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L Introduction, and summary* A probability distribution function
F is said to be infinitely divisible if and only if for every integer n
there is a distribution function Fn whose w-fold convolution is F. If F
is infinitely divisible, its characteristic function / is necessarily of the
form

•( 1) f(u) = exp \iwt + ^ ( β * " - 1 - ^ - j ) - L t ί L dG{x)) ,

where u e (— 00,00), γ is some constant, and G is a bounded, non-
decreasing function. J. R. Blum and M. Rosenblatt [1] have found
necessary and sufficient conditions that F be continuous and necessary
and sufficient conditions that F be discrete. The purpose of this note
is to add to the results of Blum and Rosenblatt by giving sufficient
conditions under which an infinitely divisible probability distribution F
is absolutely continuous. These conditions are that G be discontinuous

at 0 or that +• (llx2)dGac(x) = 00, where Gac is the absolutely continuous
component of G. In § 2 some lemmas will be proved, and in § 3 the
proof of the sufficiency of these conditions will be given. All notation
used here is standard and may be found, for example, in Loeve [2].

2 Some lemmas. In this section three lemmas are proved which
will be used in the following section.

LEMMA 1. If F and H are probability distribution functions, and
if F is absolutely continuous, then the convolution of F and H, F*H,
is absolutely continuous.

This lemma is well known, and the proof is omitted.

LEMMA 2. // {Fn} is a sequence of absolutely continuous distribu-
tion functions, and if pn^l and ££=i Vn — 1> then Σ?=i V«F* is <*>n
absolutely continuous distribution function.

Proof. By using the Lebesgue monotone convergence theorem it
is easy to verify that Σ~=1 pnfn is the density of ΣZ=i PnFn, where fn

is the density of Fn.
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LEMMA 3. Let {Y, Xu X2, •••} be independent random variables.
Assume that the X/s have the same absolutely continuous distribution
F, and assume that the distribution of Y is Poisson with expectation
λ. Then Z = Xτ + + Xγ has a distribution function which has a
saltus e~λ at 0 and is absolutely continuous elsewhere, and has as
characteristic function

fz(u) = expλj~ (eiu* - ϊ)dF(x) .

Proof. Let E(x) be the distribution function degenerate at 0, and
let F*n(x) denote the convolution of F with itself n times. Then it is
easy to see that the distribution function of Z, Fz(z), may be written
as Fz(z) = e~xE(z) + Σ*=i e-λ(Xnlnl)F*n(z). By lemma 1, each F*n is
absolutely continuous and has a density f*n. We need only show that
Ez(z) — e~λE(z) is absolutely continuous. If we write

Fz(z) - e'λE(z) = Σ e-\\ηn\)\Z f*n(t)dt

and apply the Lebesgue monotone convergence theorem we obtain this
conclusion.

3 The theorem* If G is a bounded nondecreasing function used
in (1), then we may write G(x) = Gs(x) + Gae(x), where Gs is a singular
nondecreasing function and Gac(x) is an absolutely continuous non-
decreasing function.

THEOREM. Let F be an infinitely divisible distribution function
with characteristic function (1). Then F is absolutely continuous if
at least one of the following two conditions is satisfied:

(i) G is not continuous at 0, or

(ii) Γ {llx*)dGac{x) = cχ>.
J-oo

Proof. If condition (i) is satisfied, then by Lemma 1 it easily fol-
lows that F is absolutely continuous, since in that case F is a convo-
lution of a normal distribution with another infinitely divisible distri-
bution. We now prove that condition (ii) is sufficient. By Lemma 1 it
is sufficient to prove that the distribution function Fo whose charac-
teristic function is

is absolutely continuous. Let εn > εn+1 > 0 for each n be such that
en —> 0 as n —• co and such that
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λw = ^ ((1 + x*)lx*)dGac(x) > 0 ,

where

Sn = ( - ε ^ , -en] U [en, en_λ) , n = 1, 2, . . . ,

and where ε0 = co. Let Un be a random variable with characteristic
function

/ Q \ n / v f / ^ , , 1 iUX M

and let

((1
(-<*>.x]Γ\8n

One easily sees that λw < oo and that £Γw(α?) is an absolutely continuous
distribution function of a bounded random variable. For each positive
integer n we may write, by Lemma 3, that

Un = XnΛ + Xn>2 + . . . + Xn,zn - \ (llx)dGac(x)

where Zn is a random variable with Poisson distribution with expecta-
tion λn, where {XnΛ, Xn,2, •} have the common absolutely continuous
distribution function Hn(x), and where {Zn, XnΛ9 Xn>2 •} are independent.
If we assume that

{{Zn, XnΛ, Xn.if .••},% = 1,2, -..}

are all independent, then the distribution function of

Uo = Σ Un = £ ( Σ Xnj -\ (llχ)dGac(x))
n=l n = l \j=l JSn /

is equal to Fo. Now let us define a sequence of events {Cn} by

Cr = [Zx Φϋ\, C, = [Z, = 0][Zt Φ 0] ,

and, in general,

These events are easily seen to be disjoint. If we define

( 4 ) Co = ( ϋ C.Y= ή [Z. = 0] ,

then Ω = Un=i Cw, where β is the sure event. The distribution func-
tion of Z70 is



1128 HOWARD G. TUCKER

FUa{u) = Σ P([U0 £ u] I Cn)P(CJ + P([Ut ^ u]C0) .

By (4) and by hypothesis, we obtain

P([U0 ^ u]C0) rg P(C0) = l i m e x p ί - ("8n + \~(llx*)dGae(x)\ = 0 .
n^co I J_co Jsn )

Also, P([ Uo S u] I Cn) is the distribution function of XnΛ + Wn9 where
XnΛ and Wn are independent random variables. Since the distribution
function of XnΛ is absolutely continuous, it follows by Lemma 1 that
P([ Uo ^ u] I Cn) is absolutely continuous for each n. Lemma 2 then
implies that FUQ(U) is absolutely continuous, which concludes the proof
of the theorem.

The condition given in this theorem is not necessary, as is shown
in the following example. Let γ = 0 in (1), and let α, β be real numbers
which satisfy β > 1,1 > a > β/2. For j = 1, 2, , let us denote

Xj = j~* and pj = i " β .

Let G be a pure jump function with jumps at x3- and — x3- of size ρ3

for every i . (The total variation of G is 2 ^ f t < °°.) In this case we
obtain

f(u) - exp 2 Σ (cos J L -

We shall show that there is a constant iΓ such that for all | u \ ̂  π,
the inequality

(5) 0

is true. This is equivalent to showing that

(6) Σ n** + 1 sin2-L -̂L > K\
^ 2tlα

Let us consider, for each fixed | u\ ^ π the integer N defined by

where the square brackets have their usual meaning. It is easy to
verify that 0 < | u |/2iVα < π/2, and thus we may write

\u\

2Γ(2' ΐ t'Y/T



ABSOLUTE CONTINUITY OF INFINITELY DIVISIBLE DISTRIBUTIONS 1129

where K does not depend on u. This inequality implies that inequality (6)
is true, thus implying (5). Inequality (5) implies that f(u) e Lx(— oo, + °°),
which in turn implies that f(u) is the characteristic function of an
absolutely continuous distribution. (See Theorem 3.2.2 on page 40 in
[3].)

I wish to acknowledge several helpful suggestions by my colleague,
Professor H. D. Brunk. The example just outlined was suggested by
the referee to whom I wish to express my appreciation.
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