
ON TWO TAUBERIAN REMAINDER THEOREMS

MAGNUS LINDBERG

1. Introduction. In this paper we are going to treat two different
tauberian problems by a common method. The first of these problems
originates from a question raised by P. Erdos [6] and the second was
suggested by F. Brownell [5]. Our method gives in both cases slightly
better results than those hitherto known.

In connection with his work on the Prime-number-theorem Erdos
came to consider the following problem:

If A is a nondecreasing function, such that

(1.1) [Ά(x - t)dA(t) = — + O(x) , x -> ex. ,
Jo 2

what can be said about the order of magnitude of a(x) — A(x) — xΊ
Erdos proved t h a t a(x) = o(x) and constructed a counter example

showing t h a t (1.1) couldn't give a(x) = o(V x).
Later on Avakumovic [2] gave the result a(x) = O(xvί~1+S) for every

ε > 0 .
In 1956 Bojanic, J u r k a t and Peyerimhoff [4] improved this to a(x) =

O(#2/3(log x)1'3), this being the best result known till now.
Here we will study the more general case, when the remainder in

(1.1) is 0 ( 0 , 0 ^ q < 2. Assuming this our result is a(x) = 0(x{q+1)'5).
Thus we are able to remove the logarithm in the last estimate.

The second of our problems was presented as a research problem
in the Bulletin of the American Mathematical Society [5] by F. Brownell:

" L e t F(x) be a real valued function of real x ^ 0 which is of

bounded variation over every finite interval [0, N], which is continuous

a t x = 0 with F(0) = 0, and which has \ e-tx\dF(x)\ < +oo for real
Jo

t > 0. With s = t + iv, t and v real, define g by the Lebesque-Stieltjes

integral g(s) = \ e~sxdF(x), analytic in the region t > 0. Let F satisfy
Jo

the conditions that
(1.2) g(t) = b + 0(e~c/t) , t->0 +
for some real constants c > 0 and 6, and that

(1.3) F{x) + Kx"

be strictly increasing over x ^ 1 for some real constants K > 0 and
v ^ 1.

Is it true as conjectured, that
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(1.5) F(x) = o(x"-112)

as x —> oo if in addition to (1.2) and (1.3) it is also assumed that g(iv) =
limί_o+ β(t + iv) exists finite for all v Φ 0, that the resulting g(s) is
continuous in t ^ 0 and s Φ 0, and that over all such s

(1.4) |ίjr(s)| ^Mx\s\'^ + M2

for some finite constants Mx and M2 and 37 > 0?"
That

(1.6) F(x) = O(^-1/2)

can be proved even if assumption (1.4) is excluded has been shown by
several authors. In the case v = 1, this result was obtained by
Avakumovic [1] and the general case has been treated by Ganelius [9]
and Korevaar [11], basing their works on the results of Freud [7, 8]
(cf. Ganelius [10]).

(sin V t ) V~x dt (Korevaar [11]), for integer
0

v satisfies (1.2), (1.3) and (1.6) but not (1.5), thus proving (1.6) to be
the best possible under (1.2) and (1.3) only. But the example also
violates (1.4).

In this paper we show that (1.5) can be obtained even under the
following additional assumption:

(1.4)' Ig( s ) \<M 1 \ s | 1 + 2 v + » + M2, n Re s > 0

and for some finite constants Ml9 M2 and rj > 0. It is also sufficient if
v > 1/2. This is evidently a weaker a assumption than that suggested
by Brownell.

The common treatment of these problems was suggested to me by
Professor T. Ganelius. I would like to thank him for his help and
valuable advice.

2. A lemma on Laplace transforms^ In order to sum up the common
properties of the proofs of the two theorems we state the following
lemma:

LEMMA. Let F be a real valued function on [0, 00), such that
F(x) + Kx* is nondecreasing over x > x0 for some positive constants K
and a:

Define the function f by

(2.1) f(s) - Γ e~sx F(x)dx
Jo

where the integral is supposed to be absolutely convergent for Re s =
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t >0.

Then if

(2.2) (+~ I f(t + iv) I v-'ω-1 sm\ωv)dv = O ( ί " ) ,

t —> 0 + , where ω = t("-1+p)l2 = V and <x + β + l>Oit follows that

(2.3) F(x) = OW-e-v'2) , x — + oo .

Proof. Let Gω be the function defined by

_ (1 - (2ft))-11 a; I if \x\ < 2ω
G*ix> = \0 if \χ\>2ω.

The Fourier transform of Gω is the function Ha, defined by HJy) =
and ParsevaΓs formula gives

(27Γ)-1 [*"/(* + iv)eiTυHω(v)dv

J T+2ω
e-txF(x) (1 - (2ft))-11 71 - x I

Γ-2ω

Taking the absolute value of both sides we get

CT+2ω

e-"F(x)(1 - (2ft))- 1 \ T - x \ ) d x
(2.4) ' JT~2°>

Γ+o°
= ^ 1 \ Iffy + i/y)|ty~1'V~2sin2(ft)'y) cZv = o(ί^) .

If we in formula (2.4) put T = t~x + 2ty we may conclude, F(x) +
Kx« being nondecreasing, that f or T - 2P ̂  τ ^ T + 2ίγ

F(τ) ^ Fit" 1 ) - ^((ί- 1 + At*)" - ί - )

= i ^ r 1 ) - 4 α jfiΓί^r1 + 4^ίγ)α-1 ^ Fit-1) - K&-"*1 .

Suppose that F ( r x ) ̂  0. By aid of (2.5) we infer from (2.4) that

KJP ̂  ( ^ e-t9F(x)(l - i2P)-'\ T-x\)dx

^ Γ +U e-^iFit'1) - Kp-^il - i2P)~1\T-x\)dx

Consequently i ^ " 1 ) ̂  K3t
{β-«+1)l2.

If ^( ί" 1 ) < 0 we can in the same way show that Fit'1) ^
-if4ί

( β-"+ 1 ) / 2, choosing T = t-1 - 2t\ Hence our lemma is proved.

3* On a nonlinear Tauberian theorem* We shall now apply our
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lemma to problem of Erdos, mentioned in the introduction.

THEOREM 1. Let A be a nondecreasing function, defined on [0, oo)
and such that

(3.1) h(x) = \XA(x - ί) dA(t) = — + 0(x«) , x -> + co
Jo 2

where q is some real number, 0 ^ q < 2.

(3.2) A(a>) = x + O(x(«+1)/3) , α? — + OD .

Proof. We are going to prove the theorem in the case when A is
a normalized function, i.e. A(0) = 0 and A(x) = 2-1(A(# - 0) + A(# + 0))
for # > 0. Owing to the nondecreasing of A this is not a restriction,
since formula (3.2) will be correct for any nondecreasing function A, if
it is so for the corresponding normalized function. We also assume the
function h to be normalized, because normalization is possible at the
countable set of points, where it may not be defined (see [12] p. 84).

Our problem is now reduced to getting an estimate of the type
(2.2). For this purpose we use some of the results of Bojanic, Jurkat
and Peyerimhoff [4].

Since

A2(—) = A(—] P dA(u) ^ Γ/2 A(x - u)dA(u)

^ \*A(x- u)dA(u) = 0(x2) ,
Jo

we get A(x) = O(x), which implies that the integral (s = t + iv)

(3.3) f(s) = Γ e~sudA(u)
Jo

is absolutely convergent for t > 0, and that

(3.4) f\s) = Γ e~sudh(u) = s [°° e~suh(u) du fort>0 ([12] p. 91) .
Jo Jo

According to the assumptions on h, we have for the function g,
defined by g(x) = h(x) — x2l2, the estimate

(3.5) \g(x)\ £ Kλ{xa + 1) for some Kλ and every x ^ 0 .

Putting the function g into (3.4) we get

(3.6) /2(s) = s[°e-
su(— + g(u))du = s~2 + s[°e~sug{u)du .

Jo \ 2 / Jo
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We now restrict t to the interval (0,1) and take the absolute of (3.6)

(3.7) |/2(s) - s"2 | ̂  \s\ Γ KAu* + 1) e~tudu
Jo

= K.Γiq + 1) |sI i-<9+1) + K,\s\ r 1 ^ K2\s\ «-<«+» .

This formula may also be expressed

(3.8) f\s) = s-\l + r^s) s3 r ( 3 + 1 ) ) , where | rx(s) | ^ K2 .

If |s | 3ί- ( 3 + 1 ) < (2K,)-1 we conclude from (3.8) that

f(s) = 8-χi + r,(s) s3 ί-<9+1)) , where |r,(β)| ^ iΓ2 .

Hence

If |s|3ί-< 3 + 1 ) ^ (2^ ϊ)- 1 we get from (3.8) the estimate |/(β) | ^

I s I"1 (1 + I s |3 i-(9+1) iί,)1'2 ^ τ/3^21 s |1/2 ί-(«+1)/2 and

(3.10) I f(8) - s-11 ^ I s |

We now define a new function a by

(A(tt) - u it u^O

(0 if w < 0
a(u) =

and a function L by

L(s) = s-'ifis) - s-1) = ί°° e-su(A(u) - u)du for t > 0 .
Jo

The estimates (3.9) and (3.10) give us

(3.11) \L(s)\ £ K3 \s\ t-{«+1) and \L(s)\ ^ Kz\s\~1/2 t-{q+1)l2 .

These are the estimates corresponding to those given by Bojanic, Jurkat
and Peyerimhoff in [4].

We are now going to use our lemma with a as the function Ft and
L as the function / in formula (2.1). The number a is 1 and we need
an estimate of the type (2.2):

(3.12) f+~ I L(t + iv) I o r 1 v~2 sin2(
J-oo

S t-(α+i)/3

I s |2 t-{q+1) ωdv + 2KS

0

dv

d

= 2K3 ω t1-
Jo

(1 + du
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+ 2K3 ω
1 r2" («/2) [+~ u-\l + O~1 / 4 du

^ 2K3(\/Ίΐ t1-* ω + t1'* ti2q~i)l3 ω + (2/3) a>-1

g 2K3(St-{q+1)ls ω + ω-1

for

With α = 1, β = -(2/3) (g + 1) and a + /3 - (1/3) (1 - 2g) > - 1 we
apply the lemma and get (3.2):

a(x) = 0

Putting q = 1 we obtain that &(#) = cc2/2 + 0(x) implies A(x) =
x + O(α2 / 3).

As an example that the conclusion A(x) = x + o(xql2) is false, we give

lθw if 10w - 4"110%9/2 < a? < 10" + 4"110ws/2 , n = 1, 2, . .

x everywhere else

REMARK. If the assumption (3.1) is formulated

h(x) = x2p Γ*(p + 1) Γ~\2p + 1) + O(&) (p > 0, 0 ^ g < 2p)

we can with the same method as above prove

A(x) = x» + O(xa) , where d = (4p2 + p + pg + 4?)/(6j> + 9) , x — oo .

P = ί gives for instance d = 5(p2 + p)l(3(2p + 3)) — (5/6)p as p —> oo.

4. On Brownell's conjecture.

THEOREM 2. Lei F be a real valued function on [0, oo), which is
of bounded variation over every finite interval [0, N], which is continuous

S oo

e~tx I dF(x) I < + oo for real
0

t > 0. Tfϊί/2, t α^d v reαϊ α^cί s = t + iv we define g by the Lesbesques-
e~sx dF{x), analytic in the region t > 0. Let

0

JP satisfy the three conditions that
(4.1) g(t) = b + O(e~c/t), ί —>0 + , /or some reαϊ constants c > 0 α^ώ 6,
(4.2) .F(α?) + iΓ^05 is nondecreasing over x ^ 1 /or some reαί constants

K > 0 cmd α > 1/2,
(4.3) |ff(β)| ^ Mx 13 |i-2»+^ + iif2 /or ί > 0 and some reaί constants Ml9 M2

and 1 > 77 > 0, η <a — 1/2.
a s x —> + 00
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4.4) F(x) = o{x«~112), and actually is 0{"-ll2~s) for some ε > 0.

Proof. Define g(s) = g(s) - b, so g(t) = O(6rc/t) in (4.1). Also <?(s) =

ί" e~sxdF(x) -b = s ί°° F ( φ - S ί B ώ - 6 = s Γ [F(#) - 6] e~sa; da?.

From (4.3) we get \g(s)\ ^ JŜ  Js|1-3Λ+1» if | s | ^ 2 and \g(s)\ ^ Kx if
I s I Ξ> 1 for some real constant Klm

We now define a function fe by Ẑ (s) = Kf1 s2"-1"71 g(s).
This function evidently satisfies the following inequalities:

(4.5) \h(s)\ ^ 1 if s | ^ 2 and \h(s)\ ^ I s ^ - 1 ^ if | s | ^ 1 .

In order to use our lemma, our problem is now to estimate the integral

(4.6) ί+~ (g(t + iv) I [ t + ίv I"1 ω~x v~2 sin2(ωt;) dv

= κA+°° \h(t + iv)\\t + ivl7*-2* a)-1 V2 sin2(ωv) dv .
J —oo

The following notations will be used

δ = ηl(2(2a + 1)) , ε - Sηβ .

The number ω will be r 1 / 2 + ε = ίγ.

Inserting the estimates for h on the right side of (4.6) we obtain

(4.7) ί+" I g(t + iv) I 11 + iv I"1 ω~ι v~2 sin2(ωv) dv
J-oo

^ 2iΓx ί
+°° v~3 ω-1 dv + 2 ^ Γ vη-2« ω-1 v~2 dv

Jl Jίl/2+δ

S jl/2+8

= O(tlί2-*)

where

S
fl'2 + δ

i / 2 + δω|fe(ί + ίv)\ tη-2(* dv

To get a suitable bound for It we have to improve the estimate
\h(s)\ ^ 1 for \s\ ^ 2 by aid of (4.1). We apply a theorem of Milloux's
([3] p. 134-137) stating that if f(ζ) is regular in \ζ\ < 1 and |/(?) | ^ 1
there and if \f(y)\ ^ m < 1 for real /̂, O g i / < 1 , then the estimate

is valid in the unit circle.
Let us now consider the circle with radius 1 and centre z = 1. In
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this circle \h(z)\^l and \h(u)\ = Kx M 1 — 1 - ' \g(u)\ ^ K

real u, 0 < u g t.
We now map this circle onto the unit circle by w(z) =

(z - t)l(z(t - 1) —,t). Then the line Im z = 0, 0 < Re z ^ t is mapped
on Im w = 0, 0 ̂  2?e w < 1 and the line Re z = £ is mapped on a circle
with diameter from w — — (1 — ί)" 1 to w — 0.

In order to use the theorem of Milloux's mentioned above for f(w(z)) =
/&(#) we have to estimate

min (1 -\w(t + iv)\) = l-\ w(t + i t l M ) \
/ + δ

((t2 - 2tf + ((t -

(t - 1)2)1/2 - l)/((£3/2-δ - 2ί1/2~δ)2 + (t -

= (2ί1"2 δ + O(ί))/(1 + Oίί1"2 3)) - 2ί1~2δ + O(ί) .

Thus we are now able to estimate the integral It as

S
fl/2+δ

(t-ll2+B) \K<> t2"-1'11

 e-
clψl2){2tl~2δ+oit)) tη-2" dv

-ίl/2+5

- 0(1) as ί -> 0+ .

Introducing this estimate in (4.7) we get, since 2ε < α,

° \S(t + iv)\\t + iv^1 ω-1 v~2$m\ωv) dv = O(t-«+2s) .

Returning to the definition of g(s)> we finally apply the lemma with
α, β = -a + 2ε, 7 = (α + /5 - l)/2 = 6 — 1/2 and conclude that

F(x) = O(ccα-1/2-ε) - O(xα-1/2) ,

and the proof is finished.
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