EQUALITY IN CERTAIN INEQUALITIES

MARVIN MARCUS AND AFTON CAYFORD

1. Introduction. Let ¢ = (g, ---,0,) be a point on the unit
(n — l)v-simplex S5 0, =1,0,=0. Let 0< =M= oo =0,
and ¢, = (£, = --+ = ¢, > 0 be positive numbers and form the function.
on S™*

(L.1) F(o) = 300 3 0utt;

The main purpose of this paper is to examine the structure of
the set of points ¢ € S*~* for which F'(s) takes on its maximum value.
In case a convex monotone decreasing function f is fitted to the
points (\;, ¢.)(d.e. fF(\) =), 1 =1, ---,m, then it is not difficult to
show that the maximum for F'(¢) on S** is the upper bound given
by M. Newman [4] in a recent interesting paper. In the case of the
Kantorovich inequality [1] the function f is f(t) =t ¢, =N\, 1 =
1, ---,n. In this case a maximizing o is 0, = 1/2,0, = 1/2,0;, =0,
1=2,---,m—1,and if , <N, <N, b=2,---,m—1, it is a corol-
lary of our main result (Theorem 2) that this is the only choice possible
for 6 € S** in order to achieve the maximum value.

We shall assume henceforth in this paper that g, = f(\), % =1,
«+-,n, where f is a monotone decreasing convex function defined on
the closed .interval [A, »,]. In 2 we determine the structure of the
set of 0 e S** for which F(o) is a maximum in the case in which f
is assumed to be strictly convex. In 3 we investigate the structure
of the set of unit vectors x for which the function

(1.2) P(x) = (A, 2)(f(4)2, )

assumes its maximum value on the unit sphere || 2| = 1. Throughout,
A is a positive definite hermitian transformation on an n-dimensional
unitary space U with inner product (z, y). The eigenvalues of A are
N, 0 <A = 000 =N, with corresponding orthonormal eigenvectors u;,
Au; = Nu;, t =1, - -+, n.  Of particular interest in (1.2) is the choice
f@=t>p>0. : :
Finally, in 4, we discuss the applications of the previous results
to Grassmann compounds and induced power transformations associated
with A. In two recent papers [2, 5] the Kantorovich inequality was
applied to the compound to obtain inequalities involving principal
subdeterminants of a positive definite hermitian matrix. We shall
prove (Theorem 5) that these inequalities are in fact strict except in
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trivial cases. Similar inequalities are obtained for the permanent
function together with a discussion of the cases of equality. These
inequalities are believed to be new.

2. Maximum values for F. In the rest of the paper M will
systematically denote the maximum value of F(o),sc€S™?, and m
will denote the largest of N2t and \,t,. Also, v will denote the
number (A, + M, f%)/2. The main result of this section is Theorem
2 which describes the structure of those ¢ for which F'(¢) = M when
f is strictly convex. We first prove

THEOREM 1. For any o€ S™* there exists a B€|0, 1] such that

(2.1) F(o) = (Bnm + (1 — Bn)(Be + 1 — B .

If f is strictly convex and for some k,1 <k < n,\ <N\ <\, and
o, > 0 then there exists a B€]0,1] for which (2.1) is a strict in-
equality.

To prove Theorem 1 we use the following elementary fact.

2.2) (@, — a5)(b, — b)) = (@, — a5)(b, — by)

LEMMA. If0Za,Za,Za, and b, = b, = b, = 0 and

then for any « = (&, a,, a,) € S* there exists a B0, 1] such that
@3)  SaeSab s (6o + 1 - Ba)Eh + (1 - ) .

If the inequality (2.2) is strict and o, >0 then there exists o
Be[0, 1] such that (2.8) is strict.

Proof. Let 6 and ® in [0,1] be so chosen that a,= fa, +
A — 6)a,, b, = wb, + (1 — w)b, and set b, = 6b, + (1 — 0)b;. Then

2.4 b — b, = (0 — @)(b, — by) .

Assume first that a, > a, and b, > b,. Then 6 = (@, — a)[(@, — ay)
>0 and @ = (b, — by)/(b, — b;). Moreover 6 = w by (2.2) and if (2.2)
is strict then 0 > w. From (2.4) b, — b, = 0 and we compute that

L = (& + fa)a, + (a1 — 0) + a)a)
((al + 0az)b1 + (az(l - 0) + aa)bs) ’

where L is the left side of (2.8). This is (2.3) with 8= +
fa,e0,1]. If (2.2) is strict then 6 > w, b = b, and &, > 0 together
imply that (2.5) is strict.

Suppose next that a, = ¢;. From (2.2) and (a, — a;) = 0 we have

(2.5)
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(a, — a;)(b, — b;) = 0 and hence a, = a; or b, = b,. The first alternative
yields @, = a, = a; and thus L = a, >\, @;b; < a,b, which is (2.3) with
B =1. If b, =0, then (2.3) holds with S8 = «,. This completes the
proof of the lemma.

The proof of Theorem 1 is by induction on n. The first non-
trivial case is n» = 3. In general the convexity of f implies that

(2-6) (>\’1 - )Vs)(laz - /'53) > (7\'2 - 7\'3)(/‘51 - ﬂa)

and (2.6) is strict if A, <X, < X; and f is strictly convex. The in-
equality (2.1) follows from the lemma. If » > 38 we distinguish the
two possibilities ¢, + ¢, =1 and o, + 0, < 1. In the first case

(2‘7) F(O) = (0-1>\‘1 + 02)‘2)(01#1 + 0‘2#2) *

If ¢, =y, and hence f; =, =g, 1 =1,---,n, then F(0) <\,
which is (2.1) with 8=0. If g > p,, and hence )\, < ),, obtain ¢
and ® in [0, 1] so that X\, = O, + (1 — O\, (. = 01, + (1 — @), and
set 1t = 0y, + (1 — 0)¢, to obtain

(2.8) M=t = (0 — o)t — 1) 20,

The convexity of f again implies that ¢ = w with strictness in case
f is strictly convex and A, > X,. Hence

F(o) = (o + (00 + (1 — O)\,)0u) (0,44 + 0ut)
= ((0'1 + 00‘2)7\1 + (1 - 0)0'2>\4n)((0'1 + 30'2))“1 + (1 - 0)%/’%)
which is (2.1) with 8 = 0, + 00,. We proceed to the case o, + g, < 1.
Let M = D\ ,o0 /(1 — 0, — 0y), 3 = Sty 0,0/(1 — 0, — a,) and observe
that MEN = M, Jo2 = My = ﬂ;’ and F(o‘) = (01>"1 + o5\, + (1 —0;,— 0'2)7\44)
(ot + oypts + 1 — 0, — 0,)%'). We next verify that (2.2) holds for
the choices M, = @5, Ny = @y, Ny = @y, 4 = by, fty = by, 1 = by:
()\'1 - Ks)(/"z - /’e:l*') - ()al - /";')(kz - M)

2.9 .
( ) = ﬂz(M —N) — /'81(7‘2 —N) + ﬂslo\'z —N\) s

and
(= 00l — 0, — 0) = f( SN0l — 0, — 0)) = FO) = 1.
‘Hence the expression in (2.9) is at least

’(2'10) ”Z(Nl — Mz) - ﬂl(kz - M) + /’5;(7\'2 - k‘1) .

If A\, =\; the expression (2.10) reduces to 0 and the expression in
(2.9) is nonnegative. If A, <\ then N <A} and (2.10) becomes
O = M) — M){(a — )/ O — N5) — (8 — 1)/ — M)} = 0. Apply
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the lemma to obtain 5, &[0, 1] for which
(O + o + (1 — 0, — o )N) 04 + 038 + (1 — 0, — o))

é (317"1 + (1 - :81)7\';&)(:81#1 "I‘ (1 - Bl)#;’

= (B + S0 = Blod(L — o, — 0)

(B + 35— Bl — 0, 0)

This last expression is a product of convex combinations of A\’s and’
M’s involving only n — 1 terms and satisfying the induction hypothesis..
Hence there exists 8€]0,1] such that

Fo) = (B + 3 = Blond(L — 0, — )

(Bl)al + é(l “‘ Bl)aiﬂi/(l — 0, — 02)) é ()8)\41 + (1 - :8)7\'1:)

This establishes (2.10). ,

The discussion of the strictness in (2.1) requires the use of (2.1)
itself. Let k be the least integer for which both ¢, > 0 and )\, <
M < A,. Then

F(o) = (o + @ + Xpipdirp + 200 + @A)

(2.11) |
(auul + ALl + Qpipflisp + 000+ 6\(,,/1”)

in whiche, + a, + a4y + -+, =1, @, =0;,5 =k + p, -+, n, andi
M < Ngrpe  Assume

a, + a, < 1,set Ny, = D o0/(1 — ap — ay), (1,

i=k+p
=20:4/(1 — o, — ay)
i=k+p
and (2.11) becomes

(2 12) F(O') = (0,’17\.1 + ak>\:k + (1 - 0(1 - afk))\lfc.‘.,,)
' (s + aptty + (1 — ay — a,)y,) .

Clearly )\, < N\, < Niyp and we compute that

(v = M) (e — Phrn) — (B — Phan) N — Nisp)
= ﬂk(>"1 - Mc+p) - /lx(M - ;c+p) + [1;;'_,_,,()\,,6 - >‘*1) »
(2.14) Pip Z FNitp) = Mitp o

It follows that the expression in (2.13) is at least

(2.13)
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'()"1 - )";c+p)()"k - >\';c+p){(/‘€k - ﬂ;c+p)/(7\'k - >\‘;¢:+P) - (ﬂl - l’zl'H—:D)/()\‘l - )\’;c—H?)}

and in cage f is strictly convex this whole expression is positive. The
inequality (2.2) holds strictly with A, = a;, M, = @y, Njyp = @y, (4 = by,
M = by, 1, = b, and the strict form of the lemma together with
(2.12) implies that there exists B, [0, 1] such that

F(o) < (B + 3 (1 = Blond(l — @ — )
(2.15) L
(B + 3 (1 = B)ognl(l — @ — ).

Now apply (2.1) to the right side of (2.15) to obtain a S¢€[0, 1] for
which F(o) < (8M + (1 — BN)(B + (1 — B)ee,).

Assume now that a, + a, =1 and then F(o) becomes (a\, +
A — a ) ay, + (1 — a)p). Choose 6 and w in [0, 1] so that )\, =
v+ (1 — O\, P = 0L + (1 - w)ﬂm set l’el’c, =0m + 1 - 6)#7; and
note that g — g, = (0 — w)(t, — ££,). Then since f is monotone
decreasing and strictly convex, ¢ — @ and p;, — (¢, are both positive.
It follows that

(0(17\,1 + (1 - al)x‘k)(all’cl + (1 - a1)f'€k) < ((al + 9(1 - al)p"l
+ @1 =01 — apn)(a + 01 — a))p, + (1 — )L — a)fs,)

If the quadratic polynomial in 5 on the right in (2.1) is maximized
in [0, 1] we immediately obtain our main result.

THEOREM 2. If

(2.16) y=m and N < N, and (5 > 4,

then

(2.17) M = (s — M)A, — M) — £2,)
If

(2.18) YEmMor vy =N\, 0or 4= [,

then

{2.19) M=m.

Let f be strictly convex and suppose that
M= = < Mt =t S Ng < Mg = 00 = Ay
Then F(o) = M,0eS"™, if and only if o has the form

0 = (01: cc0 Oy, 0; ) 0, O p—q+1s "',Un)y
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Z?=l g; = BO) Z?=n—q+1 g; = 1-— BU) where

2200 5= 0 or 1 if (2.18) holds.

We remark that if v = m then the expression on the right in
(2.17) reduces to m.

3. Applications. As customary f(4) will designate the linear
transformation defined for any x € U by

(3.1) F)e = 35w, ws, (15 = FO) -
On the unit sphere ||z|| = 1 define the real valued funection
(3.2) P(x) = (Az, 2)(f(A)z, 2) .
We compute directly from (3.1) that
(3.3) P@) = Snl @, w) [ 3 11| (@, )
and by setting o, = |(zx,w)|’2=1,:--,n, we have ¢ = (g,, --+, 0,)
e S** and
(3.4) P(x) = F(o) .

Thus by direct application of Theorem 2 we have

THEOREM 3. Then maximum value of @(x) for x on the unit
sphere ||z || =1 is the number M in the statement of Theorem 2.
Moreover o(x,) = M can always be achieved with a wunit vector x, in
the subspace spanned by those eigenvectors of A corresponding to \,
and N,. If f is strictly convex and p(x,) = M then x, must lie in
the sum of the null spaces of A — NI and A — N, 1. In particular,
of N and N, are simple eigenvalues of A, f is strictly convex and
P(x,) = M then x, must lie in the two dimensional subspace spanned.
by u, and u,.

In Theorem 38 take f(t) =t7? p>0. Let 6 =\/\, denote the
condition number of A. Assume that 6 < 1 (otherwise )\, = A, and
A is a multiple of the identity). There are two cases to consider:
p>1;p=1. In case p > 1, m = A" and the condition (2.16), v = m,
becomes

(3.5) g(0) = 67 —20 +1=0.
We note that g is convex, g(1) =0, ¢’(6) = 0 for 6 = (2/(p + 1))"?, and
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hence g has precisely one root in (0, 1), call it 6,. It is easy to see
that 6, > 1/2 for all »p > 1. In general, if 0 < 6 < @, then Theorem
2 yields

(3.6) M = NP0 — 1)2/46(0 — 1)(0” — 1) ;
and if 1= 6 > 6, then
3.7 M=\""7.

In case p <1, m = A\,7? and the condition (2.16), ¥ = m, becomes g(7)
=0 where 7 =07 But g(9) =0 for p=1and 7=6"=1 so the
upper bound for F'(o) is M given in (3.6).

Assume now that A, and )\, are both simple eigenvalues of A and
we examine the structure of the vector 2, that maximizes @(x) =
(Az, x)(A~?x, x) on the unit sphere ||z|| =1. By Theorem 38 the
maximum value of @(x) = F'(¢) can only occur for g,=:-- =07,
= 0. Moreover by (2.20) F'(¢) = M for the unique values
(3.8) 0, =0,0) = 9(0)/2(1 — 6)(1 — 67)),

f g(6) =0 =1;
3.9) 0, = a,(0) = 0,67 }‘ 90)z0orp=1
and
(3.10) o.=10,=01if g0)<0and p>1.

Summing up these results we have

THEOREM 4. Let 6 designate the conditton number of A, 0 =
M. If eitther 0<p=1l or p>1 and 00 <60, then for
el =1

(8.11) (Az, 2)(A~?x, ) < \N-P(07 — 1)2/40(0 — 1)(67 — 1) .
If p>1 and 0, < 0 then for ||z| =1
3.12) (Azx, 2)(A~ Pz, ) < NP

If N, and N, are simple eigenvalues of A then the upper bound in
(8.11) is only achieved for wunit vectors of the form

(3.13) & = V0 (07 ey + V0,(0) e,

w;, W, real. The upper bound in (3.12) is achieved only for wumnit
vectors of the form

X, = eu, .

In case » =1 we have the Kantorovich inequality. In this case
(3.11) becomes (for [|x|| = 1)
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(3.14) (Az, x)(A7%, ) < (VT + VY4 .

If N, and ), are simple eigenvalues then the inequality (3.14) is strict
unless

{(3.15) r =z, = (e, + eu,)V 2, w, w, real .

4. Determinants and permanents. In this section we specialize
by taking U to be the unitary space of n-tuples with inner product
{x,y) = D129, and A to be an 7m-square hermitian positive semi-
definite matrix. If 1 <k <n then C,(A4) will denote the kth com-
pound of A and if x,, ---, %, are vectors in U then z, A .-+ A x, is the
‘Grassmann product of these vectors, sometimes called a pure vector
of grade k [6, p.16]. The eigenvalues of C,(4) are all <Z> numbers

Nip o+ * Nigy with correspondmg eigenvectors u; A -+ A Uy, 1 < < .
PSS The smallest and largest of. these elgenvalues are H,_lh

and JT¢ Njin respectively. ~ It has been noted in [2] and [5] that
the Kantorovich inequality applied to Ck(A} yields

@.1)  det Afd, +--, ] det A7[iy, -+, 4] < (V' Z + V4

where 4 = [Tk A\t and Aliy, -+, 1] is the principal submatriz
of A lying in rows and columns numbered i,, ---, .
We prove

THEOREM 5. If1=k<n—1and ), -+, N\, together with n,, - -
oL simple e@genvalues of A then the 'mequa,lzty 4.1) s always
strict.

Proof. The number det Alty, + -+, 4] det A4y, « -, 4] is a value
of the product of quadratic forms associated with C.(4) and C,(47),

(Ck(A)wl/\ A /\wk,xl/\ oo /\xk)

4.2
“32) (ClA™DBL A o s ATy By A <o+ A ),

and accdrding to (3.15), (4.1) will be strict unless

4.3) T A v Ay = T/ll_2=(e“*’lu1 Ao AUy e U, A cee A Upir)

Let p=min{k,n — k},q = max{k +1,n — k 4+ 1} and compute suc-
cessively the Grassmann products of both sides of (4.3) with u,, «--,
U, and u,, +++, %,. We obtain

“4.4) z A - /\mk/\ujz%(u”/\ o AU AU, T =1, 000, D,
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and

(4.5) Ly N\ oo /\wk/\ujz_‘_/%(ul/\ oo /\uk/\uj),qu’...’n.

Since u,, ++-, u, are linearly independent it follows that the right
sides of (4.4) and (4.5) are not 0. Thus

4.6) Ly vy Ly Uy > = < Uy oo, Ugy U >, =1, 44,0,
and
4.7 gy vy By Uy > = < Uypy vovy Uy Ug >, 0 =q, 2o+, N,

where < %, ---, #;, 4; > denotes the subspace spanned by the vectors
inside the brackets. Intersect the p subspaces on the left in (4.6)
and observe that < «,, ---,%, > is a subspace of the intersection.
Similarly < %, ---, %, > is a subspace of the intersection of the
n — q + 1 spaces on the left in (4.7). On the other hand

»
nl< Uny ** %y Un—prry g > = < Uy =y Upppq >
j=

and
n <u17 vy Uy Uy > = <u1) ey, Uy > .
1=q
Hence
dim{< Uy +ory U > N < Uy o0y Upepta >}
(4.8) » n
= dim{ﬂ < gy veoy By Uy > N < gy 00y By U >}>k-
Jj=1 J1=q
The subspace < u,, +=+, Uy > N < Upy =+, Uy—p+1 > 18 nonempty if and

only if n — k + 1 < k in which case its dimension is 2k — n. But the
inequality 2k — n = k implies that k = =, a contradiction. Thus (4.3)
cannot hold and (4.1) is strict.

We remark that incase k=n—1then p=1,¢q=n,2, A -+ A
X AU = Uy A or AUy AUy T A oor ABp AUy =Ug A 200 A Uy A Uy
and the above argument fails. In fact, it is not difficult to construct
examples for which (4.1) is equality.

Once again, if 1 <k < »n then P,(4) will denote the kth induced
power matrix of A and if x,, ---, 2, are vectors in U then z, --- x,
will denote the symmetric or dot product of these vectors [3, p. 49].

The eigenvalues of P,(4) are all <n + z - 1) homogeneous products

* i, With corresponding eigenvectors u; -+ u;, 1 =% = - =7,
< n. Suppose %, --+, %, are orthonormal vectors and the multiplicities
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of the distinct integers in the sequence 7, < --- < 1, are respectively
My, -+, My, Let pt = iy, ++-, %) =m!---m,]. Then the square of
the length of the symmetric product #; --- @, is (¢, -+, %) [3, p. 50].
Applying the Kantorovich inequality to P.(A) yields

x

4.9) (Pu(A)x; v @iy @ » o s 2 J(P(AT)2;, oo e 2y, B v 00 )
< PVT VIV IS LS - S i S,

where 6 = AW\, and x,, -+, %, is an orthonormal basis of U. In
particular if we let x; = ¢;, the unit vector with 1 in the 4th position,
0 elsewhere, then (4.9) becomes

(4.10) per Ali,, «--, sl per A7[d,, -+ -, 4] < (V0 +V57)4,
where Ali, - -+, %] s the k-square matriz whose (s, t) entry is a;,
S,t‘-_—‘]., ...’k.

THEOREM 6. If )\, and \, are simple eigenvalues of A and there
are at least three distinct integers in the sequence t, < -+ < 1, then
the imequality (4.10) is strict.

Proof. According to (3.15), (4.10) will be strict unless

6im1 1,«;2

l-..eikzvz__]_cTulc. 1/210' n.--un'

Let y be an arbitrary vector and compute the inner product of both
sides of (4.11) with y -+ y to obtain

(4.11) e;

(4.12) I (e ) = o, ) + a0

Set

v _< eiuq )1/ku v —( eiwg )1/ku
1 _‘/m 1y Y2 — m n 9

and write ¢;, = @;v, + w;, w;e < v, >*,5=1,---,k. Then for y any
vector in < v, >1, (4.12) becomes

k k
(4.13) ,1_:[1 (¢ y) = JI=Il(wj, Y) = (v ¥)*
in which w;, v,,y are in <o, >*,5=1,--., k. But then from [3,

Theorem 3] we conclude that w; = Bv,, =1, ---, k, for appropriate
scalars B, ---, B, and hence €, € <, >,5=1,---, k. Since there
are at least three linearly independent e; » (4.11) must fail and hence
(4.10) is strict.
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