## EQUALITY IN CERTAIN INEQUALITIES

## MARVIN MARCUS AND AFTON CAYFORD

1. Introduction. Let  $\sigma=(\sigma_1,\cdots,\sigma_n)$  be a point on the unit (n-1)-simplex  $S^{n-1}$ :  $\sum_{i=1}^n \sigma_i=1$ ,  $\sigma_i\geq 0$ . Let  $0<\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$  and  $\mu_1\geq \mu_2\geq \cdots \geq \mu_n>0$  be positive numbers and form the function on  $S^{n-1}$ 

(1.1) 
$$F(\sigma) = \sum_{i=1}^{n} \sigma_i \lambda_i \sum_{i=1}^{n} \sigma_i \mu_i.$$

The main purpose of this paper is to examine the structure of the set of points  $\sigma \in S^{n-1}$  for which  $F(\sigma)$  takes on its maximum value. In case a convex monotone decreasing function f is fitted to the points  $(\lambda_i, \mu_i)$  (i.e.  $f(\lambda_i) = \mu_i$ ),  $i = 1, \dots, n$ , then it is not difficult to show that the maximum for  $F(\sigma)$  on  $S^{n-1}$  is the upper bound given by M. Newman [4] in a recent interesting paper. In the case of the Kantorovich inequality [1] the function f is  $f(t) = t^{-1}$ ,  $\mu_i = \lambda_i^{-1}$ ,  $i = 1, \dots, n$ . In this case a maximizing  $\sigma$  is  $\sigma_1 = 1/2$ ,  $\sigma_n = 1/2$ ,  $\sigma_i = 0$ ,  $i = 2, \dots, n-1$ , and if  $\lambda_1 < \lambda_k < \lambda_n$ ,  $k = 2, \dots, n-1$ , it is a corollary of our main result (Theorem 2) that this is the only choice possible for  $\sigma \in S^{n-1}$  in order to achieve the maximum value.

We shall assume henceforth in this paper that  $\mu_i = f(\lambda_i)$ , i = 1,  $\dots$ , n, where f is a monotone decreasing convex function defined on the closed interval  $[\lambda_1, \lambda_n]$ . In 2 we determine the structure of the set of  $\sigma \in S^{n-1}$  for which  $F(\sigma)$  is a maximum in the case in which f is assumed to be strictly convex. In 3 we investigate the structure of the set of unit vectors x for which the function

$$(1.2) \varphi(x) = (Ax, x)(f(A)x, x)$$

assumes its maximum value on the unit sphere ||x|| = 1. Throughout, A is a positive definite hermitian transformation on an n-dimensional unitary space U with inner product (x, y). The eigenvalues of A are  $\lambda_i$ ,  $0 < \lambda_1 \le \cdots \le \lambda_n$ , with corresponding orthonormal eigenvectors  $u_i$ ,  $Au_i = \lambda_i u_i$ ,  $i = 1, \dots, n$ . Of particular interest in (1.2) is the choice  $f(t) = t^{-p}$ , p > 0.

Finally, in 4, we discuss the applications of the previous results to Grassmann compounds and induced power transformations associated with A. In two recent papers [2, 5] the Kantorovich inequality was applied to the compound to obtain inequalities involving principal subdeterminants of a positive definite hermitian matrix. We shall prove (Theorem 5) that these inequalities are in fact strict except in

trivial cases. Similar inequalities are obtained for the permanent function together with a discussion of the cases of equality. These inequalities are believed to be new.

2. Maximum values for F. In the rest of the paper M will systematically denote the maximum value of  $F(\sigma)$ ,  $\sigma \in S^{n-1}$ , and m will denote the largest of  $\lambda_1 \mu_1$  and  $\lambda_n \mu_n$ . Also,  $\gamma$  will denote the number  $(\lambda_1 \mu_n + \lambda_n \mu_1)/2$ . The main result of this section is Theorem 2 which describes the structure of those  $\sigma$  for which  $F(\sigma) = M$  when f is strictly convex. We first prove

THEOREM 1. For any  $\sigma \in S^{n-1}$  there exists a  $\beta \in [0, 1]$  such that

$$(2.1) F(\sigma) \leq (\beta \lambda_1 + (1-\beta)\lambda_n)(\beta \mu_1 + (1-\beta)\mu_n).$$

If f is strictly convex and for some  $k, 1 \leq k \leq n, \lambda_1 < \lambda_k < \lambda_n$  and  $\sigma_k > 0$  then there exists a  $\beta \in [0, 1]$  for which (2.1) is a strict inequality.

To prove Theorem 1 we use the following elementary fact.

LEMMA. If  $0 \le a_1 \le a_2 \le a_3$ , and  $b_1 \ge b_2 \ge b_3 \ge 0$  and

$$(2.2) (a_1 - a_3)(b_2 - b_3) \ge (a_2 - a_3)(b_1 - b_3)$$

then for any  $\alpha=(\alpha_1,\alpha_2,\alpha_3)\in S^2$  there exists a  $\beta\in[0,1]$  such that

(2.3) 
$$\sum_{i=1}^{3} \alpha_i a_i \sum_{i=1}^{3} \alpha_i b_i \leq (\beta a_1 + (1-\beta)a_2)(\beta b_1 + (1-\beta)b_3).$$

If the inequality (2.2) is strict and  $\alpha_2 > 0$  then there exists a  $\beta \in [0, 1]$  such that (2.3) is strict.

*Proof.* Let  $\theta$  and  $\omega$  in [0,1] be so chosen that  $a_2 = \theta a_1 + (1-\theta)a_3$ ,  $b_2 = \omega b_1 + (1-\omega)b_3$  and set  $b_2' = \theta b_1 + (1-\theta)b_3$ . Then

(2.4) 
$$b_2' - b_2 = (\theta - \omega)(b_1 - b_3).$$

Assume first that  $a_3 > a_2$  and  $b_2 > b_3$ . Then  $\theta = (a_2 - a_3)/(a_1 - a_3) > 0$  and  $\omega = (b_2 - b_3)/(b_1 - b_3)$ . Moreover  $\theta \ge \omega$  by (2.2) and if (2.2) is strict then  $\theta > \omega$ . From (2.4)  $b_2' - b_2 \ge 0$  and we compute that

(2.5) 
$$L \leq ((\alpha_1 + \theta \alpha_2)a_1 + (\alpha_2(1-\theta) + \alpha_3)a_3)$$
$$((\alpha_1 + \theta \alpha_3)b_1 + (\alpha_2(1-\theta) + \alpha_3)b_3),$$

where L is the left side of (2.3). This is (2.3) with  $\beta = \alpha_1 + \theta \alpha_2 \in [0, 1]$ . If (2.2) is strict then  $\theta > \omega$ ,  $b_2' = b_2$ , and  $\alpha_2 > 0$  together imply that (2.5) is strict.

Suppose next that  $a_2 = a_3$ . From (2.2) and  $(a_1 - a_3) \leq 0$  we have

 $(a_1-a_3)(b_2-b_3)=0$  and hence  $a_1=a_3$  or  $b_2=b_3$ . The first alternative yields  $a_1=a_2=a_3$  and thus  $L=a_1\sum_{i=1}^3\alpha_ib_i\leq a_1b_1$  which is (2.3) with  $\beta=1$ . If  $b_2=b_3$  then (2.3) holds with  $\beta=\alpha_1$ . This completes the proof of the lemma.

The proof of Theorem 1 is by induction on n. The first non-trivial case is n=3. In general the convexity of f implies that

$$(2.6) (\lambda_1 - \lambda_3)(\mu_2 - \mu_3) > (\lambda_2 - \lambda_3)(\mu_1 - \mu_3)$$

and (2.6) is strict if  $\lambda_1 < \lambda_2 < \lambda_3$  and f is strictly convex. The inequality (2.1) follows from the lemma. If n > 3 we distinguish the two possibilities  $\sigma_1 + \sigma_2 = 1$  and  $\sigma_1 + \sigma_2 < 1$ . In the first case

$$(2.7) F(\sigma) = (\sigma_1 \lambda_1 + \sigma_2 \lambda_2)(\sigma_1 \mu_1 + \sigma_2 \mu_2).$$

If  $\mu_1 = \mu_n$  and hence  $\mu_i = \mu_1 = \mu_n$ ,  $i = 1, \dots, n$ , then  $F(\sigma) \leq \lambda_n \mu_n$  which is (2.1) with  $\beta = 0$ . If  $\mu_1 > \mu_n$ , and hence  $\lambda_1 < \lambda_n$ , obtain  $\theta$  and  $\omega$  in [0, 1] so that  $\lambda_2 = \theta \lambda_1 + (1 - \theta) \lambda_n$ ,  $\mu_2 = \omega \mu_1 + (1 - \omega) \mu_n$  and set  $\mu_2' = \theta \mu_1 + (1 - \theta) \mu_n$  to obtain

(2.8) 
$$\mu_2' - \mu_2 = (\theta - \omega)(\mu_1 - \mu_n) \ge 0.$$

The convexity of f again implies that  $\theta \ge \omega$  with strictness in case f is strictly convex and  $\lambda_2 > \lambda_n$ . Hence

$$F(\sigma) \leq (\sigma_1 \lambda_1 + (\theta \lambda_1 + (1 - \theta) \lambda_n) \sigma_2) (\sigma_1 \mu_1 + \sigma_2 \mu_2')$$

$$= ((\sigma_1 + \theta \sigma_2) \lambda_1 + (1 - \theta) \sigma_2 \lambda_n) ((\sigma_1 + \theta \sigma_2) \mu_1 + (1 - \theta) \sigma_2 \mu_2)$$

which is (2.1) with  $\beta=\sigma_1+\theta\sigma_2$ . We proceed to the case  $\sigma_1+\sigma_2<1$ . Let  $\lambda_3'=\sum_{i=3}^n\sigma_i\lambda_i/(1-\sigma_1-\sigma_2)$ ,  $\mu_3''=\sum_{i=3}^n\sigma_i\mu_i/(1-\sigma_1-\sigma_2)$  and observe that  $\lambda_1\leq \lambda_2\leq \lambda_3'$ ,  $\mu_1\geq \mu_2\geq \mu_3''$  and  $F(\sigma)=(\sigma_1\lambda_1+\sigma_2\lambda_2+(1-\sigma_1-\sigma_2)\lambda_3')$  ( $\sigma_1\mu_1+\sigma_2\mu_2+(1-\sigma_1-\sigma_2)\mu_3''$ ). We next verify that (2.2) holds for the choices  $\lambda_3'=a_3$ ,  $\lambda_2=a_2$ ,  $\lambda_1=a_1$ ,  $\mu_1=b_1$ ,  $\mu_2=b_2$ ,  $\mu_3''=b_3$ :

(2.9) 
$$\begin{array}{l} (\lambda_1 - \lambda_3)(\mu_2 - \mu_3'') - (\mu_1 - \mu_3'')(\lambda_2 - \lambda_3') \\ = \mu_2(\lambda_1 - \lambda_3') - \mu_1(\lambda_2 - \lambda_3') + \mu_3''(\lambda_2 - \lambda_1) ; \end{array}$$

and

$$\mu_3'' = \sum\limits_{i=3}^n f(\lambda_i) \sigma_i / (1-\sigma_1-\sigma_2) \geq f\Big(\sum\limits_{i=3}^n \lambda_i \sigma_i / (1-\sigma_1-\sigma_2)\Big) = f(\lambda_3') = \mu_3'$$
 .

Hence the expression in (2.9) is at least

$$\mu_{2}(\lambda_{1}-\lambda_{3}')-\mu_{1}(\lambda_{2}-\lambda_{3}')+\mu_{3}'(\lambda_{2}-\lambda_{1}).$$

If  $\lambda_2 = \lambda_3'$  the expression (2.10) reduces to 0 and the expression in (2.9) is nonnegative. If  $\lambda_2 < \lambda_3'$  then  $\lambda_1 < \lambda_3'$  and (2.10) becomes  $(\lambda_1 - \lambda_3')(\lambda_2 - \lambda_3')\{(\mu_2 - \mu_3')/(\lambda_2 - \lambda_3') - (\mu_1 - \mu_3')/(\lambda_1 - \lambda_3')\} \ge 0$ . Apply

the lemma to obtain  $\beta_1 \in [0, 1]$  for which

$$egin{aligned} &(\sigma_1\lambda_1+\sigma_2\lambda_2+(1-\sigma_1-\sigma_2)\lambda_3')(\sigma_1\mu_1+\sigma_2\mu_2+(1-\sigma_1-\sigma_2)\mu_3'')\ &\leq (eta_1\lambda_1+(1-eta_1)\lambda_3')(eta_1\mu_1+(1-eta_1)\mu_3'')\ &=\left(eta_1\lambda_1+\sum\limits_{i=3}^n(1-eta_1)\sigma_1\lambda_i/(1-\sigma_1-\sigma_2)
ight)\ &\left(eta_1\mu_1+\sum\limits_{i=3}^n(1-eta_1)\sigma_i\mu_i/(1-\sigma_1-\sigma_2)
ight). \end{aligned}$$

This last expression is a product of convex combinations of  $\lambda$ 's and  $\mu$ 's involving only n-1 terms and satisfying the induction hypothesis. Hence there exists  $\beta \in [0,1]$  such that

$$egin{aligned} F(\sigma) & \leq \left(eta_1\lambda_1 + \sum\limits_{i=3}^n (1-eta_1)\sigma_i\lambda_i/(1-\sigma_1-\sigma_2)
ight) \ & \left(eta_1\mu_1 + \sum\limits_{i=3}^n (1-eta_1)\sigma_i\mu_i/(1-\sigma_1-\sigma_2)
ight) \leq (eta\lambda_1 + (1-eta)\lambda_n) \ & \left(eta\mu_1 + (1-eta)\mu_n
ight) \,. \end{aligned}$$

This establishes (2.10).

The discussion of the strictness in (2.1) requires the use of (2.1) itself. Let k be the least integer for which both  $\sigma_k > 0$  and  $\lambda_1 < \lambda_k < \lambda_n$ . Then

(2.11) 
$$F(\sigma) = (\alpha_1 \lambda_1 + \alpha_k \lambda_k + \alpha_{k+p} \lambda_{k+p} + \cdots + \alpha_n \lambda_n) \\ (\alpha_1 \mu_1 + \alpha_k \mu_k + \alpha_{k+p} \mu_{k+p} + \cdots + \alpha_n \mu_n)$$

in which  $\alpha_1 + \alpha_k + \alpha_{k+p} + \cdots + \alpha_n = 1$ ,  $\alpha_j = \sigma_j$ , j = k + p,  $\cdots$ , n, and  $\lambda_k < \lambda_{k+p}$ . Assume

$$lpha_1+lpha_k<1$$
, set  $\lambda_{k+p}'=\sum\limits_{i=k+p}^n\sigma_i\lambda_i/(1-lpha_1-lpha_k)$ ,  $\mu_{k+p}''=\sum\limits_{i=k+p}^n\sigma_i\mu_i/(1-lpha_1-lpha_k)$ 

and (2.11) becomes

(2.12) 
$$F(\sigma) = (\alpha_1 \lambda_1 + \alpha_k \lambda_k + (1 - \alpha_1 - \alpha_k) \lambda'_{k+p}) \\ (\alpha_1 \mu_1 + \alpha_k \mu_k + (1 - \alpha_1 - \alpha_k) \mu''_{k+p}).$$

Clearly  $\lambda_1 < \lambda_k < \lambda'_{k+p}$  and we compute that

(2.13) 
$$(\lambda_{1} - \lambda'_{k+p})(\mu_{k} - \mu'_{k+p}) - (\mu_{1} - \mu'_{k+p})(\lambda_{k} - \lambda'_{k+p})$$

$$= \mu_{k}(\lambda_{1} - \lambda'_{k+p}) - \mu_{1}(\lambda_{k} - \lambda'_{k+p}) + \mu''_{k+p}(\lambda_{k} - \lambda_{1}) ;$$

$$(2.14) \qquad \mu''_{k+p} \geq f(\lambda'_{k+p}) = \mu'_{k+p} .$$

It follows that the expression in (2.13) is at least

$$(\lambda_1 - \lambda'_{k+p})(\lambda_k - \lambda'_{k+p})\{(\mu_k - \mu'_{k+p})/(\lambda_k - \lambda'_{k+p}) - (\mu_1 - \mu'_{k+p})/(\lambda_1 - \lambda'_{k+p})\}$$

and in case f is strictly convex this whole expression is positive. The inequality (2.2) holds strictly with  $\lambda_1 = a_1$ ,  $\lambda_k = a_2$ ,  $\lambda'_{k+p} = a_3$ ,  $\mu_1 = b_1$ ,  $\mu_k = b_k$ ,  $\mu'_{k+p} = b_3$  and the strict form of the lemma together with (2.12) implies that there exists  $\beta_1 \in [0, 1]$  such that

$$(2.15) \qquad F(\sigma) < \left(\beta_1 \lambda_1 + \sum_{i=k+p}^n (1-\beta_1) \sigma_i \lambda_i / (1-\alpha_1-\alpha_k)\right) \\ \left(\beta_1 \mu_1 + \sum_{i=k+p}^n (1-\beta_1) \sigma_i \mu_i / (1-\alpha_1-\alpha_k)\right).$$

Now apply (2.1) to the right side of (2.15) to obtain a  $\beta \in [0, 1]$  for which  $F(\sigma) < (\beta \lambda_1 + (1 - \beta)\lambda_n)(\beta \mu_1 + (1 - \beta)\mu_n)$ .

Assume now that  $\alpha_1 + \alpha_k = 1$  and then  $F(\sigma)$  becomes  $(\alpha_1\lambda_1 + (1-\alpha_1)\lambda_k)(\alpha_1\mu_1 + (1-\alpha_1)\mu_k)$ . Choose  $\theta$  and  $\omega$  in [0,1] so that  $\lambda_k = \theta\lambda_1 + (1-\theta)\lambda_n$ ,  $\mu_k = \omega\mu_1 + (1-\omega)\mu_n$ , set  $\mu_k'' = \theta\mu_1 + (1-\theta)\mu_n$  and note that  $\mu_k'' - \mu_k = (\theta-\omega)(\mu_1-\mu_n)$ . Then since f is monotone decreasing and strictly convex,  $\theta-\omega$  and  $\mu_1-\mu_n$  are both positive. It follows that

$$\begin{split} &(\alpha_1\lambda_1 + (1-\alpha_1)\lambda_k)(\alpha_1\mu_1 + (1-\alpha_1)\mu_k) < ((\alpha_1 + \theta(1-\alpha_1))\lambda_1 \\ &+ (1-\theta)(1-\alpha_1)\lambda_n)((\alpha_1 + \theta(1-\alpha_1))\mu_1 + (1-\theta)(1-\alpha_1)\mu_n) \;. \end{split}$$

If the quadratic polynomial in  $\beta$  on the right in (2.1) is maximized in [0, 1] we immediately obtain our main result.

Theorem 2. If

(2.16) 
$$\gamma \geq m \text{ and } \lambda_1 < \lambda_n \text{ and } \mu_1 > \mu_n$$

then

(2.17) 
$$M = (\lambda_n \mu_1 - \lambda_1 \mu_n)/4(\lambda_n - \lambda_1)(\mu_1 - \mu_n).$$

If

$$(2.18) \gamma \leq m \text{ or } \lambda_1 = \lambda_n \text{ or } \mu_1 = \mu_n$$

then

$$(2.19) M=m.$$

Let f be strictly convex and suppose that

$$\lambda_1 = \cdots = \lambda_p < \lambda_{p+1} \leq \cdots \leq \lambda_{n-q} < \lambda_{n-q+1} = \cdots = \lambda_n$$
.

Then  $F(\sigma) = M$ ,  $\sigma \in S^{n-1}$ , if and only if  $\sigma$  has the form

$$\sigma = (\sigma_1, \cdots, \sigma_n, 0, \cdots, 0, \sigma_{n-n+1}, \cdots, \sigma_n)$$

$$\sum_{j=1}^p \sigma_j = \beta_0$$
,  $\sum_{j=n-q+1}^n \sigma_j = 1 - \beta_0$ , where

(2.20) 
$$\beta_0 = \begin{cases} (\gamma - \lambda_n \mu_n)/(\lambda_n - \lambda_1)(\mu_1 - \mu_n) & \text{if (2.16) holds,} \\ 0 & \text{or 1 if (2.18) holds.} \end{cases}$$

We remark that if  $\gamma = m$  then the expression on the right in (2.17) reduces to m.

3. Applications. As customary f(A) will designate the linear transformation defined for any  $x \in U$  by

(3.1) 
$$f(A)x = \sum_{i=1}^{n} \mu_i(x, u_i)u_i, (\mu_i = f(\lambda_i)).$$

On the unit sphere ||x|| = 1 define the real valued function

$$\varphi(x) = (Ax, x)(f(A)x, x).$$

We compute directly from (3.1) that

(3.3) 
$$\varphi(x) = \sum_{i=1}^{n} \lambda_{i} |(x, u_{i})|^{2} \sum_{i=1}^{n} \mu_{i} |(x, u_{i})|^{2}$$

and by setting  $\sigma_i=|\left(x,\,u_i\right)|^2,\,i=1,\,\cdots,\,n,\,$  we have  $\sigma=(\sigma_1,\,\cdots,\,\sigma_n)\in S^{n-1}$  and

$$\varphi(x) = F(\sigma) .$$

Thus by direct application of Theorem 2 we have

Theorem 3. Then maximum value of  $\varphi(x)$  for x on the unit sphere ||x|| = 1 is the number M in the statement of Theorem 2. Moreover  $\varphi(x_0) = M$  can always be achieved with a unit vector  $x_0$  in the subspace spanned by those eigenvectors of A corresponding to  $\lambda_1$  and  $\lambda_n$ . If f is strictly convex and  $\varphi(x_0) = M$  then  $x_0$  must lie in the sum of the null spaces of  $A - \lambda_1 I$  and  $A - \lambda_n I$ . In particular, if  $\lambda_1$  and  $\lambda_n$  are simple eigenvalues of A, f is strictly convex and  $\varphi(x_0) = M$  then  $x_0$  must lie in the two dimensional subspace spanned by  $u_1$  and  $u_n$ .

In Theorem 3 take  $f(t)=t^{-p}$ , p>0. Let  $\theta=\lambda_1/\lambda_n$  denote the condition number of A. Assume that  $\theta<1$  (otherwise  $\lambda_1=\lambda_n$  and A is a multiple of the identity). There are two cases to consider:  $p>1; p\leq 1$ . In case  $p>1, m=\lambda_1^{1-p}$  and the condition (2.16),  $\gamma\geq m$ , becomes

(3.5) 
$$g(\theta) = \theta^{p+1} - 2\theta + 1 \ge 0.$$

We note that g is convex, g(1) = 0,  $g'(\theta) = 0$  for  $\theta = (2/(p+1))^{1/p}$ , and

hence g has precisely one root in (0, 1), call it  $\theta_p$ . It is easy to see that  $\theta_p > 1/2$  for all p > 1. In general, if  $0 < \theta \le \theta_p$  then Theorem 2 yields

$$(3.6) M = \lambda_1^{1-p}(\theta^{p+1}-1)^2/4\theta(\theta-1)(\theta^p-1);$$

and if  $1 \ge \theta > \theta_p$  then

$$M=\lambda_1^{1-p}.$$

In case  $p \leq 1$ ,  $m = \lambda_n^{1-p}$  and the condition (2.16),  $\gamma \geq m$ , becomes  $g(\eta) \geq 0$  where  $\eta = \theta^{-1}$ . But  $g(\eta) \geq 0$  for  $\eta \geq 1$  and  $\eta = \theta^{-1} \geq 1$  so the upper bound for  $F(\sigma)$  is M given in (3.6).

Assume now that  $\lambda_1$  and  $\lambda_n$  are both simple eigenvalues of A and we examine the structure of the vector  $x_0$  that maximizes  $\varphi(x) = (Ax, x)(A^{-p}x, x)$  on the unit sphere ||x|| = 1. By Theorem 3 the maximum value of  $\varphi(x) = F(\sigma)$  can only occur for  $\sigma_2 = \cdots = \sigma_{n-1} = 0$ . Moreover by (2.20)  $F(\sigma) = M$  for the unique values

$$(3.8) \quad \sigma_n = \sigma_n(\theta) = g(\theta)/2(1-\theta)(1-\theta^p)$$
 if  $g(\theta) \ge 0$  or  $p=1$ ; 
$$(3.9) \quad \sigma_1 = \sigma_1(\theta) = \sigma_n(\theta^{-1})$$

and

(3.10) 
$$\sigma_1 = 1, \sigma_n = 0 \text{ if } g(\theta) < 0 \text{ and } p > 1.$$

Summing up these results we have

Theorem 4. Let  $\theta$  designate the condition number of  $A, \theta = \lambda_1/\lambda_n$ . If either 0 , or <math>p > 1 and  $0 \le \theta \le \theta_p$ , then for ||x|| = 1

$$(3.11) (Ax, x)(A^{-p}x, x) \leq \lambda_1^{1-p}(\theta^{p+1}-1)^2/4\theta(\theta-1)(\theta^p-1).$$

If p > 1 and  $\theta_p < \theta$  then for ||x|| = 1

$$(3.12) (Ax, x)(A^{-p}x, x) \leq \lambda_1^{1-p}.$$

If  $\lambda_1$  and  $\lambda_n$  are simple eigenvalues of A then the upper bound in (3.11) is only achieved for unit vectors of the form

(3.13) 
$$x_0 = \sqrt{\overline{\sigma_n(\theta^{-1})}} e^{i\omega_1} u_1 + \sqrt{\overline{\sigma_n(\theta)}} e^{i\omega_2} u_n,$$

 $\omega_1, \omega_2$  real. The upper bound in (3.12) is achieved only for unit vectors of the form

$$x_0 = e^{i\omega}u_1$$
.

In case p=1 we have the Kantorovich inequality. In this case (3.11) becomes (for ||x||=1)

(3.14) 
$$(Ax, x)(A^{-1}x, x) \leq (\sqrt{\theta} + \sqrt{\theta^{-1}})^2/4$$
.

If  $\lambda_1$  and  $\lambda_n$  are simple eigenvalues then the inequality (3.14) is strict unless

(3.15) 
$$x = x_0 = (e^{i\omega_1}u_1 + e^{i\omega_2}u_n)/\sqrt{2}, \omega_1, \omega_2 \text{ real }.$$

4. Determinants and permanents. In this section we specialize by taking U to be the unitary space of n-tuples with inner product  $(x,y)=\sum_{i=1}^n x_i \overline{y}_i$  and A to be an n-square hermitian positive semi-definite matrix. If  $1 \le k \le n$  then  $C_k(A)$  will denote the kth compound of A and if  $x_1, \dots, x_k$  are vectors in U then  $x_1 \wedge \dots \wedge x_k$  is the Grassmann product of these vectors, sometimes called a pure vector of grade k [6, p. 16]. The eigenvalues of  $C_k(A)$  are all  $\binom{n}{k}$  numbers  $\lambda_{i_1} \cdots \lambda_{i_k}$ , with corresponding eigenvectors  $u_{i_1} \wedge \cdots \wedge u_{i_k}$ ,  $1 \le i_1 < \cdots < i_k \le n$ . The smallest and largest of these eigenvalues are  $\prod_{j=1}^k \lambda_j$  and  $\prod_{j=1}^k \lambda_{n-j+1}$  respectively. It has been noted in [2] and [5] that the Kantorovich inequality applied to  $C_k(A)$  yields

$$(4.1) \qquad \det A[i_1, \cdots, i_k] \det A^{-1}[i_1, \cdots, i_k] \leq (\sqrt{\Delta} + \sqrt{\Delta^{-1}})^2/4$$

where  $\Delta = \prod_{j=1}^k \lambda_j \lambda_{n-j+1}^{-1}$  and  $A[i_1, \dots, i_k]$  is the principal submatrix of A lying in rows and columns numbered  $i_1, \dots, i_k$ .

We prove

THEOREM 5. If  $1 \le k < n-1$  and  $\lambda_1, \dots, \lambda_k$  together with  $\lambda_n, \dots, \lambda_{n-k+1}$  are simple eigenvalues of A then the inequality (4.1) is always strict.

*Proof.* The number det  $A[i_1, \dots, i_k]$  det  $A^{-1}[i_1, \dots, i_k]$  is a value of the product of quadratic forms associated with  $C_k(A)$  and  $C_k(A^{-1})$ ,

$$(C_k(A)x_1 \wedge \cdots \wedge x_k, x_1 \wedge \cdots \wedge x_k) (C_k(A^{-1})x_1 \wedge \cdots \wedge x_k, x_1 \wedge \cdots \wedge x_k),$$

and according to (3.15), (4.1) will be strict unless

$$(4.3) x_1 \wedge \cdots \wedge x_k = \frac{1}{\sqrt{2}} (e^{i\omega_1} u_1 \wedge \cdots \wedge u_k + e^{i\omega_2} u_n \wedge \cdots \wedge u_{n-k+1}).$$

Let  $p = \min\{k, n - k\}$ ,  $q = \max\{k + 1, n - k + 1\}$  and compute successively the Grassmann products of both sides of (4.3) with  $u_1, \dots, u_p$  and  $u_n, \dots, u_q$ . We obtain

$$(4.4) \quad x_1 \wedge \cdots \wedge x_k \wedge u_j = \frac{e^{i\omega_2}}{\sqrt{2}}(u_n \wedge \cdots \wedge u_{n-k+1} \wedge u_j), j = 1, \cdots, p,$$

and

$$(4.5) \quad x_1 \wedge \cdots \wedge x_k \wedge u_j = \frac{e^{i\omega_2}}{\sqrt{2}}(u_1 \wedge \cdots \wedge u_k \wedge u_j), j = q, \cdots, n.$$

Since  $u_1, \dots, u_n$  are linearly independent it follows that the right sides of (4.4) and (4.5) are not 0. Thus

$$(4.6) \langle x_1, \dots, x_k, u_i \rangle = \langle u_1, \dots, u_k, u_i \rangle, j = 1, \dots, p,$$

and

$$(4.7) \langle x_1, \dots, x_k, u_j \rangle = \langle u_1, \dots, u_k, u_j \rangle, j = q, \dots, n,$$

where  $\langle x_1, \dots, x_k, u_j \rangle$  denotes the subspace spanned by the vectors inside the brackets. Intersect the p subspaces on the left in (4.6) and observe that  $\langle x_1, \dots, x_k \rangle$  is a subspace of the intersection. Similarly  $\langle x_1, \dots, x_k \rangle$  is a subspace of the intersection of the n-q+1 spaces on the left in (4.7). On the other hand

$$\int\limits_{j=1}^{p} < u_{n}, \, \cdots, \, u_{n-k+1}, \, u_{j}> \ = \ < u_{n}, \, \cdots, \, u_{n-k+1}>$$

and

$$\int_{1=q}^{n} < u_1, \, \cdots, \, u_k, \, u_j > = < u_1, \, \cdots, \, u_k > .$$

Hence

(4.8) 
$$\dim \{\langle u_1, \dots, u_k \rangle \cap \langle u_n, \dots, u_{n-k+1} \rangle\} \\ = \dim \left\{ \bigcap_{i=1}^n \langle x_1, \dots, x_k, u_j \rangle \cap \bigcap_{i=n}^n \langle x_i, \dots, x_k, u_j \rangle \right\} > k.$$

The subspace  $\langle u_1, \dots, u_k \rangle \cap \langle u_n, \dots, u_{n-k+1} \rangle$  is nonempty if and only if  $n-k+1 \leq k$  in which case its dimension is 2k-n. But the inequality  $2k-n \geq k$  implies that  $k \geq n$ , a contradiction. Thus (4.3) cannot hold and (4.1) is strict.

We remark that in case k = n - 1 then p = 1, q = n,  $x_1 \wedge \cdots \wedge x_k \wedge u_1 = u_n \wedge \cdots \wedge u_2 \wedge u_1$ ,  $x_1 \wedge \cdots \wedge x_k \wedge u_n = u_1 \wedge \cdots \wedge u_{n-1} \wedge u_n$  and the above argument fails. In fact, it is not difficult to construct examples for which (4.1) is equality.

Once again, if  $1 \le k \le n$  then  $P_k(A)$  will denote the kth induced power matrix of A and if  $x_1, \dots, x_k$  are vectors in U then  $x_1 \dots x_k$  will denote the symmetric or dot product of these vectors [3, p. 49]. The eigenvalues of  $P_k(A)$  are all  $\binom{n+k-1}{k}$  homogeneous products  $\lambda_{i_1} \dots \lambda_{i_k}$  with corresponding eigenvectors  $u_{i_1} \dots u_{i_k}, 1 \le i_1 \le \dots \le i_k \le n$ . Suppose  $x_1, \dots, x_n$  are orthonormal vectors and the multiplicities

of the distinct integers in the sequence  $i_1 \leq \cdots \leq i_k$  are respectively  $m_1, \cdots, m_p$ . Let  $\mu = \mu(i_1, \cdots, i_k) = m_1! \cdots m_p!$ . Then the square of the length of the symmetric product  $x_{i_1} \cdots x_{i_k}$  is  $\mu(i_1, \cdots, i_k)$  [3, p. 50]. Applying the Kantorovich inequality to  $P_k(A)$  yields

$$(4.9) (P_{k}(A)x_{i}\cdots x_{i_{k}}, x_{i_{1}}\cdots x_{i_{k}})(P_{k}(A^{-1})x_{i_{1}}\cdots x_{i_{k}}, x_{i_{1}}\cdots x_{i_{k}})$$

$$\leq \mu^{2}(\sqrt{\delta} + \sqrt{\delta^{-1}})^{2}/4, 1 \leq i_{1} \leq \cdots \leq i_{k} \leq n,$$

where  $\delta = (\lambda_1 \lambda_n^{-1})^k$ , and  $x_1, \dots, x_n$  is an orthonormal basis of U. In particular if we let  $x_i = e_i$ , the unit vector with 1 in the *i*th position, 0 elsewhere, then (4.9) becomes

$$(4.10) \quad \operatorname{per} A[i_1, \cdots, i_k] \operatorname{per} A^{-1}[i_1, \cdots, i_k] \leq \mu^2(\sqrt{\delta} + \sqrt{\delta^{-1}})^2/4 ,$$

where  $A[i_1, \dots, i_k]$  is the k-square matrix whose (s, t) entry is  $a_{i_s i_t}$ ,  $s, t = 1, \dots, k$ .

THEOREM 6. If  $\lambda_1$  and  $\lambda_n$  are simple eigenvalues of A and there are at least three distinct integers in the sequence  $i_1 \leq \cdots \leq i_k$  then the inequality (4.10) is strict.

Proof. According to (3.15), (4.10) will be strict unless

$$(4.11) e_{i_1} \cdots e_{i_k} = \frac{e^{i\omega_1}}{\sqrt{2k!}} u_1 \cdots u_1 + \frac{e^{i\omega_2}}{\sqrt{2k!}} u_n \cdots u_n.$$

Let y be an arbitrary vector and compute the inner product of both sides of (4.11) with  $y \cdots y$  to obtain

(4.12) 
$$\prod_{j=1}^{k} (e_{i_j}, y) = \frac{e^{i\omega_1}}{\sqrt{2k!}} (u_1, y)^k + \frac{e^{i\omega_2}}{\sqrt{2k!}} (u_n, y)^k.$$

Set

$$v_1=\left(rac{e^{i\omega_1}}{\sqrt{2k!}}
ight)^{1/k}u_1,\,v_2=\left(rac{e^{i\omega_2}}{\sqrt{2k!}}
ight)^{1/k}u_n$$
 ,

and write  $e_{i_j} = \alpha_j v_1 + w_j$ ,  $w_j \in \langle v_1 \rangle^{\perp}$ ,  $j = 1, \dots, k$ . Then for y any vector in  $\langle v_1 \rangle^{\perp}$ , (4.12) becomes

(4.13) 
$$\prod_{i=1}^k (e_{i_j}, y) = \prod_{i=1}^k (w_i, y) = (v_i, y)^k,$$

in which  $w_j$ ,  $v_2$ , y are in  $\langle v_1 \rangle^{\perp}$ ,  $j=1,\cdots,k$ . But then from [3, Theorem 3] we conclude that  $w_j = \beta_j v_2$ ,  $j=1,\cdots,k$ , for appropriate scalars  $\beta_1,\cdots,\beta_k$  and hence  $e_{i,j} \in \langle v_1,v_2 \rangle, j=1,\cdots,k$ . Since there are at least three linearly independent  $e_{i,j}$ , (4.11) must fail and hence (4.10) is strict.

## REFERENCES

- 1. L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, New York, Interscience (1958).
- 2. Marvin Marcus, and N. A. Khan Some generalizations of Kantorovich's inequality, Portugaliae Math. 20, 1, (1961), 33-38.
- 3. Marvin Marcus and Morris Newman. Inequalities for the permanent function, Ann of Math., 75, 1, (1962), 47-62.
- 4. Morris Newman. Kantorovich's inequality, J. Research Nat. Bur. Standards, **64** (B), (1960), 33-34.
- 5. Andreas H. Schopf,. On the Kantorovich inequality, Numerische Math., 2 (1960), 344-346.
- 6. J. H. M. Wedderburn,. Lectures on matrices, Amer, Math. Soc. Coll. Publ., 17 (1934).

UNIVERSITY OF CALIFORNIA, SANTA BARBARA AND

UNIVERSITY OF BRITISH COLUMBIA, CANADA