
TORSION-FREE MODULES OVER K[x,y]

STEPHEN U. CHASE

l Introduction^ Let R = K[x, y] be the ring of polynomials in
two variables x and y over a field K. In this note we shall consider
the following question: What conditions must be satisfied by two torsion-
free JK-modules1 A and B in order that there exist a third J2-module C
such that A φ C ^ 5 0 C ? Our principal result is the following theorem.

THEOREM. The following statements are equivalent:
( a) There exists an R-module C (not necessarily torsion-free) such

that A@C™ B®C.
( b ) A®R^B@R.
(c ) For any maximal ideal M in R, AM f& BM as RM-modules.
(d) For any maximal ideal M in R, AM ^ BM as RM-modules.

In (c) and (d) above, RM is the ring of quotients of R with respect
to the maximal ideal M, RM is the completion of the local ring RM, and
AM9 AM are the RM and ^-modules, respectively, constructed from A
in the standard way. We shall adhere to this notation throughout the
paper.

It is natural to ask whether the conditions of the above theorem
imply that A e& B, as is trivially the case for the ring of polynomials
in one variable. It is perhaps curious that the answer here depends
upon the field K. We show that, if K is algebraicly closed of charac-
teristic zero, then A and B satisfy conditions (a) — (d) above if and
only if A & B. However, we provide an example to show that this
is not the case if K is the real number field.

The proofs of the preceding statements are based primarily upon
the theorem of Seshadri [6] that protective iϋ-modules are free, together
with some results of Auslander-Buchsbaum-Goldman ([1], [2]) on duality
of modules over commutative Noetherian domains. These will be ex-
plained in the next section.

2 ' Some remarks on duality* Throughout this section R may be
any commutative Noetherian normal domain. If A is an ϋN-module, we
define A* = Horn* (A, R); A* will be called the dual of A. If 2? is a
second iϋ-module and f:A-+B is a homomorphism, we shall denote by
/ * the induced homomorphism of B* into A*. For the basic properties

Received May 8, 1961.
1 Throughout this note, all modules which we consider will be assumed to be finitely

generated.
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of this functor we refer the reader to [4], p. 476. We shall denote
the natural mapping of A** by iA. If A is torsion-free, then iΛ is a
monomorphism. In this case we shall consistently identify A with its
image in A**. A will be called reflexive in case A = A**. It is not
hard to show that every dual is reflexive; this follows essentially from
the fact that, if A is torsion-free, then A and A* have the same rank.

The following proposition is essentially due to Auslander-Buchsbaum-
Goldman ([1], Proposition 3.4, p. 758.)

PROPOSITION 2.1. Let A, B be torsion-free 2?-modules with the same
rank, and assume A g A * * J ΰ , A Φ B. Let I be the annihilator of B\A
(note that IΦ 0, since A and B have the same rank.) Then

( a ) If A** = B, r a n k ( / ) > l .
(b) If A** Φ B, rank (I) = 1.

Proof. Assume rank (/) = 1, in which case there exists a prime
ideal P in R of rank one such that J g P . Then APξ^BP. Since R is
normal and rank (P) = 1, RP is a Dedekind ring. Then AP, being a
torsion-free i2P-module, is protective, and therefore trivially reflexive.
It then follows from an easy localization argument that (A**)P =
(AP)** = AP ^ BP, and therefore A** £ B. Hence, if A** - B, then
rank (/) > 1, completing the proof of (a).

Suppose now that A** Φ B, and let J be the annihilator of B/A**.
We may then apply Proposition 3.4 of [1] (p. 758) to conclude that
rank(J) = 1. Since O g / g / , it follows that rank(/) — 1, completing
the proof of (b).

COROLLARY. Let B be a reflexive R-module, and A19 A2 be sub-
modules of B with same rank as B. Let Ix and I2 be the annihilators
of B/A1 and B/A2, respectively. If the ranks of both ideals are greater
than one, then any isomorphism between Ax and A2 can be extended to
an automorphism of B.

Proof. Since B is reflexive, we have that A ^ A ^ S J S , A2gA2**gβ.
But since rank^) > 1, we obtain from Proposition 2.1 that Af* = B,
and similarly A2** = B. Hence, if Θ1:A1—>A2 is an isomorphism, then
0i** is an endomorphism of B. Let θ2 = 0Γ1; then #2** is likewise an
endomorphism of B. Also, 0?*0** = (0a0i)** induces the identity auto-
morphism on A2. Since B is torsion-free and B\AX is a torsion module,
it then follows trivially that 0**0?* is the identity on all of B. So is
0?*02**, by similar reasoning. Therefore 0?* is the desired extension of
0χ to an automorphism of B.
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3 Torsion-free modules over regular rings of dimension two* We
shall begin this section with a few preliminary results which will
prepare the ground for the proof of the theorem mentioned in the
introduction.

A square matrix over a ring R will be called a transvection if its
diagonal entries are all "ones" and there is at most one nonzero entry
off the diagonal.

LEMMA 3.1. Let R = Rx 0 0 Rr, where each Rt is a local ring.
Then any unimodular matrix over R is a product of transvections.

Proof. Let A = (α^ ) be a unimodular n-by-n matrix over R. We
first consider the special case r — 1; i.e., R is a local ring. Then every
row and column of A must contain a unit. From this we see easily
that A may be reduced to a diagonal matrix by means of standard row
and column operations which are equivalent to multiplication by trans-
vections. That is, A = TDU, where T, U are products of transvections
and—

D =

Id, 0

dn

We may then apply a well-known trick and write—

ON

\o

/ I

\o

ON / I

\o

x •••(** = ! .

o\

dj

But it is trivial to verify that each of the factors of the above expres-
sion is a product of transvections. Thus A is a product of transvections,
and the lemma is true for r = 1.

Proceed by induction on r; assume r > 1 and the lemma is true for
k > r. Let Ro = Rx 0 0 Rr-λ] then R = Ro 0 # r . Let e0, er be the
units of Ro Rr, respectively; then e0 + er = 1. Also A = Λ + A , where
Ao, Ar are unimodular matrices over Ro, Rr, respectively. We have from
the induction assumption that Ao = ΠJU τo3) and Ar = Π H ^ ' 1 , where
T{

o

j) and Γ^5 are transvections over Ro and i?r, respectively. But then
erl + Tί>3) and e0^ +
that—

are transvections over R, and it is easy to see

Π(
3=1

Since 4̂ = Ao + Ar = (erl + Ao)(eol + Ar), it is clear that A is a product
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of transvections, completing the proof.

LEMMA 3.2. Let R be a direct sum of a finite number of local
rings, and F be a free R-module. Let A, B be submodules of F such
that F\A p* FjB. Then there exists an automorphism θ of F such that
Θ{A) = B.

Proof. If R is a local ring, the lemma follows directly from stand-
ard facts concerning minimal epimorphisms ([4], p. 471.) The general case
may be deduced from this special case by an easy direct sum argument.

LEMMA 3.3. Let R be a commutative Noetherian domain. Let F
be a free R-module, and A, B be submodules of F, both having the
same rank as F. Assume F\A ?& F\B, and every prime ideal of R
belonging to A (as a submodule of F) is maximal. Then there exists
an automorphism θ of FQ) R such that Θ(A 0 R) = β 0 J ? .

Proof. Let I be the annihilator of F\A (hence also of F\B). Then
J j P g i Π ΰ , and we have the following exact sequences of modules over
the ring R\I.

0 • A\IF > F/IF > F\A > 0

0 > B\IF > F/IF > FIB > 0 .

Now, it follows from our hypotheses that Rad(I) = Mx Π Π Mr, where
Mi is a maximal ideal in R. Hence we obtain from a direct application
of the Chinese Remainder Theorem that R\I is a direct sum of local
rings. Therefore, by Lemma 3.2, there exists an automorphism ψ of
FIIF such that ψ(A/IF) = B\IF. It is easy to see that ψ may be
extended to a unimodular automorphism ψx of (F/IF) 0 {Rjl) such that
ψ^AlIF) 0 (R/I)} = (B/IF) 0 {Rjl). By Lemma 3.1, ψ1 is a product of
transvections, and thus it is clear that there exists an i?-automorphism
θ of F@ R such that fθ = ψj, where /: F®R->(FIIF) 0 (R/I) is the
canonical mapping. It then follows immediately that Θ(AQ)R) = B@R,
completing the proof of the lemma.

We shall also have use for the following proposition, which was
communicated to me by R. Swan.

PROPOSITION 3.4. If R is a complete local ring, then the Krull-
Schmidt-Remak Theorem [3] is satisfied by finitely-generated iϋ-modules.

Proof. According to Azumaya's generalization of Krull-Schmidt-
Remak Theorem [3], we need only show that, if A is an indecomposable
.R-module, then the nonunits in S = Hom^ (A, A) form an ideal. S is a
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finitely generated JS-algebra, and SIMS is an JB/ikf-algebra of finite degree,
where M is the maximal ideal in R. If e is an idempotent in SI MS,
then since R is complete it follows from a standard argument that
there exists an idempotent e in S mapping on e. But e = 1 because A
is indecomposable, and therefore e is the identity of SI MS. We have
thus shown that S/MS has a single maximal ideal. Since MS is con-
tained in every maximal ideal of S, we have shown that S itself has a
single maximal ideal, and the proposition follows immediately.

Swan, in unpublished work, has shown that Proposition 3.4 does
not necessarily hold for incomplete local rings. However, all local rings
satisfy a weaker form of the proposition, a fact which is implicit in [3].
For completeness we shall exhibit a proof here.

PROPOSITION 3.5. Let R be a local ring with maximal ideal M,
and A and B be i?-modules. If there exists a (finitely-generated) free
Λ-module F such that A@F^ B®F9 then A ^ B.

If A is an iϋ-module, define d(A) to be the dimension of AfMA
over the residue class field R/M. Let <& be the class of all J?-modules
A with the property that there exist jR-modules B and F, with F free,
such that A 0 F ** B 0 F but A Φ B. The proposition simply asserts
that ^ is empty. Assume the proposition is false; then we may select
A from the class ^ such that d(A) is minimal. Having fixed A and
its companion B, we may then choose F to have minimal rank n > 0.
Set C = A@F; then we may assume that A, B Q C and there exist
free submodules F19 F2 of Csuch thatFτ**F&F2anάA®F1 = C = B®F2.
Let xl9 , xn and yl9 , yn be bases of F1 and F2, respectively. Then
there exist homomorphisms / and g of C into R such that f(A) = g(B) = 0,
ΆXn) = 9(V«) = 1, and ffa) = g(yt) = 0 for i<n. Suppose that f(F2) £ M,
ffί-Px) S Λf; then, since iϋ is a local ring, it is clear that f(B) = g(A) = i2.
That is, there exist xeA,yeB, such that f(y) = g(x) = 1, in which case
there exist submodules A'gA, B'gjB such that A = A'0i ta, J? = B'^Ry.
From this it follows that A ' 0 i ? 0 F & A0ί7^βφί7^B'0i20.F. But
d(A') = c£(A) — 1, and hence A' f**B', since A was chosen from the class
^ so that d(A) is minimal. But then A ^ A!^0 R^ B'^0RP* B, a con-
tradiction. Therefore we may assume that either f(F2) = R or flf(-Fi) = i2;
let us say that /(i^) = R. Then /(^) is a unit for some i ^ ^, say i = 1.
Define a homomorphism j : R-+C by i(α) = αί/d/O)"1^, where α 6 JS; then
it is clear that fj is the identity map on R. We leave to the reader
the trivial verification of the resulting fact that A 0 Ff ^ ker(/) ^
coker(i) ^ 5 0 F\ where Ff is a free i?-module of rank n — 1. But
this contradicts the fact that F was chosen to be the free module of
minimal rank with the property that A 0 F ^ B 0 F. The proof of
the proposition is hence complete.
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We are now ready to prove a slight generalization of the theorem
stated in the introduction.

THEOREM 3.6. Let R be a commutative Noetherian domain. As-
sume that the global dimension of R is less than or equal to two, and
every projective R-module is free. Let A, B be torsion-free R-modules.
Then the following statements are equivalent—

( a ) There exists an R-module C such that A φ C ^ S φ C.
(b) A@R~B®R.
(c ) AM *** BM as RM-modules for every maximal ideal M in R.
( d ) AM p& BM as RM-modules for every maximal ideal M in R.

Proof. (a ) =Φ (d ): If i 0 C ^ S 0 C , then certainly ΆM($CM&
BM 0 CM for any maximal ideal M in R. It then follows from Proposi-
tion 3.4 that AM P* BM.

(b) =φ (a) : Obvious.
(c)=>(d) : Obvious.
(b) =Φ (c ): If A 0 R ** B 0 R, then AM® RM™ BMφ RM for any

maximal ideal M in R. We may then apply Proposition 3.5 to conclude
that AM ** BM.

(d ) =Φ ( b); If (d) holds, we have immediately that A and B have
the same rank. If A is projective, it follows from a standard result of
homological algebra that B is likewise projective, in which ease both
are free by hypothesis and (b) follows trivially. Thus we may assume
that neither A nor B is projective. Since gLdim.(ϋ) S 2, we obtain
from the Corollary to Proposition 4.7 of [2] (p. 17) that A** and £**
are projective (the hypothesis given there that R be local is easily seen
to be unnecessary. This fact also follows, perhaps more simply, from
(4.4) of [4], p. 477.) Our hypotheses then imply that A** and i?** are
free; and, of course, they have the same rank. We may then identify
A** and £**, and write 4̂.** = £** = F, a free i2-module. 4 g F ,
B S F, and if I and J are the annihilators of FJA and FIB, respec-
tively, then it follows from Proposition 2.1 that both ideals have rank
greater than one (we should remark at this point that R is normal,
since it has finite global dimension; hence the hypotheses of Proposition
2.1 are satisfied.)

Let M be a maximal ideal in R; then by hypothesis AM ^ BM. IRM

and JRM are the annihilators of FMjAM and FMjBM, respectively, and
both of these ideals in RM have rank greater than one. Furthermore,
since R has finite global dimension, RM is a regular local ring, and so
we may apply the Corollary to Proposition 2.1 to conclude that there
exists an ^-automorphism φ of FM such that φ(AM) = BM. In particular,
(FfA)M f* FJAM P* FJBM w {F[B)M. Now, since rank (I) > 1 and Krull
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dim.(R) = gl.dim.(i2) g 2, we obtain easily from the Chinese Remainder
Theorem that R/I is a direct sum of local rings, each with nilpotent
maximal ideal. Then, since (F/A)M and (F/B)M may be viewed as modules
over RMfIRM ρ& RMIIRM, it follows from standard properties of comple-
tions of local rings that (F/A)M ^ {FjB)M. This is true for every maximal
ideal M in R, and hence F/A & F/B as JS-modules, since both may be
viewed as modules over R/I, a direct sum of local rings. Since every
prime ideal in R belonging to A or B (as a submodule of F) is maximal,
we may apply Lemma 3.3 to conclude that there exists an automorphism
Θ of F@ R such that θ(A 0 R) = B 0 R. In particular, A 0 R P* B 0 R,
completing the proof of the theorem.

COROLLARY. If R = K[x, y], K a field, then R satisfies the condi-
tions of Theorem 3.6.

Proof. The well-known fact that gl.dim.(i?) = 2 ([5], p. 180), to-
gether with Seshadri's result [6] that protective i?-modules are free,
imply that R satisfies the hypotheses, and hence the conclusions, of
Theorem 3.6.

As mentioned in the introduction, we are able to improve Theorem
3.6 for R = K[x,y] if certain assumptions are made concerning the
field K.

THEOREM 3.7. Let R = K[x, y], where K is an algebraicly closed
field of characteristic p. Let A, B be torsion-free R-modules of the
same rank n. If p does not divide n, then A and B satisfy the con-
ditions of Theorem 3,6 if and only if A& B.

Proof. As in Theorem 3.6, we may assume that neither A nor B
is protective, but both are contained in a free jR-module F in such a
way that F\A ̂  F\B. Furthermore, if I is the annihilator of F\A
(hence also of F\B) then R\I = Rλ 0 0 Rr, where JB< is a local ring
with nilpotent maximal ideal Mi. Let e{ be the unit of R{ and β; be
the unit of RJMi. Since K is algebraicly closed, iϊJMί = Ke^

Now, F/IF is a free i?//-module, and so we may apply Lemma 3.2
to obtain an automorphism θ of F\IF such that Θ{A\IF) = BjIF. Write
θ{ = eβ) then θ = θ1 + . . . + θr. If d{ = det(^), then dλ + + dr =
d = det(#). d is a unit in Rjl, and di is a unit in R{. Since RJMi = Keiy

we may write di = α ^ + w<), where ate K and u{ e Mt. Since K is
algebraicly closed, there exist bte K such that bn

{ — aj1. Since Λf< is
nilpotent, we see immediately that the multiplicative group of units of
Ri which map on et has exponent a power of p9 and therefore, since p
does not divide n, there exist c{ e Ri such that c? = (e< + u^1. Set
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θf = b1c1θ1 + + brcrθr = {bλcx + + brcr)θ; then θ' is a unimodular
automorphism of F\IF and Θ\A\IF) = B\IF. By Lemma 3.1, θ' is a
product of transvections, and thus there exists an J?-automorphism φ
of F such that θ'f = fφ, where f:F—>F/IF is the canonical mapping.
Since IF^Af) B, it follows easily that φ(A) = B. Therefore A & B,
completing the proof of the theorem.2

4Φ Examples, In this section we shall show that R = K[x, y] does
not satisfy Theorem 3.7 if K is the field of real numbers.

LEMMA 4.1. Let S = K[x, y]/((x2 - I)3, (x2 - 1)V, y*), where K is
the real number field. Set F = S 0 S, and define submodules A and
B of F to be generated by the rows of the following matrices—

0

x2 - 1

Then there exists no automorphism Θ of F such that θ{A) — B and
det(0) G K.

Proof. Set P1 = (x- 1, #) g S , P 2 = (x + 1, y) S S , and Q = PiΠP2 =
(x2 — 1, ?/); then Q is easily seen to be the radical of S, and S/Q ^
S/P1Q)SIP2^ K@K. (1 + aO/2 and (1 — x)/2 are orthogonal idempotents
modulo Q, and therefore it is clear that any u in S can be expressed
in the form u = X(x + 1) + μ(a? — 1) + u', where nf eQ and X, μeK.

We assert first that {(a? + 1)(^2 - ϊ)y\ 0}, {(a? - l)(a? - ϊ)y\ 0},
{0, (x + 1)O2 - 1)M, and {0, (x - l)(x2 - l)2y} are not in A. For suppose
{(a? + l)(x2 - l)y2, 0} is in A; then

{(a? + l)(α2 - l)y2, 0} - p{(x2 - I)2, 0} + g{0, τ/2} + r{y, x2 -

- I)2 + ry, qy2 + r(x2 - 1)}

for some p, q, r in S. Then (x + l)(α?2 — ϊ)y2 = p(x2 — I)2 + ry, from
which it follows that r = - (x + l)(x2 - l)y + rr{x2 - I)2 + r", where
r'eS and r " e Q3. But then

0 = qy2 + r(x2 - 1) = W2 - (a? + 1)O2 - lfy + r\x2 - I)3 + r;'(ίc2 - 1)

- W2 - (a? + l)(x2 - Vfy ,

since (x2 — I)3 = Q4 — 0. But this equation is easily seen to be impos-
sible, and so we have that {(x + l)(x2 — l)y2, 0} is not in A. The other

2 The proof of Theorem 3.7 has been phrased for p>0. However, the theorem is also
true if p=0, since then the binomial theorem may be used to obtain a£Ri such that
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assertions can be proved in similar fashion.
Suppose now that there exists an automorphism θ of F such that

Θ{A) = B and det(0) = teK. Define a mapping τ: F-»F by τ({u, v}) =
{xu, v}. τ is an endomorphism of F with determinant x. But x —
(1 + αO/2 — (1 — fl&)/2 is a unit modulo Q, and hence is a unit in S,
since Q is the radical of S. Therefore τ is an automorphism of F.
Clearly τ(A) = B. Set a = tf^τ; then, replacing ί by ί~\ we get that σ
is an automorphism of F with determinant tx, and 0"(A) = A. Relative
to the given basis of F, a may be represented by a matrix—

a b\
a,b,c, deS ad — be = tx

c d/

From the equation—

\ , , λ / α ( * 2 - l ) 2 b(x*-lf

' J) c</2 dy2

it follows that {0, b(x2 - If} and {cy\ 0} are in A. Write 6 =
X(x + 1) + μ(x — 1) + 6', where λ, μeK and 6' e Q; then, since Q4 = 0 and
((x + l)/2)(x + 1) = x + 1 (mod Q), we have that {0, λ(αj + l)(x2 - lfy} =
{0, ((α? + l)/2)δ(α2 - I)2?/} e A. If λ ^ 0, then {0, (x + l)(x2 - lfy} e A,
contradicting our previous remarks. Hence λ = 0. A similar argument
shows that μ = 0. Therefore b e Q, in which case b = ft^α* — 1) + 62τ/,
where bl9 b2 e S. It follows from similar reasoning that c = cλy + c2(x2 — 1),
where cu c2 e S.

We then see that

{ay + c(x2 - 1), by + d(x2 - 1)}

c,{x2 - l)y + c2(x2 - I)2, 6 ^ - l)y + 6 # + d(x2 - 1)}

is in A, and then {y[a + cλ(x2 — I)], (x2 — 1)\bxy + d]} is in A, since
{(α;2 - I)2, 0} and {0, y2} are in A. Therefore

w = {0, (α;2 - l)[6 l t f - cx{x2 - 1) + (d - a)]}

= {y[a + cλ{x2 - 1 ) ] , {x2 - l ) ( b i y + d)} - [ a + cλ{x2 -

is in A. Write d — a = X(x + 1) + μ(x — 1) + u, where λ, μ e K and
ueQ. Then, using once again the facts that (x + l)/2 and (α: — l)/2
are orthogonal idempotents modulo Q and Q4 = 0, we obtain that
{0, X(x + l)(x2 - lfy} = ((1 + aO/2)(#2 - 1) w e A, and hence λ = 0, since
{0, (x + l)(x2 — 1)22/} is not in A. μ = 0 for similar reasons, and therefore
cϊ — α e Q; i.e., a = d(mod Q). But then tx = ad — be = ad = a2 (mod Q),
since 6, c 6 Q. Recall now that S/Q = Kx 0 ίΓ2, where JKi ̂  if ^ K2.
Let εx, ε2 be the units of Klf K2, respectively; then, under the isomor-
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phism just mentioned, (1 + a?)/2 maps onto εx and (1 — a?)/2 maps onto
ε2, in which case x = (1 + x)/2 — (1 — x)/2 maps onto εx — ε2. We have
thus shown that there exists a e Kx 0 K2 such that a2 = ίβj — tε2. This
can be true only if both t and — t have square roots in K. But this
is impossible unless t = 0, and so we have reached a contradiction.
Therefore 0 cannot exist, and the proof of the lemma is complete.

PROPOSITION 4.2. Let R = K[x, y], where K is the field of real
numbers, and set I = ((x2 — I)3, (x2 — 1)V, y*), an ideal in R. Let
F = i? 0 iϋ, and define submodules A', 1?' of F to be generated by the
rows of the following matrices—

and let A = A! + IF, £ = β' + IF. Then A 0 i? ^ 5 0 R, but A ^ B.

Proof. Set S = R/I; then F/IF&SξBS, a free S-module. Define a
mapping φ: F/IF—^F/IF by <£>({M, }̂) = {xu, v}. φ is an endomorphism of
F/IF, and det(<p) = x, which is a unit of S; hence ^ is an automorphism.
Furthermore, φ(AjIF) = B/IF, from which it follows that F/A ^ F/B.
Therefore, A 0 F ^ J 5 0 F , by the the theorem of Schanuel [7]. We
may then apply Theorem 3.6 to conclude that AQ)R&B(&R.

Suppose now that A *** B. It is easy to see that rank (I) = 2; hence,
since IFgAΠ-B, we have from the corollary to Proposition 2.1 that
the isomorphism between A and B can be extended to an automorphism
Θ of F. Then det(#) = teK, since K contains every unit of R. Re-
ducing modulo I, we obtain an automorphism θf of FjIF such that
Θ'(A/IF) = B/IF and det(tf') = t. But this contradicts Lemma 4.1 as
applied to S, F/IFf A/IF, and B\IF. Hence A <& B, completing the
proof of the proposition.

In closing, we remark that it is not difficult to see that Theorems
3.6 and 3.7 do not hold for a ring of polynomials in more than two
variables.
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