S = U {e'Sf : e\ feS}= U {βS/ :eeE,feF} every
element α; e S has a unique expression in the form x = exf (e e E, fe F).
Then x = eg x gf' = e gxg f. We write a; = ĝ gr and define our map

2.2 , £<—>(e,f lc,/).

Then ajiflja = eλxj^e2x2f2 = e^gx^-gf&g-gx.g-f,. We write ^/xe2̂  = [Λe2]
and then

2.3 (elf »χ, Λ) (ea, x2, /a) = (eu xλ [/xβ2] ^2, /2)

defines a multiplication in E x G x F which makes (2.2) an isomorphism.

2.4. We notice that [fg] — g>fg*g = # and that [ge] = # for all β e £?,

We have the evident

2.5 COROLLARY. S is the direct product of E, F and G if and only
if [fe] = g for all eeE, fe F.

We denote {[fe]:fe F' c F,eeEf c E} by [FfE% so the condition
reads, [FE] = {#}.

A semigroup is said to be left-simple if Se — S for all idempotents
e e S. In this case, gS = gSg contains only one idempotent g, and so
F = {g}. Then [FE] = [gE] = {g} (2.4) and so (2.5):

2.6 PROPOSITION. A left-simple semigroup S is a direct product
E x G x {g} (which is clearly isomorphic with E x G).

3. We give E, G, and F the topologies induced on them by S, and
then state

3.1 THEOREM. S is homeomorphic with E x G x F under the map
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(2.2).

Proof, (e, x, f) —> exf is continuous by continuity of multiplication
in S.

To prove x —* (e, x, f) is continuous, we show that the maps into
each of the axes are continuous. Continuity of multiplication again ensures
that x —> x = gxg is continuous.

We now show that the projection onto E is continuous. Since gSg
is a compact group, gxg —> {gxgY1 is continuous, and so x-> {gxgY1 is
continuous. Then x —> (x, {gxgY1) of S —> S x gSg with the product
topology is continuous. We use continuity of multiplication in S again
to show that (x, {gxgY1) —> x igxg)"1 = ex-g(gxg)-1 = eg-x-g(gxg)-1 =
e {gxg) {gxgY1 — eg = e is continuous, and we combine these to conclude
that x —+ e of S» —> £7 is continuous. Similarly, S —* JP is continuous, and
the result is proved.

3.2 COROLLARY. E, G, and F are compact.

Proof. They are continuous images of S.

3.3. Since multiplication is continuous in E x G x F and since
(ff, g,f) (e, 0, ̂ ) = (flf, [/β], flf) we have

COROLLARY. The map (/, β) —> [/e] of F x E -+G is continuous.

4. The decomposition of S described in (2) and (3) is known as the
canonical decomposition. If we take gλ and g2 to be any two idempotents
in S, E' to be the set of idempotents in Sgτ and Ff in g2S, and G' =
0i<Ŝ 2 we can show that S is isomorphic and homeomorphic with Er xGf xF'
using the same proofs, though the details are more complicated. The
results have the same form excepting (2.4) where all simplicity is lost.
(See Wallace [9]).

5. We now show that (3.2), (3.3) and (2.3) are sufficient to character-
ize compact kernels.

5.1 THEOREM. Let E and F be any two compact sets, and let G be
any compact group; let (/, e) —* [fe] be any continuous map of F x E—*G
{there exist at least the trivial ones, [fe] = x for all (/, e) and some
fixed x e G) and let a product be defined in Ex G x F by (2.3). Then
E x G x F is a compact kernel.

Proof. E x G x F is obviously compact and a semigroup, and
multiplication is easily seen to be continuous.
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It remains to show that it is a kernel, i.e. has no proper ideals.
Now (Numakura [3] Lemma 5) a compact semigroup S is a kernel if and
only if SxS = S for all xeS. We have here, for each (β, x, f) e (E, G, F),

(E,G,F)(e,x, f) (E, G, F) = {E,G- [Fe] χ,f) (E, G, F)

whence the result.

6. Let S' be a subkernel (a subsemigroup which is its own kernel)
of S. If we take an idempotent g e S' and use it to form a canonical
decomposition of S as E x G x F we simultaneously decompose S'
canonically as E' x G' x F' where Ef c E, Fr c F and G' is a compact
subgroup of G. Since S' is a semigroup we have (g, g, Fr) (Ef, g, g) =
(g, [F'E'l g) c S', whence [i7 '^'] c G'.

Conversely, if S = ExGxF and ί£" and F' are compact subsets
of E and JP respectively and if Gf is a compact subgroup of G for which
[FΈf] c G', E' xGr x F' is a compact subkernel of S.

C Idempotent measures on compact kernels*

1. According to (A3.4) an idempotent measure on a semigroup of
the types considered in §A has as its support a compact kernel. To
describe all idempotent measures on such semigroups we must be able
to state which kernels can act as supports, and to give the structure of
an idempotent on such a kernel. To these ends (and, in particular, the
latter) we investigate the idempotent measures on a general kernel S.

In this section, μ will denote a positive, idempotent measure on S.
Then the restriction of μ to Sμ (which we again denote by μ) is also
idempotent. Sμ is itself a kernel (A3.4) and so may be expressed in
canonical form as Sμ = 2?μ x Gμ x Fμ (see B3); g will denote the identity
of Gμ. Then

1.1 LEMMA. Let μ be idempotent on S, φe r^(Sμ) and φ >̂ 0. Then
Ψf{eQ, x,f) is a constant for each eoeE^. (φr is defined in (A2.3).)

Proof. Let e0 e E. Take some xl9 x2 e Gμ, fl9 f2 e Fμ.. Then since φr

is continuous, given ε > 0, there is a neighborhood Eo of e0 in Eμ such that

and I φ'(e0, x2, f2) - φ'(e, x2, /2) | < e/2 (i)

for all eeE0.
Now let χE be some continuous function on Eμ. satisfying χE(e0) = 1,

0 ^ χE ^ 1, χE(e) = 0 (β 0 £Ό). Then χ(β, α?, / ) Ξ χE(e) for all β, a?, / is a
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continuous function on Sμ, and moreover

I'(e, x,f)=\ χ(e, x[fe>]x', f) d,{e', x\ / ' )

- ί XE(e) dμ{er, x',f) = χB(e) = χ(e, xj) .

Write ψ = kχ + ψ where the [constant k is chosen so large that
ψf = kχ' + φf assumes its supremum on Eo x Gμ x FM say at (ef, xr>f).
Then by (A2.4) we have for all (e, x, / ) e SM

ψ\e',x',f') = ψ'(e',xΊf'e\xtf).

If we take e = g, x — ίt;'"1^, / = / c for c = 1, 2 we get

f '(e', »i, Λ) - f '(e', a?2, /2) .

Now also χ'(β', xl9 /x) = χ'(e', a?2, f2) whence we deduce

<P'(e',xlff1) = φ'(e',x2,f2).

But ef G £70, and so using inequalities (i),

'(e0, xlff1) - φ'(e0, x29f2)\ < e ,

and the result follows since ε is arbitrary.
We shall require in particular the formula φ'(e0, g, g) — φ'(e0, x, f)

for all xeGμ, feFμ for each eoe£7μ, or in full

1.2. [ <P{eo,x',f')dμ{e',x',f')

= \ <P(ίeOfx,f)(e',x',f'))dμ{e',x',f') .

Since a compact semigroup Sμ satisfies [R] as well as [L] (see A2),
a symmetric result also holds:

1.3. \ φ(e',x',fo)dμ(e',xf,ff)

= \ φ{{ef, x\ f) (e, x, Λ)) dμ(e', x\ f) ,

for all e e Eμ, xeGμ and for each f0 e Eμ.

2. We now simultaneously express S = E x G x F and Sμ. —
Eμ x Gμ x Fμ in canonical form using the idempotent geSμ, (B6). We
are going to express μ in terms of its projections on E, G, and F:

2.1 DEFINITIONS. Let φE(e) be any continuous function on E. Then
Φ(β, x9f) = φE{e) for all a?,/is a continuous function on S. The measure
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μE on E defined by μE{φE) — μ{ψ) is said to be the projection of μ on
E. It is clear that its support is Eμ.

Similar definitions give μG and μF.

2.2 PROPOSITION. μθ is the Haar measure of G>.

Proof. Let φθ(x) be any positive continuous function on Gμ, and
define φ on £L by φ{e, x,f) = φJx). Then if we take / to be g in (1.2)

f Γ
we get I φG(x')dμσ(x') = \ φ{xx')dμQ{xr) for all x e G>, i.e. μθ is left
invariant.

Since all subgroups gSμg are isomorphic, the μθ are isomorphic measures
for different canonical decompositions.

2.3 PROPOSITION, μ = μE x μσ x μF.

Proof. Let φ be any positive continuous function on S; then

μ(φ) = μ*μ*μ(φ)

= \ \ \ ^((ei> χi> /i) (β2, αa, Λ) (β3, »3, /a)) dμλdμ2dμ,

(where dμc means dμ{ecy xe,fc), c = 1, 2, 3)

= \ \ \ ^(( β ^ ̂ , /2) (e8, a?a, /s)) dμλdμ$μz

(using (1.2) on the integration w.r.t. β2)

= \ \ \ <P(eu α?2, f*)dμ1dμ2dμz

(using (1.3) on the integration w.r.t. μ2)

= \\\ Φ(e,%J)dμE{e)dμΘ{g)dμF{f)
JEJGJF

= μE x μG x /^(φ)

We notice that for a given decomposition S = E x G x F, μE, μ&

and /Jίjpr are unique.

All measures of this form are idempotent:

2.4 PROPOSITION. Let μE and μF be any positive normalized measures
with supports Eμc E, Fμ c F respectively, and let μσ be the Haar
measure of any compact subgroup Gμ. of G for which [FμEμ\ c Gμ. Then
μE x μG x μF is idempotent.

The proof is straightforward; we remark only that [F^Eμ] c Gμ is
necessary for Eμ x G^ x Fμ to be a semigroup.

3. If we identify the sets E, G, F with the subsets {E, g, g),
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(ΰ, G, 9), id, g, F) of S respectively, we may regard the measures μEt

μΘ, μF as measures on S with supports in those subsets, and as such
they have a convolution product:

3.1 PROPOSITION, μ = μE*μG*μF.

Proof. Let φ be positive and continuous on S. Then, from (2.3)

K<P)= t t t ψ{elfx29fξi)dμE(e1)dμβ(xi)dμr(fli)
JEJGJF

= \ \ \ Φitei, g> g) (Θ> χ2> g) (g, g, A))
J ( E 0 . 9 ) J ( g . G . g ) J ί g . g . F )

-dμE(elf gy g) dμΘ(g, x2 g) dμF{gy g,f3)

= I \ \ φ((eu »!,/i)(e2, »2,/2)(e3, x*, A))dμE(eu xufλ)
JSJSJS

-dμG(e2, x2ff2) dμF(e3, a?3,/3)
= μE*μG*μF(φ) .

4. We recall (B2.6) that a left-simple kernel is the direct product
of its subsemigroup of idempotents E and any of its maximal subgroups
G. An idempotent μ whose support is such a kernel is of the form
μE x f*& = Z^*/** f r o n * (2) and (3) above. We also have

4.1 THEOREM. On a left-simple kernel, idempotent measures are
characterized by being right invariant on their supports.

Proof. We remark that if S is left-simple, so is the subkernel S«.
We find that (1.3) for left-simple kernels reads

ί ψ{e\ xf) dμ(e', xf) = \ φ((e', x') (e, x)) dμ{e', x')

for all (e, x) e Sμ, i.e. μ is right invariant.
Conversely, it is trivial that a normalized measure which is right

invariant on its support, is idempotent.
Since every semigroup of the form E x G is left-simple, we have

4.2 COROLLARY. Let S — ExGxFbea compact kernel; let μE be
any normalized measure on E, and let μG be the Haar measure of some
subgroup of G. Then μE*μG is right invariant on its support.

We note that there are corresponding results for right-simple kernels.

5. Although in general positive idempotent measures are not
invariant, there is still a close connection:
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5.1 THEOREM. A measure μ is ίdempotent if and only if it is the
convolution product of a right invariant measure on any minimal left
ideal of its support, and a left invariant measure on any minimal
right ideal of its support.

Proof. Let Sμ be a compact kernel; then any minimal left ideal of
Sμ. is of the form Sμ e for some idempotent eeSμ, and this ideal is a
left-simple semigroup. It intersects the right ideal fSμ in the group
fSμ.e, which contains one idempotent, say g. Then Sμ g = Sμ e; gSμg =
fSμe; gSμ. = fSμ, and when we form the canonical decomposition with
respect to g, Sμ — EμxG*x Fμ. We have also Sμg — Eμ x Gμ x [g] and
QSμ = {g} x Gμ x Fμ (These results follow easily from §B).

Now if μ is idempotent μ = μE*μQ*μF\ f*& being the Haar measure
of a compact group is idempotent and so μ — (μE*μG)*(μG*μF). Then
(μE*μG) has support Eμ x Gμ x {g} = Sμg and is right invariant from (4),
and similarly for (μG*μF).

Conversely, if there are right and left invariant measures with
supports Sμg and gSμ respectively, they must be of the forms (μE*μθ)
and (μG*μF) by (4) and then μ = (μE*μσ)*(μβ*μF) = PB*^*^ is idempotent
with support Sμ by (2.4).

5.2 PROPOSITION. The invariant measure on the ideal Sμg corre-
sponding to the idempotent μ, is μ*εg where ε̂  is the unit point mass
at g.

Proof. Canonically decompose Sμ with respect to g. Then μ*εg =
μE*μG*μF*sg. It is straightforward to show both that μF*εg = εg, and that
μG*εg — μQ, so that μ*εg — μE*μG, which was to be shown.

6.

6.1 DEFINITION. A nonzero idempotent e is said to be primitive if
the relations ef — fe= f for some nonzero idempotent /, imply e—f.

In order to avoid anomalies arising from the fact that if the minimal
ideal of S is a compact group its Haar measure is a zero in @(S) and
therefore not primitive, when we say that μ is primitive we shall mean
primitive in @(S) with zero adjoined.

6.2 PROPOSITION, μ is primitive idempotent on S = E x G x F if
and only if μβ is the Haar measure of G.

Proof. By the remark which concludes (2.2) if the result holds for
one decomposition, it holds for all.

Let μ be any idempotent on S and let S = E x G x F be a canonical
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decomposition of S for which μ = μE x μG x μF. Let v — vE x vG x vF be
any idempotent with pβ the Haar measure of G, (such measures certainly
exist). Then

μ*v = μE*μG*μF*vE*vG*vF = μE*vG*vF

since (Al.l) Sμj,*Vj& = SμF-SVE c (g, g, F)(£ r, g, g) c G, whence μQ*{μF*vE)
has support in G and so is annihilated by vG. Similarly, v*μ =' vE*vG*μF.
From these relations and the definition the result follows.

6.3 COROLLARY, μ is primitive on Sμ

Proof. Immediate from the proposition and (2.2)

6.4 PROPOSITION. On a left-simple semigroup S, an idempotent
measure μ is primitive if and only if it is right invariant.

The point of this proposition is that μ is right invariant on the whole
of S and not just on Sμ, as in (4.1).

Proof. If μ is right invariant, μG must be right invariant on the
whole of G, and so must be the Haar measure of G.

Conversely, we have, for (e, x)e S = E x G,

φ((e', x') (e, x)) dμ(ef, xf) = φ((e', x') (e, x)) dμ{e\ x')

φ(e\x'x)dμE{e')dμQ{x')

= \φ(e',x')dμ(e',x')

since, μ being primitive, μG is the Haar measure of G (6.2).
As a corollary, we can get a characterization of primitive idempotents

on any kernel corresponding to (5.1).
By slightly altering the proof of (6.4) to conform more nearly to the

proof of Schwarz's Theorem 5.1 [7], we find we have generalized the
whole of his §5; in particular, we have found (in the form μE x μG = μE*μG

where μQ is the Haar measure of G) all invariant measures on the
semigroups he considers.

D On compact semigroups

This section improves and generalizes from the finite to the compact
case many of the results of Schwarz [8],

1. If S is compact, the set @i(S) of positive measures of total mass
1, becomes a compact semigroup when it is given the weak* topology.
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It therefore has a minimal ideal, k say, and if μek, S^c K, the minimal
ideal of S. This follows from the facts that if v is arbitrary and μ has
its support in K, Sv*μ — Sv Sμ c SV K c K, and similarly Sμ*v a K. From
this we also deduce that the set 77 of primitive idempotents in @i(S) is
just the set of idempotents primitive on K.

1.1 LEMMA. Let π e 77, y e 6 1 ( Then π*v*π — π.

Proof. π*v has its support in K. We decompose K canonically,
and then

= (πE*πθ*πF)*(π*v)*(πE*πG*πF) .

But now 7rjF.*(7r*v)*τrί. has support in F K E' = G and so is annihilated
by TΓs, whence the result.

1.2 PROPOSITION. y*ττ and 7r*y are primitive idempotents.

Proof. We have immediately from (1.1) that v*π and π*v are
idempotent. Now suppose there is an idempotent such that (i) (y*7r)*μ =
μ, and (ii) /^*(y*τr) = μ. Then, from (ii), π*μ = π*(μ*v)*π = π by (1.1),
whence in (i), v*π = /ι so that y*τr is primitive by definition (C6.1).
Similarly 7Γ*v is primitive.

1.3 THEOREM. k= Π.

Proof. By (1.2) Π is an ideal. By (1.1) /7*π*/7 ZD 77 for each
τre77, and so 77 has no proper sub-ideals.
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