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1. Statement of results. It is an interesting question to determine
which of the properties universally valid for Lie groups are also uni-
versally valid for iϊ-spaces. Typical of such properties is the result,
recently proved by one of us [3; Theorem 6.11], that if X is an arcwise
connected iJ-space with finitely generated integral homology, then π2(X) =
0, which generalizes a well known result of E. Cartan [4] asserting
that the second homotopy group of a Lie group is zero.

In [3; § 7] it is also shown that in an arcwise connected if-space
with finitely generated integral homology, the Poincare duality theorem
holds. Thus, such iϊ-spaces seem to have many of the properties of
group manifolds, and one can speculate as to whether they have other
properties of such spaces. One might conjecture that a manifold which
is an iϊ-space is parallelizable. This is false as shown by the following
example pointed out to us by J. Milnor.

The S7 bundles over S4 with structure group S0(8) are in one-to-one
correspondence with the elements of π3(S0(8)), which is infinite cyclic
[2]. If a e τr3(S0(8)), let ξa denote the corresponding S7 bundle over S\
The fiber homotopy type of ξa depends only on Jaeπn(S8) by [5]. Since
πn(S8) is a finite group, there is an element a0eπ3(S0(8)) such that ξaQ

is not trivial but is fiber homotopy trivial (simply take a0 to be 24 times
a generator of τr3(S0(8))). The Pontrjagin class p± e H\S4) of | # 0 is non-
zero [6]. Let / : S1 x S3—>S4 be a map of degree one, and let η be
the bundle f*(ξΛ) induced over S1 x S\ and let X be its total space.
Since ξaQ is fiber homotopy trivial, so is η, so its total space X has the
homotopy type of S1 x Ss x S7, which is an iϊ-space, and hence X itself
is an ίZ-space. On the other hand, because the Pontrjagin class /*Pi of
Ύ] is nontrivial, it follows that the Pontrjagin class of the tangent bundle
to X is nontrivial so X is not parallelizable.

The above example is also an example of a manifold which is an
ZZ-space but is not a 7Γ-manifold (i.e. its stable tangent bundle is not
trivial). However, we shall show that the stable tangent bundle of such
a manifold is fiber homotopy trivial. This follows from results in [8]
and the fact that an iϊ-space is self-dual in the sense defined below.

If A and B are spaces with base points α0 e A, bQe B, then A\/B
will denote the subspace A x b0 U a0 x B of A x B, and A # B will
denote the space obtained from A x B by collapsing A V B to a point.
If A is a space, A+ will denote the disjoint union of A and a base point.
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Finite polyhedra A and B will be said to be S-dual if for some n there
is an S-map u: A+ # B+ —> Sn (i.e. a map of some suspension of A+ # i?+

into the corresponding suspension of Sn) such that if s* is a generator
of Hn{Sn), then the slant product

u*s*l : i7,(A+) -> Hn'k(B+)

is an isomorphism (where all the homology and cohomology groups are
understood to be modulo base points), u is a duality map in the sense
of [9], and the results of [9] remain valid even though A+, B+ are not con-
nected (connectedness being an unnecessary restriction throughout [9]).
Since A+ # B+ = (A x B)+, the existence of such an S-map u would
follow from the existence of a map f: A x B—>Sn such that

/*8*/: Hk(A) ~ H*-*(B)

where the homology and cohomology groups are absolute groups.
An H-space is a topological space X together with a continuous

multiplication μ: X x X—+X having a unit element. A polyhedral H-
space will mean an iϊ-space which is a finite polyhedron. Our main
result is:

THEOREM 1. If X is a connected polyhedral H-space, then X is
S-dual to X.

It follows immediately from this and [8; Theorem 1] that:

COROLLARY 1. If X is a compact connected manifold which is an
H-space, then its stable tangent bundle is fiber homotopy trivial.

In [3; Corollary 7.2] it is shown that if X is a connected ίf-space
with finitely generated homology then for some m, Hm(X) = Z and
Hj(X) = 0 for j > m. A generator of Hm(X) will be called a funda-
mental homology class of X. The following is an easy consequence of
Theorem 1 and [8; Theorem 1]:

COROLLARY 2. A fundamental homology class of a connected poly-
hedral H-space is stably spherical (i.e. there is an S-map Sm —> X of
degree one).

Note that a fundamental homology class of an if-space is not spheri-
cal unless the ίf-space is a homotopy sphere. Even the suspension of
the fundamental class may not be spherical (S0(3) being an example in
which there is no map S4 -> S(S0(3)) of degree one).

Let X be a connected polyhedral H-space. It follows from [3; Corol-
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lary 7.2] that for some ra, Hm(X) = Z and H\X) = 0 for i > m. By
standard obstruction theory it follows that there is a map g:X-+Sm

such that #*s* is a generator of Hm(X). We then define a map
f:XxX->Sm by f=goμ. Theorem 1 follows from the following
special kind of Poincare duality for iϊ-spaces.

THEOREM 2. Let Xbe a connected polyhedral H-space with Hj(X) =0
for j > m and v a generator of the infinite cyclic group Hm(X). Then

μ*(v)l: Hk(X; G) - ff—(X; G)

is an isomorphism for all k and any coefficient group G.

2. Proof of Theorem 2. By the same sort of considerations as in
[3; § 7], to prove Theorem 2 it suffices to show that for every prime p,
the map

μ,: Hk(X; Zp) <g> Hm-k(X; ZP) -> HU(X; Zp)

is a nonsingular pairing. If μ+ were associative and commutative, this
would follow (as it did in [3; §7] for J*: Hm~k(X; Zp) (g) H«(X; Zp) ->
Hm(X; Zp)) from BoreΓs theorem on Hopf algebras [1], In our case this
result will follow by passing to a new Hopf algebra where the multi-
plication map is associative and commutative, applying BoreΓs theorem
to obtain a nonsingular pairing there, and then showing that this gives
the desired nonsingular pairing in the original Hopf algebra. This
technique proves the following algebraic lemma about Hopf algebras,
from which Theorem 2 follows easily.

LEMMA. Let A be a Hopf algebra over Zv, finitely generated over
Zp with Ao — Zp, Am — Zp for some m >0, A3 = 0 for j<0 and j>m,
and having an associative diagonal map ψ: A—* A ® A. Then the
multiplication map

is a nonsingular pairing.

Proof. Since A{ is finitely generated for each i, it suffices to prove
that for any aeAk, (̂α(g) ): Am^k—>Am is nonzero (i.e. that the map of
Ak into At-k induced by φ is a monomorphism).

Let A denote the positive dimensional elements of A and let p: A—>Ά
denote the projection. Define ψ: A—»A (g) A by ψ = (p(£)p)oψ. Define
^ 0 = p: A —• A, ψt — ψ, and inductively, for n > 1,

ψn: i - > ϊ ® (g)ϊ (w + 1 times)
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by ψn = (ψ (g) 1 (g) (g) 1) o ψn_l9 Define an increasing filtration on A
by F« = kernel ψk. Then ί70 = Ao, F1 = primitive elements of A, ί7* c
F ί + 1 and A = \JiF

i (in fact, A* c ί7*). Note that this filtration is dual
to that in [7; 4.15] and hence properties of this filtration may be derived
from those proved in [7]. The hypothesis that the diagonal map ψ: A —•
A (g) A is associative is equivalent to the condition that the dual Hopf
algebra has an associative multiplication, which was an assumption in
[7; 4.15]. Since the dual filtration is compatible with the Hopf algebra
structure of the dual of A, the filtration Fq is compatible with the Hopf
algebra structure of A and the associated graded module E = ΣEq, Eq =
piqjpq-i j s a Hopf algebra (dual to the graded Hopf algebra Eo associated
to the filtration on the dual of A [7]).

It follows from [7; 4.16 and 4.17] that Eo is primitively generated.
This is equivalent to the assertion that the primitive elements of its
dual E are indecomposable. It then follows from [7; Theorem 4.9] that
E is a commutative and associative Hopf algebra so that BoreΓs theorem
[1; Theorem 6.1] (see also [7; Corollary 4. 21]) applies, and so, as in [3;
§7], for any nonzero ae(E)k, a (E)m_k Φ 0. To prove the lemma let
aeFq but a$Fq-\ Then a = {a} Φ 0 in Eq = FqIFq~\ so a •(#)„_* =
{ab\ where beAm-k}Φθ. Therefore, α Am-k Φθ, and the lemma is
proved.
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