TORSION-FREE MODULES OVER $K[x, y]$

Stephen U. Chase

1. Introduction. Let $R=K[x, y]$ be the ring of polynomials in two variables x and y over a field K. In this note we shall consider the following question: What conditions must be satisfied by two torsionfree R-modules ${ }^{1} A$ and B in order that there exist a third R-module C such that $A \oplus C \approx B \oplus C$? Our principal result is the following theorem.

Theorem. The following statements are equivalent:
(a) There exists an R-module C (not necessarily torsion-free) such that $A \oplus C \approx B \oplus C$.
(b) $A \oplus R \approx B \oplus R$.
(c) For any maximal ideal M in $R, A_{M} \approx B_{M}$ as $R_{M^{\prime}}$-modules.
(d) For any maximal ideal M in $R, \bar{A}_{M} \approx \bar{B}_{m}$ as \bar{R}_{m}-modules.

In (c) and (d) above, R_{M} is the ring of quotients of R with respect to the maximal ideal M, \bar{R}_{M} is the completion of the local ring R_{μ}, and A_{M}, \bar{A}_{M} are the R_{k} and \bar{R}_{μ}-modules, respectively, constructed from A in the standard way. We shall adhere to this notation throughout the paper.

It is natural to ask whether the conditions of the above theorem imply that $A \approx B$, as is trivially the case for the ring of polynomials in one variable. It is perhaps curious that the answer here depends upon the field K. We show that, if K is algebraicly closed of characteristic zero, then A and B satisfy conditions (a) - (d) above if and only if $A \approx B$. However, we provide an example to show that this is not the case if K is the real number field.

The proofs of the preceding statements are based primarily upon the theorem of Seshadri [6] that projective R-modules are free, together with some results of Auslander-Buchsbaum-Goldman ([1], [2]) on duality of modules over commutative Noetherian domains. These will be explained in the next section.
2. Some remarks on duality. Throughout this section R may be any commutative Noetherian normal domain. If A is an R-module, we define $A^{*}=\operatorname{Hom}_{R}(A, R) ; A^{*}$ will be called the dual of A. If B is a second R-module and $f: A \rightarrow B$ is a homomorphism, we shall denote by f^{*} the induced homomorphism of B^{*} into A^{*}. For the basic properties

[^0]of this functor we refer the reader to [4], p. 476. We shall denote the natural mapping of $A^{* *}$ by i_{A}. If A is torsion-free, then i_{A} is a monomorphism. In this case we shall consistently identify A with its image in $A^{* *}$. A will be called reflexive in case $A=A^{* *}$. It is not hard to show that every dual is reflexive; this follows essentially from the fact that, if A is torsion-free, then A and A^{*} have the same rank.

The following proposition is essentially due to Auslander-BuchsbaumGoldman ([1], Proposition 3.4, p. 758.)

Proposition 2.1. Let A, B be torsion-free R-modules with the same rank, and assume $A \subseteq A^{* *} \subseteq B, A \neq B$. Let I be the annihilator of B / A (note that $I \neq 0$, since A and B have the same rank.) Then
(a) If $A^{* *}=B, \operatorname{rank}(I)>1$.
(b) If $A^{* *} \neq B, \operatorname{rank}(I)=1$.

Proof. Assume $\operatorname{rank}(I)=1$, in which case there exists a prime ideal P in R of rank one such that $I \subseteq P$. Then $A_{P} \varsubsetneqq B_{P}$. Since R is normal and $\operatorname{rank}(P)=1, R_{P}$ is a Dedekind ring. Then A_{P}, being a torsion-free R_{P}-module, is projective, and therefore trivially reflexive. It then follows from an easy localization argument that $\left(A^{* *}\right)_{P}=$ $\left(A_{P}\right)^{* *}=A_{P} \varsubsetneqq B_{P}$, and therefore $A^{* *} \varsubsetneqq B$. Hence, if $A^{* *}=B$, then rank $(I)>1$, completing the proof of (a).

Suppose now that $A^{* *} \neq B$, and let J be the annihilator of $B / A^{* *}$. We may then apply Proposition 3.4 of [1] (p. 758) to conclude that $\operatorname{rank}(J)=1$. Since $0 \varsubsetneqq I \subseteq J$, it follows that $\operatorname{rank}(I)=1$, completing the proof of (b).

Corollary. Let B be a reflexive R-module, and A_{1}, A_{2} be submodules of B with same rank as B. Let I_{1} and I_{2} be the annihilators of B / A_{1} and B / A_{2}, respectively. If the ranks of both ideals are greater than one, then any isomorphism between A_{1} and A_{2} can be extended to an automorphism of B.

Proof. Since B is reflexive, we have that $A_{1} \subseteq A_{1}{ }^{* *} \subseteq B, A_{2} \subseteq A_{2}{ }^{* *} \subseteq B$. But since $\operatorname{rank}\left(I_{1}\right)>1$, we obtain from Proposition 2.1 that $A_{1}{ }^{* *}=B$, and similarly $A_{2}{ }^{* *}=B$. Hence, if $\theta_{1}: A_{1} \rightarrow A_{2}$ is an isomorphism, then $\theta_{1}^{* *}$ is an endomorphism of B. Let $\theta_{2}=\theta_{1}{ }^{-1}$; then $\theta_{2}^{* *}$ is likewise an endomorphism of B. Also, $\theta_{2}^{* *} \theta_{1}^{* *}=\left(\theta_{2} \theta_{1}\right)^{* *}$ induces the identity automorphism on A_{1}. Since B is torsion-free and B / A_{1} is a torsion module, it then follows trivially that $\theta_{2}^{* *} \theta_{1}^{* *}$ is the identity on all of B. So is $\theta_{1}^{* *} \theta_{2}^{* *}$, by similar reasoning. Therefore $\theta_{1}^{* *}$ is the desired extension of θ_{1} to an automorphism of B.
3. Torsion-free modules over regular rings of dimension two. We shall begin this section with a few preliminary results which will prepare the ground for the proof of the theorem mentioned in the introduction.

A square matrix over a ring R will be called a transvection if its diagonal entries are all "ones" and there is at most one nonzero entry off the diagonal.

Lemma 3.1. Let $R=R_{1} \oplus \cdots \oplus R_{r}$, where each R_{i} is a local ring. Then any unimodular matrix over R is a product of transvections.

Proof. Let $A=\left(a_{i j}\right)$ be a unimodular n-by- n matrix over R. We first consider the special case $r=1$; i.e., R is a local ring. Then every row and column of A must contain a unit. From this we see easily that A may be reduced to a diagonal matrix by means of standard row and column operations which are equivalent to multiplication by transvections. That is, $A=T D U$, where T, U are products of transvections and-

$$
D=\left(\begin{array}{cc}
d_{1} & \\
& 0 \\
& \\
0 & \\
0 & \\
d_{n}
\end{array}\right) \quad d_{i} \in R \quad d_{1} \cdots d_{n}=1
$$

We may then apply a well-known trick and write-

$$
D=\left(\begin{array}{llll}
d_{1} & & & 0 \\
& d_{1}^{-1} & & \\
& & 1 & \\
& & & . \\
0 & & & .
\end{array}\right)\left(\begin{array}{llll}
1 & & & \\
& d_{1} d_{2} & & \\
& & \left(d_{1} d_{2}\right)^{-1} & \\
& & & 1 \\
0 & & & .
\end{array}\right) \cdots\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & & \\
& & d_{1} \cdots & \cdots \\
0 & & & d_{n-1} \\
& & & \\
& &
\end{array}\right)
$$

But it is trivial to verify that each of the factors of the above expression is a product of transvections. Thus A is a product of transvections, and the lemma is true for $r=1$.

Proceed by induction on r; assume $r>1$ and the lemma is true for $k>r$. Let $R_{0}=R_{1} \oplus \cdots \oplus R_{r-1}$; then $R=R_{0} \oplus R_{r}$. Let e_{0}, e_{r} be the units of $R_{0} R_{r}$, respectively; then $e_{0}+e_{r}=1$. Also $A=A_{0}+A_{r}$, where A_{0}, A_{r} are unimodular matrices over R_{0}, R_{r}, respectively. We have from the induction assumption that $A_{0}=\prod_{j=1}^{m} T_{0}^{(j)}$ and $A_{r}=\prod_{j=1}^{m} T_{r}^{(j)}$, where $T_{0}^{(j)}$ and $T_{r}^{(j)}$ are transvections over R_{0} and R_{r}, respectively. But then $e_{r} I+T_{0}^{(j)}$ and $e_{0} I+T_{r}^{(j)}$ are transvections over R, and it is easy to see that-

$$
e_{r} I+A_{0}=\prod_{j=1}^{m}\left(e_{r} I+T_{0}^{(j)}\right) \quad e_{0} I+A_{r}=\prod_{j=1}^{m}\left(e_{0} I+T_{r}^{(j)}\right)
$$

Since $A=A_{0}+A_{r}=\left(e_{r} I+A_{0}\right)\left(e_{0} I+A_{r}\right)$, it is clear that A is a product
of transvections, completing the proof.

Lemma 3.2. Let R be a direct sum of a finite number of local rings, and F be a free R-module. Let A, B be submodules of F such that $F / A \approx F / B$. Then there exists an automorphism θ of F such that $\theta(A)=B$.

Proof. If R is a local ring, the lemma follows directly from standard facts concerning minimal epimorphisms ([4], p. 471.) The general case may be deduced from this special case by an easy direct sum argument.

Lemma 3.3. Let R be a commutative Noetherian domain. Let F be a free R-module, and A, B be submodules of F, both having the same rank as F. Assume $F \mid A \approx F / B$, and every prime ideal of R belonging to A (as a submodule of F) is maximal. Then there exists an automorphism θ of $F \oplus R$ such that $\theta(A \oplus R)=B \oplus R$.

Proof. Let I be the annihilator of F / A (hence also of F / B). Then $I F \cong A \cap B$, and we have the following exact sequences of modules over the ring R / I.

$$
\begin{array}{rl}
0 \longrightarrow A / I F \longrightarrow F / I F & \longrightarrow F / A \longrightarrow 0 \\
0 & B / I F \longrightarrow F / I F \longrightarrow F / B \longrightarrow 0 .
\end{array}
$$

Now, it follows from our hypotheses that $\operatorname{Rad}(I)=M_{1} \cap \cdots \cap M_{r}$, where M_{i} is a maximal ideal in R. Hence we obtain from a direct application of the Chinese Remainder Theorem that R / I is a direct sum of local rings. Therefore, by Lemma 3.2, there exists an automorphism ψ of $F / I F$ such that $\psi(A / I F)=B / I F$. It is easy to see that ψ may be extended to a unimodular automorphism ψ_{1} of $(F / I F) \oplus(R / I)$ such that $\psi_{1}\{(A / I F) \oplus(R / I)\}=(B / I F) \oplus(R / I)$. By Lemma 3.1, ψ_{1} is a product of transvections, and thus it is clear that there exists an R-automorphism θ of $F \oplus R$ such that $f \theta=\psi_{1} f$, where $f: F \oplus R \rightarrow(F / I F) \oplus(R / I)$ is the canonical mapping. It then follows immediately that $\theta(A \oplus R)=B \oplus R$, completing the proof of the lemma.

We shall also have use for the following proposition, which was communicated to me by R. Swan.

Proposition 3.4. If R is a complete local ring, then the Krull-Schmidt-Remak Theorem [3] is satisfied by finitely-generated R-modules.

Proof. According to Azumaya's generalization of Krull-SchmidtRemak Theorem [3], we need only show that, if A is an indecomposable R-module, then the nonunits in $S=\operatorname{Hom}_{R}(A, A)$ form an ideal. S is a
finitely generated R-algebra, and $S / M S$ is an R / M-algebra of finite degree, where M is the maximal ideal in R. If \bar{e} is an idempotent in $S / M S$, then since R is complete it follows from a standard argument that there exists an idempotent e in S mapping on \bar{e}. But $e=1$ because A is indecomposable, and therefore \bar{e} is the identity of $S / M S$. We have thus shown that $S / M S$ has a single maximal ideal. Since $M S$ is contained in every maximal ideal of S, we have shown that S itself has a single maximal ideal, and the proposition follows immediately.

Swan, in unpublished work, has shown that Proposition 3.4 does not necessarily hold for incomplete local rings. However, all local rings satisfy a weaker form of the proposition, a fact which is implicit in [3]. For completeness we shall exhibit a proof here.

Proposition 3.5. Let R be a local ring with maximal ideal M, and A and B be R-modules. If there exists a (finitely-generated) free R-module F such that $A \oplus F \approx B \oplus F$, then $A \approx B$.

If A is an R-module, define $d(A)$ to be the dimension of $A / M A$ over the residue class field R / M. Let \mathscr{C} be the class of all R-modules A with the property that there exist R-modules B and F, with F free, such that $A \oplus F \approx B \oplus F$ but $A \neq B$. The proposition simply asserts that \mathscr{C} is empty. Assume the proposition is false; then we may select A from the class \mathscr{C} such that $d(A)$ is minimal. Having fixed A and its companion B, we may then choose F to have minimal rank $n>0$. Set $C=A \oplus F$; then we may assume that $A, B \subseteq C$ and there exist free submodules F_{1}, F_{2} of C such that $F_{1} \approx F \approx F_{2}$ and $A \oplus F_{1}=C=B \oplus F_{2}$. Let x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{n} be bases of F_{1} and F_{2}, respectively. Then there exist homomorphisms f and g of C into R such that $f(A)=g(B)=0$, $f\left(x_{n}\right)=g\left(y_{n}\right)=1$, and $f\left(x_{i}\right)=g\left(y_{i}\right)=0$ for $i<n$. Suppose that $f\left(F_{2}\right) \subseteq M$, $g\left(F_{1}\right) \subseteq M$; then, since R is a local ring, it is clear that $f(B)=g(A)=R$. That is, there exist $x \in A, y \in B$, such that $f(y)=g(x)=1$, in which case there exist submodules $A^{\prime} \subseteq A, B^{\prime} \subseteq B$ such that $A=A^{\prime} \oplus R x, B=B^{\prime} \oplus R y$. From this it follows that $A^{\prime} \oplus R \oplus F \approx A \oplus F \approx B \oplus F \approx B^{\prime} \oplus R \oplus F$. But $d\left(A^{\prime}\right)=d(A)-1$, and hence $A^{\prime} \approx B^{\prime}$, since A was chosen from the class \mathscr{C} so that $d(A)$ is minimal. But then $A \approx A^{\prime} \oplus R \approx B^{\prime} \oplus R \approx B$, a contradiction. Therefore we may assume that either $f\left(F_{2}\right)=R$ or $g\left(F_{1}\right)=R$; let us say that $f\left(F_{2}\right)=R$. Then $f\left(y_{i}\right)$ is a unit for some $i \leqq n$, say $i=1$. Define a homomorphism $j: R \rightarrow C$ by $j(a)=a\left(f\left(y_{1}\right)\right)^{-1} y_{1}$, where $a \in R$; then it is clear that $f j$ is the identity map on R. We leave to the reader the trivial verification of the resulting fact that $A \oplus F^{\prime} \approx \operatorname{ker}(f) \approx$ $\operatorname{coker}(j) \approx B \oplus F^{\prime}$, where F^{\prime} is a free R-module of rank $n-1$. But this contradicts the fact that F was chosen to be the free module of minimal rank with the property that $A \oplus F \approx B \oplus F$. The proof of the proposition is hence complete.

We are now ready to prove a slight generalization of the theorem stated in the introduction.

Theorem 3.6. Let R be a commutative Noetherian domain. Assume that the global dimension of R is less than or equal to two, and every projective R-module is free. Let A, B be torsion-free R-modules. Then the following statements are equivalent-
(a) There exists an R-module C such that $A \oplus C \approx B \oplus C$.
(b) $A \oplus R \approx B \oplus R$.
(c) $A_{\mu} \approx B_{\mu}$ as R_{μ}-modules for every maximal ideal M in R.
(d) $\bar{A}_{\mu} \approx \bar{B}_{\mu}$ as \bar{R}_{x}-modules for every maximal ideal M in R.

Proof. (a) $\Rightarrow(\mathrm{d})$: If $A \oplus C \approx B \oplus C$, then certainly $\bar{A}_{\mu H} \oplus \bar{C}_{\mu} \approx$ $\bar{B}_{z} \oplus \bar{C}_{z}$ for any maximal ideal M in R. It then follows from Proposition 3.4 that $\bar{A}_{H I} \approx \bar{B}_{M}$.
(b) $\Rightarrow(\mathrm{a})$: Obvious.
(c) $\Rightarrow(\mathrm{d})$: Obvious.
(b) $\Rightarrow(\mathrm{c})$: If $A \oplus R \approx B \oplus R$, then $A_{\mu} \oplus R_{\mu} \approx B_{\mu} \oplus R_{\mu}$ for any maximal ideal M in R. We may then apply Proposition 3.5 to conclude that $A_{\mu} \approx B_{z r}$.
$(\mathrm{d}) \Rightarrow(\mathrm{b})$; If (d) holds, we have immediately that A and B have the same rank. If A is projective, it follows from a standard result of homological algebra that B is likewise projective, in which case both are free by hypothesis and (b) follows trivially. Thus we may assume that neither A nor B is projective. Since gl.dim. $(R) \leqq 2$, we obtain from the Corollary to Proposition 4.7 of [2] (p. 17) that $A^{* *}$ and $B^{* *}$ are projective (the hypothesis given there that R be local is easily seen to be unnecessary. This fact also follows, perhaps more simply, from (4.4) of [4], p. 477.) Our hypotheses then imply that $A^{* *}$ and $B^{* *}$ are free; and, of course, they have the same rank. We may then identify $A^{* *}$ and $B^{* *}$, and write $A^{* *}=B^{* *}=F$, a free R-module. $A \subseteq F$, $B \subseteq F$, and if I and J are the annihilators of $F \mid A$ and $F \mid B$, respectively, then it follows from Proposition 2.1 that both ideals have rank greater than one (we should remark at this point that R is normal, since it has finite global dimension; hence the hypotheses of Proposition 2.1 are satisfied.)

Let M be a maximal ideal in R; then by hypothesis $\bar{A}_{\mu} \approx \bar{B}_{\mu}$. $I R_{\mu}$ and $J R_{\mu H}$ are the annihilators of $\bar{F}_{\mu H} / \bar{A}_{\mu}$ and $\bar{F}_{\mu} / \bar{B}_{\mu}$, respectively, and both of these ideals in \bar{R}_{x} have rank greater than one. Furthermore, since R has finite global dimension, $\bar{R}_{\mu t}$ is a regular local ring, and so we may apply the Corollary to Proposition 2.1 to conclude that there exists an \bar{R}_{μ}-automorphism φ of $\bar{F}_{\mu x}$ such that $\varphi\left(\bar{A}_{\mu}\right)=\bar{B}_{\mu}$. In particular, $(\overline{F \mid A})_{\mu} \approx \bar{F}_{\mu} / \bar{A}_{\mu} \approx \bar{F}_{\mu \mid} / \bar{B}_{\mu} \approx(\overline{F \mid B})_{\mu \mu} . \quad$ Now, since $\operatorname{rank}(I)>1$ and Krull
$\operatorname{dim} .(R)=$ gl.dim. $(R) \leqq 2$, we obtain easily from the Chinese Remainder Theorem that R / I is a direct sum of local rings, each with nilpotent maximal ideal. Then, since $(\overline{F / A})_{M}$ and $(\overline{F / B})_{M}$ may be viewed as modules over $\bar{R}_{\mu} I I \bar{R}_{M} \approx R_{\mu} / I R_{\mu}$, it follows from standard properties of completions of local rings that $(F / A)_{M} \approx(F / B)_{M}$. This is true for every maximal ideal M in R, and hence $F / A \approx F / B$ as R-modules, since both may be viewed as modules over R / I, a direct sum of local rings. Since every prime ideal in R belonging to A or B (as a submodule of F) is maximal, we may apply Lemma 3.3 to conclude that there exists an automorphism θ of $F \oplus R$ such that $\theta(A \oplus R)=B \oplus R$. In particular, $A \oplus R \approx B \oplus R$, completing the proof of the theorem.

Corollary. If $R=K[x, y], K$ a field, then R satisfies the conditions of Theorem 3.6.

Proof. The well-known fact that gl. $\operatorname{dim} .(R)=2$ ([5], p. 180), together with Seshadri's result [6] that projective R-modules are free, imply that R satisfies the hypotheses, and hence the conclusions, of Theorem 3.6.

As mentioned in the introduction, we are able to improve Theorem 3.6 for $R=K[x, y]$ if certain assumptions are made concerning the field K.

Theorem 3.7. Let $R=K[x, y]$, where K is an algebraicly closed field of characteristic p. Let A, B be torsion-free R-modules of the same rank n. If p does not divide n, then A and B satisfy the conditions of Theorem 3.6 if and only if $A \approx B$.

Proof. As in Theorem 3.6, we may assume that neither A nor B is projective, but both are contained in a free R-module F in such a way that $F / A \approx F / B$. Furthermore, if I is the annihilator of F / A (hence also of F / B) then $R / I=R_{1} \oplus \cdots \oplus R_{r}$, where R_{i} is a local ring with nilpotent maximal ideal M_{i}. Let e_{i} be the unit of R_{i} and \bar{e}_{i} be the unit of R_{i} / M_{i}. Since K is algebraicly closed, $R_{i} / M_{i}=K \bar{e}_{i}$.

Now, $F / I F$ is a free R / I-module, and so we may apply Lemma 3.2 to obtain an automorphism θ of $F / I F$ such that $\theta(A / I F)=B / I F$. Write $\theta_{i}=e_{i} \theta$; then $\theta=\theta_{1}+\cdots+\theta_{r}$. If $d_{i}=\operatorname{det}\left(\theta_{i}\right)$, then $d_{1}+\cdots+d_{r}=$ $d=\operatorname{det}(\theta) . d$ is a unit in R / I, and d_{i} is a unit in R_{i}. Since $R_{i} / M_{i}=K \bar{e}_{i}$, we may write $d_{i}=a_{i}\left(e_{i}+u_{i}\right)$, where $a_{i} \in K$ and $u_{i} \in M_{i}$. Since K is algebraicly closed, there exist $b_{i} \in K$ such that $b_{i}^{n}=a_{i}^{-1}$. Since M_{i} is nilpotent, we see immediately that the multiplicative group of units of R_{i} which map on \bar{e}_{i} has exponent a power of p, and therefore, since p does not divide n, there exist $c_{i} \in R_{i}$ such that $c_{i}^{n}=\left(e_{i}+u_{i}\right)^{-1}$. Set
$\theta^{\prime}=b_{1} c_{1} \theta_{1}+\cdots+b_{r} c_{r} \theta_{r}=\left(b_{1} c_{1}+\cdots+b_{r} c_{r}\right) \theta$; then θ^{\prime} is a unimodular automorphism of $F / I F$ and $\theta^{\prime}(A / I F)=B / I F$. By Lemma 3.1, θ^{\prime} is a product of transvections, and thus there exists an R-automorphism φ of F such that $\theta^{\prime} f=f \varphi$, where $f: F \rightarrow F / I F$ is the canonical mapping. Since $I F \subseteq A \cap B$, it follows easily that $\varphi(A)=B$. Therefore $A \approx B$, completing the proof of the theorem. ${ }^{2}$
4. Examples. In this section we shall show that $R=K[x, y]$ does not satisfy Theorem 3.7 if K is the field of real numbers.

Lemma 4.1. Let $S=K[x, y] /\left(\left(x^{2}-1\right)^{3},\left(x^{2}-1\right)^{2} y^{2}, y^{3}\right)$, where K is the real number field. Set $F=S \oplus S$, and define submodules A and B of F to be generated by the rows of the following matrices-

$$
A:\left(\begin{array}{cc}
\left(x^{2}-1\right)^{2} & 0 \\
0 & y^{2} \\
y & x^{2}-1
\end{array}\right) \quad B:\left(\begin{array}{cc}
x\left(x^{2}-1\right)^{2} & 0 \\
0 & y^{2} \\
x y & x^{2}-1
\end{array}\right)
$$

Then there exists no automorphism θ of F such that $\theta(A)=B$ and $\operatorname{det}(\theta) \in K$.

Proof. Set $P_{1}=(x-1, y) \subseteq S, P_{2}=(x+1, y) \subseteq S$, and $Q=P_{1} \cap P_{2}=$ ($x^{2}-1, y$); then Q is easily seen to be the radical of S, and $S / Q \approx$ $S / P_{1} \oplus S / P_{2} \approx K \oplus K .(1+x) / 2$ and $(1-x) / 2$ are orthogonal idempotents modulo Q, and therefore it is clear that any u in S can be expressed in the form $u=\lambda(x+1)+\mu(x-1)+u^{\prime}$, where $u^{\prime} \in Q$ and $\lambda, \mu \in K$.

We assert first that $\left\{(x+1)\left(x^{2}-1\right) y^{2}, 0\right\},\left\{(x-1)\left(x^{2}-1\right) y^{2}, 0\right\}$, $\left\{0,(x+1)\left(x^{2}-1\right)^{2} y\right\}$, and $\left\{0,(x-1)\left(x^{2}-1\right)^{2} y\right\}$ are not in A. For suppose $\left\{(x+1)\left(x^{2}-1\right) y^{2}, 0\right\}$ is in A; then

$$
\begin{aligned}
\left\{(x+1)\left(x^{2}-1\right) y^{2}, 0\right\} & =p\left\{\left(x^{2}-1\right)^{2}, 0\right\}+q\left\{0, y^{2}\right\}+r\left\{y, x^{2}-1\right\} \\
& =\left\{p\left(x^{2}-1\right)^{2}+r y, q y^{2}+r\left(x^{2}-1\right)\right\}
\end{aligned}
$$

for some p, q, r in S. Then $(x+1)\left(x^{2}-1\right) y^{2}=p\left(x^{2}-1\right)^{2}+r y$, from which it follows that $r=-(x+1)\left(x^{2}-1\right) y+r^{\prime}\left(x^{2}-1\right)^{2}+r^{\prime \prime}$, where $r^{\prime} \in S$ and $r^{\prime \prime} \in Q^{3}$. But then

$$
\begin{aligned}
0=q y^{2}+r\left(x^{2}-1\right) & =q y^{2}-(x+1)\left(x^{2}-1\right)^{2} y+r^{\prime}\left(x^{2}-1\right)^{3}+r^{\prime \prime}\left(x^{2}-1\right) \\
& =q y^{2}-(x+1)\left(x^{2}-1\right)^{2} y
\end{aligned}
$$

since $\left(x^{2}-1\right)^{3}=Q^{4}=0$. But this equation is easily seen to be impossible, and so we have that $\left\{(x+1)\left(x^{2}-1\right) y^{2}, 0\right\}$ is not in A. The other

[^1]assertions can be proved in similar fashion.
Suppose now that there exists an automorphism θ of F such that $\theta(A)=B$ and $\operatorname{det}(\theta)=t \in K$. Define a mapping $\tau: F \rightarrow F$ by $\tau(\{u, v\})=$ $\{x u, v\}$. τ is an endomorphism of F with determinant x. But $x=$ $(1+x) / 2-(1-x) / 2$ is a unit modulo Q, and hence is a unit in S, since Q is the radical of S. Therefore τ is an automorphism of F. Clearly $\tau(A)=B$. Set $\sigma=\theta^{-1} \tau$; then, replacing t by t^{-1}, we get that σ is an automorphism of F with determinant $t x$, and $\sigma(A)=A$. Relative to the given basis of F, σ may be represented by a matrix-
\[

\left($$
\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}
$$\right) \quad a, b, c, d \in S \quad a d-b c=t x
\]

From the equation-

$$
\left(\begin{array}{cc}
\left(x^{2}-1\right)^{2} & 0 \\
0 & y \\
y & x^{2}-1
\end{array}\right)\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cc}
a\left(x^{2}-1\right)^{2} & b\left(x^{2}-1\right)^{2} \\
c y^{2} & d y^{2} \\
a y+c\left(x^{2}-1\right) & b y+d\left(x^{2}-1\right)
\end{array}\right)
$$

it follows that $\left\{0, b\left(x^{2}-1\right)^{2}\right\}$ and $\left\{c y^{2}, 0\right\}$ are in A. Write $b=$ $\lambda(x+1)+\mu(x-1)+b^{\prime}$, where $\lambda, \mu \in K$ and $b^{\prime} \in Q$; then, since $Q^{4}=0$ and $((x+1) / 2)(x+1) \equiv x+1(\bmod Q)$, we have that $\left\{0, \lambda(x+1)\left(x^{2}-1\right)^{2} y\right\}=$ $\left\{0,((x+1) / 2) b\left(x^{2}-1\right)^{2} y\right\} \in A$. If $\lambda \neq 0$, then $\left\{0,(x+1)\left(x^{2}-1\right)^{2} y\right\} \in A$, contradicting our previous remarks. Hence $\lambda=0$. A similar argument shows that $\mu=0$. Therefore $b \in Q$, in which case $b=b_{1}\left(x^{2}-1\right)+b_{2} y$, where $b_{1}, b_{2} \in S$. It follows from similar reasoning that $c=c_{1} y+c_{2}\left(x^{2}-1\right)$, where $c_{1}, c_{2} \in S$.

We then see that

$$
\begin{aligned}
& \left\{a y+c\left(x^{2}-1\right), b y+d\left(x^{2}-1\right)\right\} \\
& \quad=\left\{a y+c_{1}\left(x^{2}-1\right) y+c_{2}\left(x^{2}-1\right)^{2}, b_{1}\left(x^{2}-1\right) y+b_{2} y^{2}+d\left(x^{2}-1\right)\right\}
\end{aligned}
$$

is in A, and then $\left\{y\left[a+c_{1}\left(x^{2}-1\right)\right],\left(x^{2}-1\right)\left[b_{1} y+d\right]\right\}$ is in A, since $\left\{\left(x^{2}-1\right)^{2}, 0\right\}$ and $\left\{0, y^{2}\right\}$ are in A. Therefore

$$
\begin{aligned}
w & =\left\{0,\left(x^{2}-1\right)\left[b_{1} y-c_{1}\left(x^{2}-1\right)+(d-a)\right]\right\} \\
& =\left\{y\left[a+c_{1}\left(x^{2}-1\right)\right],\left(x^{2}-1\right)\left(b_{1} y+d\right)\right\}-\left[a+c_{1}\left(x^{2}-1\right)\right]\left\{y, x^{2}-1\right\}
\end{aligned}
$$

is in A. Write $d-a=\lambda(x+1)+\mu(x-1)+u$, where $\lambda, \mu \in K$ and $u \in Q$. Then, using once again the facts that $(x+1) / 2$ and $(x-1) / 2$ are orthogonal idempotents modulo Q and $Q^{4}=0$, we obtain that $\left\{0, \lambda(x+1)\left(x^{2}-1\right)^{2} y\right\}=((1+x) / 2)\left(x^{2}-1\right) w \in A$, and hence $\lambda=0$, since $\left\{0,(x+1)\left(x^{2}-1\right)^{2} y\right\}$ is not in $A . \mu=0$ for similar reasons, and therefore $d-a \in Q$; i.e., $a \equiv d(\bmod Q)$. But then $t x=a d-b c \equiv a d \equiv a^{2}(\bmod Q)$, since $b, c \in Q$. Recall now that $S / Q=K_{1} \oplus K_{2}$, where $K_{1} \approx K \approx K_{2}$. Let $\varepsilon_{1}, \varepsilon_{2}$ be the units of K_{1}, K_{2}, respectively; then, under the isomor-
phism just mentioned, $(1+x) / 2$ maps onto ε_{1} and $(1-x) / 2$ maps onto ε_{2}, in which case $x=(1+x) / 2-(1-x) / 2$ maps onto $\varepsilon_{1}-\varepsilon_{2}$. We have thus shown that there exists $\alpha \in K_{1} \oplus K_{2}$ such that $\alpha^{2}=t \varepsilon_{1}-t \varepsilon_{2}$. This can be true only if both t and $-t$ have square roots in K. But this is impossible unless $t=0$, and so we have reached a contradiction. Therefore θ cannot exist, and the proof of the lemma is complete.

Proposition 4.2. Let $R=K[x, y]$, where K is the field of real numbers, and set $I=\left(\left(x^{2}-1\right)^{3},\left(x^{2}-1\right)^{2} y^{2}, y^{3}\right)$, an ideal in R. Let $F=R \oplus R$, and define submodules A^{\prime}, B^{\prime} of F to be generated by the rows of the following matrices-

$$
A^{\prime}:\left(\begin{array}{cc}
\left(x^{2}-1\right)^{2} & 0 \\
0 & y^{2} \\
y & x^{2}-1
\end{array}\right) \quad B:\left(\begin{array}{cc}
x\left(x^{2}-1\right)^{2} & 0 \\
0 & y^{2} \\
x y & x^{2}-1
\end{array}\right)
$$

and let $A=A^{\prime}+I F, B=B^{\prime}+I F$. Then $A \oplus R \approx B \oplus R$, but $A \not \approx B$.
Proof. Set $S=R / I$; then $F / I F \approx S \oplus S$, a free S-module. Define a mapping $\varphi: F / I F \rightarrow F / I F$ by $\varphi(\{u, v\})=\{x u, v\}$. φ is an endomorphism of $F / I F$, and $\operatorname{det}(\varphi)=x$, which is a unit of S; hence φ is an automorphism. Furthermore, $\varphi(A / I F)=B / I F$, from which it follows that $F / A \approx F / B$. Therefore, $A \oplus F \approx B \oplus F$, by the the theorem of Schanuel [7]. We may then apply Theorem 3.6 to conclude that $A \oplus R \approx B \oplus R$.

Suppose now that $A \approx B$. It is easy to see that $\operatorname{rank}(I)=2$; hence, since $I F \subseteq A \cap B$, we have from the corollary to Proposition 2.1 that the isomorphism between A and B can be extended to an automorphism θ of F. Then $\operatorname{det}(\theta)=t \in K$, since K contains every unit of R. Reducing modulo I, we obtain an automorphism θ^{\prime} of $F / I F$ such that $\theta^{\prime}(A / I F)=B / I F$ and $\operatorname{det}\left(\theta^{\prime}\right)=t$. But this contradicts Lemma 4.1 as applied to $S, F / I F, A / I F$, and $B / I F$. Hence $A \not \approx B$, completing the proof of the proposition.

In closing, we remark that it is not difficult to see that Theorems 3.6 and 3.7 do not hold for a ring of polynomials in more than two variables.

References

1. M. Auslander and D. A. Buchsbaum, Ramification theory in Noetherian rings, Amer, J. Math., 81 (1959), 749-765.
2. M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
3. G. Azumaya, Correction and supplements to my paper concerning Krull-RemakSchmidt's theorem, Nagoya Math. J., 1 (1950), 117-124.
4. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95 (1960), 466-488.
5. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
6. C.S. Seshadri, Triviality of vector bundles over the affine space K^{2}, Proc. Nat. Acad. Sciences, 44 (1958), 456-458.
7. R. G. Swan, Groups with periodic cohomology, Bull. Amer. Math. Soc., 65 (1959), 368-370.

[^0]: Received May 8, 1961.
 ${ }^{1}$ Throughout this note, all modules which we consider will be assumed to be finitely generated.

[^1]: ${ }^{2}$ The proof of Theorem 3.7 has been phrased for $p>0$. However, the theorem is also true if $p=0$, since then the binomial theorem may be used to obtain $c_{i} \in R_{i}$ such that $c_{i}{ }^{n}=\left(e_{i}+u_{i}\right)^{-1}$.

