ON PERMUTATIONS INDUCED BY LINEAR
VALUE FUNCTIONS

STEWART S. CAIRNS

1. Background and statement of the problem. Consider a set of
n objects, symbolized by the integers

1.1) N=(1,---,n).

Let v; be a real number to be called the value of object 7 (1 =1, ---, n).
The value of J = (¢,, +++,%;) € N will mean

1.2) w(J) = 2 iy
and the value of the null set J, is
(1.3) () =0

The present paper is partly motivated by its bearing on linear
programming problems in which a subset of N is sought, having a
maximum value among all subsets satisfying some given restriction; for
example, a condition of the form >}, w,, < W. In this restriction, w
might be the weight of object 7, and one would be seeking a subset
of maximum value among those with a given upper bound on their total
weights. In many applications, »; and w; are positive, but we do not
impose this condition at present.

Let {J} be the set of all the 2" subsets of N. Given Je{J}, we
will denote with [J] the set of all subsets of N each having the same
value as J. Thus {J} is partitioned into equivalence classes, each of
the form

(1.4) [J]={K c N|v(K) =vJ)}.

These equivalence classes are ordered by the relation <, to be read
precedes, defined thus:

(1.5) [J]<[K] if o(J) < v(K).

(A) We will denote by 7(V;[J]) the permutation of the equivalence
classes in which they are arranged in order of increasing values; that
is, [J] comes before [K] if [J] < [K].

Received September 28, 1961. This is a revision of a paper written in 1955 at the
RAND Corporation (RAND No. P-735) and presented to the American Mathematical Society,
December, 1955. The title, before revison, was ‘‘On the Partition of the Vertices of an
n-Cube by an (n — 1)-Plane.”

415



416 STEWART S. CAIRNS

(B) There exists only one equivalence class, [J] = {J}, if and only
if v,=0(@ =1, ---,n). Hereafter, we exclude this trivial case from
consideration and assume!

(1.6) v >0.

We next define a geometric interpretation. Let {p} be the set of
vertices of the unit cube

(1.7) C:0s2, <1 (=1, m)

in a euclidean n-space E™ with coordinate system (x, ---,z,). With
each Je{J}, we associate the vertex p(J) with coordinates

1 if 2ed

(1.8) v =1, ied.

Conversely, we denote with J(p) the subset of N defined by
(1.9) Jp) ={ilz;=1 at p,pe{p}},

(C) There is thus a one-to-one mapping J — p(J), with inverse
» — J(p), of the 2" subsets {J} of N onto the 2" vertices {p} of C. The
value of J(p) equals the value of > v, at p.

Condition (1.6) implies that V determines a 1-parameter family of
parallel hyperplanes

(1.10) L*Yc¢): D v, =c¢

which fiber E".
For each vertex pe{p}, let v(p) denote the value such that
pe L (v(p)). We refer to v(p) as the value of p. Let

(1.11) [q] = {pe{p}v(D) = v(q)} .

Thus {p} is partitioned into equivalence classes [¢], which are the images
of the classes [J] under the mapping of {J} — {p} which takes J into
p(J). We define < for these classes of vertices by

(1.12) [p] <[q] if »(p) <(q9),

and we denote by [I(V;[p]) the permutation defined exactly as in (A)
with p, q replacing J, K.

(D) Thus a study of the permutations II(V;[p]) is entirely equiva-
lent to a study of the permutations ||(V;[J]). Geometrically, [p] is the
set of all vertices of C on the hyperplane L ' (v(p)); and II(V;[p]) is
the arrangement of the classes [p] in the order in which the hyperplane

1 Throughout this paper, X" , is abbreviated to ..

=1
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L™(¢) passes through them as the parameter ¢ increases from a value
less than min »(p) to a value exceeding max v(p).

2. Some simplifying hypotheses. We will refer to V = (v,, ++-, v,),
in the above notation, as a value set, and to the function v on {J},
defined by (1.2), as the corresponding wvalue function.

If ¢ is not in the subset J = (4,, - -, ¢;) of N, then (¢, 4y, -+, ¢;) € [J]
if and only if v, = 0.

(A) We assume hereafter that v, +0 (¢ =1, -+-,n), since the
foregoing statement makes it easy to extend our results to cases where
some v’s equal zero.

Let (v, +--,v; ,) be the positive and (v,, -+, v,) the negative
numbers in the value set V = (v, ---,,). Then

min v(p) = 3, = min v(J) = vy, + -+, )
2.1) i
max v(p) = X, v; = max v(J) = v(iy, -+, 1) .

Furthermore, v(p) assumes its minimum only at the point where
T, =1, £, =0(r=1,-+,ks=1,---,7), and its maximum only at the
diametrically opposite vertex, where x, =0 and z; = 1.

Consider the transformation from (z,, ---, z,) to a coordinate system
Yy, -+, ¥,) defined by

Yn, =1 — X, (r=1,---,k

2.2) .
Yi, = @5, (3:1,...’]).

In terms of the new system, the hyperplane L"*(c) is defined by

2.3) Swy; =d
where
Wy, = —Vp, (r=1, -+, k)
(2.4) w;, = v, (s=1,--+,9)
d=c¢— Tél'v,br .

Hence, if we know the permutation II(W,[J]), we can deduce from
it the permutation II(V,[J]), as follows: The t¢th element [J,] of
I(V,[J]) is obtained from the tth element, [K,] of /I(W,[J]) by the
formula

@5)  Ki=(J. N (e G U (b ooey b)) — I 0 (R ooy )
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(B) Thus the problem of finding an arbitrary II(V,[J]) is reduced
to the case where v; >0 (¢ =1, ---,n), a condition hereafter assumed.

LEMMA 2,1, Let V= (v, +++,v,) be an arbitrary value set, and
let 6 > 0 be arbitrarily small. Then there exists a value set W =
(wyy +++, w,), such that | w; —v;| < 0, and that W assigns 2" different
values to the 2" different subsets {J} of N.

Proof. Hypothesis: For some k > 0, there exist real numbers
(ws, +++, w,—) such that the sums (w; + --- + w;), as (4, +-+, ¢;) ranges
over all 2t~! subsets of (1, -+, k — 1), are all different, where the sum
is defined as zero when (%, -+, ¢;) is the vacuous set.

Now consider the numbers o;(t =1, - -+, 2%) consisting of these 2!
sums and the 2*' numbers obtained by adding v, to each of them. If
the o, are all different, let w, = v,. If not, then let w, be chosen so
that 0 < |w, — v, ] < J, and that |w, — v,| is less than the smallest
nonzero difference |o; — 0;|. Then (w, ---, w,) is easily seen to satisfy
the condition in the hypothesis with £ + 1 in place of k.

This completes Step k& of an inductive argument. In Step 1,
(w,, +++, w,_,) is vacuous, and the hypothesis is trivially fulfilled. Step
n yields the lemma.

The condition |w; — v;| < é implies, by (1.2), |w(J) — v(J)| < j9,
where j is the number of objects in J. Hence, for each Je{J},
|w(J) — v(J)| < nd. Now, let » equal the smallest non zero difference
of the form |v(J) — v»(K)| as (J, K) range over all pairs of subsets of
N, and let ¢ be less than 7/4n. Then,

(@) o(J) # vK)=|v(J) — oK) z 7= [wlJ) — wK)| > 7/2.

B 1) o) = oK) o) — oK) | = 0> () — w(E) | < 72 .

Otherwise expressed, given Je{J}, the equivalence class [J] consists
of all those subsets K of N for which |w(J) — w(K)| < 7/2. In the
permutation of {J} determined by W, these elements are consecutive,
since they clearly can not be separated by elements whose w-values
differ by more than 7/2 from w(J).

(C) This motivates the assumption, which we hereafter make, that
w(J) + v(K) if J=+ K. For, Lemma 2.1 permits us to shift to this case
from the general case by an arbitrarily small perturbation of the value
function, after which we can shift back by amalgamating into equiva-
lence classes those elements of {J} whose w-values are almost equal, in
the sense of (2.6d).

(D) Finally, we assume v, < -+ < v,. The general case can be
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solved with the aid of this one by (1) renumbering the objects in the
set N in order of increasing values, (2) finding the corresponding permu-
tation, then (3) returning to the original numbering to obtain (V, [J]).

(E) Combining (A), (B), (C) and (D), we assume hereafter that
(2.7) O<1)1<...<Q)n

and that v(J) + v(K) if J + K. This implies that each equivalence
class [J] consists of a single subset J of N. We accordingly write,
hereafter, II(V,J) instead of I(V,][J]).

3. Some properties of special value permutations. A special value
permutation will mean a permutation [I(V, J), or II(V, p), subject to
§2 (E). The set of all special value permutations will be denoted by

{11}.

(A) Let J, be the vacuous set and Jy»_, the entire set N = (1, -+, n).
Correspondingly, let p, be the origin and p,._, the point (1, ---,1). Then,
each 7I1(V, J) or [I(V, p) commences with J, or p, and terminates with
Jm_y OF Dyn_y.

(B) For c real, let

{p}. = {p|v(p) < ¢}
{J}e ={J|v(J) < ¢c}.

Then, (1) {p}, and {J}, are vacuous, and (2) as ¢ increases from 0 to
1+ 3 v;, the elements of {p} and of {J} are adjoined to {p}, and to {J},
in the order of their occurrence in II(V, p) and II{V, J} respectively.

(3.1)

(C) Convention. A nonvacuous subset Je{J} of N will sometimes
be denoted by its elements, juxtaposed and written in order of increasing
magnitude, thus;

3.2) J=1+++19; where 0<i, <+ <1i;=n).

The vacuous subset will be denoted by J, =0. These symbols could
also be interpreted as representing integers in the number system with
radix » + 1, to be called the (n + 1)-system. When so interpreted, J
will be modified by a star, thus:

J* =il.-.ij=§ih(n+1)f-h
=1
=20

(3.3)

The use of %, -+ %; for both J and J* should cause no confusion, since
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II(V, J) could be interpreted as a permutation 7I(V, J*) of the 2* num-
bers {J*} = {J*|Je{J}}.

LEmMA 3.1. Let (JF, <+, Jii_)) be the numbers {J*} arranged in
order of increasing magnitude. The special value set V, = (v, ++-, v,)
defined by

v =X+ 1y G=1-m)
(8.4) j digits n — j digits
m—t— —_——
=11.-+1 0---0 (tn the (n + 1)-system)

yields the permutation
(3.5) Hy(J)=1(Vy, J) = oy iy o,y Jone, .
For example, if n = 4,
8.6) I1I(J)=0,1,2,3,4,12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234

Proof. Let J =j,+++J, be an element of {J}. Then (see (B) above)
J joins {J}, as ¢ increases through the value

W) = S o=

(.71) (.72: .71) (.73 1.72) (.7n _jn—l)(n“jh,)
hh <+« h (h_]_)...(h_l) (h_2)...(h_2)...11...1 0+ 0

3.7

in the (n + 1)-system. To complete the proof, it is sufficient to show
that v(J) > v»(K) if and only if J* > K*. To see this, first note that
the initial digit of #(J) equals the number of elements in J, so that
v(J) > v(K) if J contains more elements than K. If J and K contain
the same number % of elements, then ¥(J) and v(K) both have h for
initial digit. If, in addition, J* > K* then it is easily seen that the
first corresponding unequal digits of v(J) and v(K) are of the forms
h — 14 and b — ¢ — 1, respectively. The proof is easy to complete.

LemMA 3.2. Let J, H, K be elements of {J}. Then, in II(V,J),
subject to §2 (E)

(a) J<xJUK unless K < J

b J<K&SJUH<KUH of JNH=KNH=J,

(¢) JXK=JUH<KUH +f JOHDKNH

d J<K&ESK' < J' where J' and K' are the respective com.-
plements of J and K in N.

(e) Jisk(i=1,--+,h)=(, coe, gn) < (kyy oo k), f 5. < ki for
some 1.
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Proof. Parts (a), (b), (¢c) and (d) follow from v, > 0. Part (e) is
a consequence of (2.7).

To illustrate the lemma, note that (1,3,6) < (1,2,3,6,7) by part
(a). By part (e), (1,8,6) <(2,3,7) <(8,4,9). Since (2,3) < (4,5) by
part (e), it follows from part (a) and the transitivity of the relationship
< that (2,3) < (1,4,5). Also if, in some [I(V,J),(1,4,6) <(1,3,7),
then, by (b), (4,6) < (3,7), (2,4,6)<(2,3,7) and, using (b) and (e),
1,4,5,6,8) < (2,3,5,1, 8).

COROLLARY. In each special value permutation, the last 2" ele-
ments, in reverse order, are the complements with respect to N =
1,2, ---,n) of the first 2", :

This follows from part (d) of the lemma. From a geometric view-
point, if J and K are complementary, then p(J) and p(K) are opposite
vertices of C; that is, they are symmetric in (1/2,1/2, ---,1/2). They
are therefore equidistant from and separated by the (» — 1)-plane

(3.8) Svx; =1/2 3 v, .

Therefore, (1) the vertices of C not in {p}s,,. are opposite those in {p}s, .,
and (2) as ¢ increases from 0 to a value exceeding >, v;,, L"'(c) passes
through the vertices not in {p}y,,. in the reverse of the order in which
it passes through their respective opposite vertices.

(D) This geometric proof implies that the corollary holds for
11{V, [J]}, independently of the hypotheses in §2 (E).

LEMMA 3.3. A permutation II of the elements of {J} is a special
value permutation if and only if the following inequalities are con-
ststent

(3.10) (@) 0<y, < - <,
) (b)y Sv; <kZ v,  if J precedes K in II.
JjET €K
In such case, I1 = II(V,J) for each value set V satisfying (3.10).
This lemma follows directly from the definitions.

COROLLARY. If m > 1, each special value permutation commences
with 0,1, 2 and terminates with 134 ««+m, 234 «-«m, 123 -+ 0.

4. A recurrency. The cases n < 5. To distinguish among different
values of n, we will sometimes use {/7"}, instead of merely {/I} to denote
the set of all special value permutations of subsets of N=(1, .-+, n).
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For n <4, we have

(I}:01
(41) {I%:01212
(1% = I1}, 1} where I[I}=012 312 13 23 123
m=012123 13 23 123

(A) In studying the relationship between {/I*~'} and {/I"}, we will
use the symbol HI"(v,, ++.,»,) for H(V,J) and II" (v, -+, v,,) for
uv',J", where V'=(w, +--,v,,) and J’ is generic notation for a
subset of N'=(1, +++,n — 1).

LeMMA 4.1. The sequence II" (v, +++,v,.) s obtainable from
II*(v,, «++,v,) by deleting from the latter each J which contains the
element m. The sequence of deleted elements is obtainable, in order,
by adjoining n to each J' in the sequence IT" (v, +«++, V,_y).

This follows directly from the definitions of the sequences in terms
of the respective value functions defined by V' on {J'} and by V on
{J}. It also follows geometrically, with the aid of the fact that the
plane L™ (c), defined by (1.10), intersects the (» — 1)-planes %, = 0 and
%, = 1, respectively, in a pair of parallel (n — 2)-planes. The (n — 2)-
plane for z,=0 is the L**c) corresponding to (V’, J’). Because of the
parallelism, the (n — 2)-plane for x, = 1 passes through the sequence of
vertices corresponding to the deleted elements in the order specified by
the lemma.

To illustrate, let

4.2) vy, vy, v;,v)=0123 12 4 13 14 23 24 123
34 124 134 234 1234 .
Then
(4.3) (v, v,,v,) =012 8 12 13 23 128 = II} [see (4.1)]

and the complementary subsequence of [7%(V) is, in accordance with
Lemma 4.1,

(4.4) II' = 4 14 24 34 124 134 234 1234

(B) Let IIe{Ill™}, and let II' be obtained from II by adjoining n»
to each element of the latter; just as II’ in (4.4) is obtained by adjoining
4 to each element in (4.8). If IT* is a permutation of {J} with /7, II
for complementary subsequences, then it will be said that II* is obtained
by meshing IT and II'. An admissible meshing is one whose associated
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inequalities (8.10) are consistent; that is, one for which I7* e {II"}.

LeMMA 4.2. In the notation of (A), let II' be admissibly meshed
with II in all possible ways for each II € {II**}. The resulting permu-
tations I1* of {J} are all different and constitute the set {I1"}.

Proof. Two different meshings of IT and II’ obviously yield different
permutations. If 1} results from meshing II, with I} and IT} results
from meshing 11, with II; where II, + II,, then, obviously, I} + II}.
That we obtain all of {/I"} follows from Lemma 4.1.

(C) Lemma 4.2 yields a recurrent procedure for passing from {II™'}

to {II"}, whose practicability depends on an analysis of admissible
meshings.

To illustrate, we obtain {/I*} from {/I°}. We start with I} and the
associated I’ in (4.4). As a consequence of Lemma 8.2, Corollary, it
suffices to write the first 8 terms, instead of all 16, for each meshing.
Since 23 < 24 in every II € {II*}, by Lemma 3.2 (e), the element 24 cannot
be in the first half of an admissible meshing. Hence our task reduces
to inserting 4 and 14 into II? in all ways consistent with the definition
of admissibility. Since 3 <4 and 13 < 14, the only conceivable possi-
bilities are

Ii=0123841213 14 --- [The second half
Hi=012341213 23... of each II1is
Mi=012312413 14-.. ggencg‘;lf;j;‘ima
I:=012812413 23+..
I:=012381213414.-.
M¢=01231213423--.
M:6=0123121323 4.-.
I¢=01231213 23 123 .--

(4.5)

Similarly, the only conceivable possibilities resulting from /I3 are

II;=012123413 14 ...
m=01212341323..
II;=012123 1834 14 ---
I, =012123 134 23 .--
I, =012123 13 23 4 ---
Im;,=012123 13 23 123 - ..

(4.6)

To verify that all these possibilities are realized, hence that {/7%
consists precisely of these fourteen permutations, it suffices to check
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the consistency of a set of defining inequalities among the v’s. Now
! is determined by each (v,, v,, v;) such that

(47) 0< << v,<v+9,.

We obtain /1¢ by imposing on v, the conditions v, < v, < v, + v, and
V0 < 0+ 0 < Vg + Vg, OF

(4.8) v, < v, < min (v; + vy, v; + v, — vy) [for 1]

which are clearly consistent with (4.7). For IIi, the conditions on v,
are v, < v, < v, +v, and v, + v; < v, + v, or

4.9) Ve + v, — v, < v, < v+ v,
which can be satisfied if and only if
(4.10) v, < 20, .

Proceeding thus with the eight permutations (4.5) we arrive at the
following:

Necessary conditions on
) (01, v2, vs) for IT* Conditions on vy for 7}
1 4.7 v < vy < min (V1 + vz, v2 + vs — V1)
6 4.7) vs > max (v1 + Ve, V2 + vz — v1)
7 4.7 V2 + vs < ve <1+ V2t Vs
8 4.7) 1+ vz + v3 < v
2 (4.7), vs < 20 Ve + V3 — V1 < Vs < V1 + V2
3 4.7), vs > 20 V1 + v2 < v4 < min (V1 + vs, V2 + V3 — V1)
4 4.7), va < 2v max (V1 + vz, v2 + v3 — v1) < vs < V1 + Vs
5 4.7), v2 > 20 v+ vs < vs < V2t vz — 1

In the following similar tabulation for the six permutations (4.6), con-
dition (4.7) is replaced by

(4.11) 0<0, <0< +v,<0,

which is the defining condition for I73.

i Necessary for I7? Condition on v, for 7}

9 (4.11) V3 < Vs < V2 + V3 — V1

12 (4.11) max (v1 + Vs, V2 + Vs — v1) < vs < V1 + V2 + V3
13 (4.11) Ve + Vs < Ve <1+ V2t s

14 (4.11) V14 V2 + v3 < v

10 (4.11), v2 < 20y max (vs, v2 + v3 — v1) < v < V1 + V3

11 (4.11), vz > 2v; v+ vs < v < v+ Vs — V1
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Geometrically, v, < 2v,, for example, signifies that the 3-plane L*(c),
as ¢ increases, passes through the mid point of the edge from p,: (0, 0, 0, 0)
to p,: (0, 0,1, 0) before it passes through the vertex »,;:(1,0,0,0), and
v, > 20, means that it passes through these two points in the reverse
order. Similar interpretations hold for the conditions v, < 2v;, and v, >
2v, in the above tables.

LeMMA 4.3. If the condition v, < v, < v, < v, ©s dropped, and the
condition that J #+ K implies v(J) + v(K) s retained, the set {II(V, J)}
~consists of 336 = (4/)(14) permutations.

Proof. Case I (v;>0;72=1,2,3,4). In this case, Lemma 4.3
follows from § 2 (B). The 336 permutations can be denoted by 74(5.5.7:74)
(t=1,-+-,14) as (41, 7,, Js, J.) ranges over the 24 permutations of (1,2, 3,4),
where I14j.J,7.7.) is obtained by replacing h by j, in each element of
Mih =1, 2,8, 4).

The general case follows from Case I by § 2 (B).

5. Applications, interpretations, generalizations.

LEMMA 5.1. Let v(n) denote the number of permutations in the
set {II"}. If the condition v, < v, < +++ < v, is dropped, and the con-
dition that J =+ K implies v(J) # v(K) is retained, the set {II(V, J)}
consists of (nl)v(n) permutations.

The proof of Lemma 4.3 directly generalizes to Lemma 5.1.

(A) Let V=(v,---,v,) and W= (w, +--, w,) be two special value
sets, with v and w denoting the corresponding value functions. Suppose
it is desired to find a subset J of N which maximizes v(J) subject to
a restriction of the form w(J) < d, a constant. Suppose the permutations

(@) IV, J)=1Jy =+, iy
(b) H( W9 J) = Km ) Kz”—l

are known. Let K, K,, --+, K, be the subsequence of II(W, J) such
that w(K,) < d and w(K,.,) = d.

Then the K, (¢ < #¢) which is farthest out in 7I(V, J) solves the
problem. For n = 4, solutions are thus readily obtained from (4.5) and
(4.6). The material in §2 permits a passage from special to general
value sets.

In principle, the method whereby the fourteen sequences {/I‘} were
obtained from the two sequences {/I°} can be used to pass from {/1"}
to {II"} for n = 5,6, -++; but it becomes more and more cumbersome as

(5.1)
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7 increases.
We next offer some geometric interpretations.

(B) Given a value set V, not necessarily special, we will denote
by I'(c) the convex hull of the set of points {p}, defined in (3.1). Two
such convex hulls, corresponding to different value sets V and W, are
of the same type if they are congruent. From § 2, it follows that at
least one representative of each type is obtained as V ranges over all
special value sets and ¢ ranges over the nonnegative reals. A particular
I'(c) is carried into all others of the same type by the euclidian transfor-
mations of the n-cube C onto itself.

THEOREM 5.1. In the case n = 4, there are exactly 27 types of
convex hull I'(c).

Proof. As a consequence of (B), the vertices of each I'(c) correspond
to the first £ terms (0 < %k < 16) of one of the permutations II(t =
1, - .-, 14) listed in (4.5) and (4.6). Conversely, each such set of k& terms
corresponds to the vertices of some I'(¢). It is now a simple matter to
verify Theorem 5.1 directly, and to list the 27 types: simplexes of dimen-
sions =4, solid k-cubes (k = 2, 8, 4), various pyramids and wedges, and
S0 on,

(C) In connection with the maximum value problem suggested in
(A), let I denote the convex hull determined by w(K) < d, and let
'y, Iy +++, 'ym_, be the successive convex hulls determined by v(J) < ¢
as ¢ increases. In the sequence of intersections I'nN/7"; (¢+=0,1,..-,2"—1),
the first is vacuous, since 7', = ¢, and the last equals ", since I'yn, =
C. Let I' N I'; be the first intersection in this sequence which concides
with I. If V is a special value set, then I N [I"; has just one vertex
which is not on I" N I";_,, and that vertex corresponds to the solution
of the problem. If V is not a special value set, 7" N I"; may have
more than one vertex not on /" N I'";_,, and each such vertex corresponds
to a solution.

(D) Let Cy* and C?* be the two faces of the n-cube C = C" on
which %, = 0 and x, = 1, respectively. Let II = II(V, J) be a special
value permutation, and let I"(c) and I"(c’) (¢’ > ¢) be convex hulls both
on C* and both associated with the same permutation /7 € {I/*~'}. Let
I'(c) be the projection of I'((c) on Cr~'. Then (1) the convex hull of
I'(e) U I'(c) is a I'(c) associated with some permutation I7* € {/{I"} and
(2) a representative of each type of I'(¢) is thus obtainable.

The 27 types of I'(¢) for n =4, together with their associated
permutations, thus lead to all the types of I'(¢c) for » =5. To pass
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similarly to n = 6, we need to know not only the types for n =5 but
which pairs of them arise from identical permutations.

(E) The following method of linear representation might prove
fruitful. For a given special value set V, let the 2" values {v(J)|J < N}
be plotted as points on an z-axis, and let ¥(J) denote both the point
and the value. The points are ordered just like the corresponding sets
{J} in the permutation 7(V, J). They constitute a linear representation
of II(V,J).

Consider two elements, J and K, of {J}, and let

J—=IJNK)=Fy+*3.(0< < 2+ < Ja)
K—JNK)=ky+ o ka(0< by < ++s <kg).
The difference

(5.2)

(5.3) WK) = o(J) = (0, + + 2+ + vip) — (0j, + +o+ + ;)

measures the directed distance »(J)v(K). This difference will be called
essentially positive, essentially megative or indeterminate according as
the condition

(5.4) 0<y, < ee <,

implies that it is positive, implies that it is negative, or is consistent
with both possibilities. These three cases respectively imply that J < K
or that K < J in every II e{Il}, or that both possibilities are realized
among the permutations {/I}.

LEMMA 5.2, Let
(5.5) JU K= (%, *+**, latpiy) 0<< < ’iw+5+y .

If (1) for each h, (i,, *++, tyipry) COntains at least as many k’s as j’s,
then v(K) — v(J) is essentially positive. If (2) for each h, (i, +++, Tarpiy)
contains at least as many j’s as k’s then v(K) — v(J) is essentially
negative. If (8) h, h' exist such that (i,, +++, laipsy) CONtains more k’s
than j’s and (i, »++, taipsy) cOntains more j’s than k’s, then v(K) — v(J)
18 indeterminate.

Proof. Condition (1) implies that 8= «a. It also implies that
(kB > jw)y (kﬁ—l > jw—l), ey (kﬁ—w > j0)° Hence,

(5.6) oK) = o) = 5 ey, — 03, )+ 3y 0> 0.

Similarly, condition (2) implies « = 8 and (j, > kg), * -+, (Ju_s > ko), SO
that
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G.7) oK) — o(J) = g @y, — V5,_) — _2:1 v;, < 0.

Now assume condition (3) and suppose kg > Jj, so that Vig — Vg, > 0.
Then v(K) — v(J) can be made positive merely by adding a sufficiently
large w > 0 to each v, (¢ = j). This increases the first term of (5.6)
or (5.7) by w, without changing the value of any subsequent term.
How, still supposing ks > j., let 2 be the largest integer such that
(%, ***, Tutpsy) contains more j’s than k’s. Then (¢n4q, ***, Tatpsy) CON-
tains exactly as many j’s as k’s. Also, the first (o« + 8 + v — h) terms
of (5.6) or (5.7) are essentially positive, while the next term, (v,, — v;,
for some s, t or —Vig_ s is essentially negative. By adding a suf-
ficiently large w to v; (¢ = j,), we can make (v,, —v;) <0 or —v;, as
numerically large as desired, without changing any other terms of (5.6)
or (5.7). The proof is easy to complete.

The analysis commenced in this paper could be continued in various
ways. The author is publishing it as it stands with the thought that
others may wish to refiine and extend it.
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