EXTREME EIGEN VALUES OF TOEPLITZ FORMS
ASSOCIATED WITH JACOBI POLYNOMIALS

I. I. HIRSCHMAN, JR.

Introduction. Let ¢(0) be a real function in L'(T) where T is the
real numbers modulo 1, and let

e(lk) = Lt(e)e—zﬂ““’dﬁ k=01,

C.=1le(d — B)ljr=0.een

C, is the Toeplitz matrix of index n associated with £(d). C, is clearly
Hermitian and thus has real eigen values,

>"n,1 g k’n,z g b g 7\'n,n+1 .

For some time studies have been made of the asymptotic behaviour
of these eigen values as n— o. Thus, for example, if N(a, b; n) is,
for n fixed, the number of \,,’s which satisfy ¢« <\,, =b, and if
Y(y) is the Lebesgue measure of the set {6 |t(d) < y} then

(1) lim n*N(a, b; n) = v(a) — v(b) ,

provided a and b are points of continuity of v. This result was proved
by Szego, see [2; p. 64]. Detailed investigations have also been made
of the behaviour of \,, as n — o while k is fixed, under various
additional assumptions on #(f). Suppose that t(f) is continuous for
6e T, has a unique absolute maximum at = 0, and that ¢(6) is twice
continuously differentiable in a neighborhood of # = 0 with ¢”(0) < 0.

—1/2 0 1/2
It was shown in 1953 by Kac, Murdock, and Szego that under these
assumptions
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108 I. I. HIRSCHMAN, JR.
(2) Mo s = £(0) — _t"g)_kz(n £ 1) + o(n?)

as n— o for k fixed, k=1,2,.--. In 1958 Widom, [14], proved that
if t(0) is even and four times continously differentiable near 6 = 0 (in
addition to the assumptions already made) then

(3)  uw= 10 — Lk + 171 + ate + D] + o)

as % — oo, where

a = Sl_/:z[csc%ﬁ] log [2n2<%ﬁl>ctnznﬁ]dﬁ .

More recently Widom and Parter, see [9]-[11] and [15]-[17], have
studied the behaviour of ), , under less restrictive assumptions on the
nature of the maximum of #(f). Suppose that #(0) is again the unique
maximum of (), and that there exist constants o, >0, o, > 0, and
o > 0 such that

t(0) —oy0° 0 — 0+

“e) t0) — 0,00 66— 0— .

~1/2 0 1/2
Then

(4) Ny = 8(0) — 41 + o(n™*)

where 0 < f, < ¢4, < «-+, lim, .. ¢, = o are eigen values of a certain
operator depending only on o,, 0,, and ®w. The formula (4) evidently
includes (2) as a very special case.

Let a,8 > 1 be fixed and let
2'np! P P(x) = (—1)"(1 — 2)=(1 + 2)PD"[(1 — x)**(1 + x)*+"],

where D = d/dx, be the Jacobi polynomial of order n, 7 =0,1,2, ---.
The Jacobi polynomials are orthogonal on the interval [—1,1] with
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respect to the weight function

Wap(¥) = w(@) = (1 — 2)*(1 + 2)°;
more precisely

gl PP (0) PP (myw(w)ds = 6(n, m)h,
—1
where d(n, m) is the Kronecker delta and where

Crn+a+ B+ 1Dnlln+a+ B+ 1k,
= 204 (n + a + DI + B+ 1) .

Let ¢(x) be a real function in L'(w) and let

oG, ) = (hh) ™" P @) P @)t(eyo@)d

for j,k=0,1,--.. If
Cn:[c(j!k)] j’kzor e, M

then C, is a generalized Toeplitz matrix of index = associated with
t(x). Since C, is real and symmetric its eigen values {\, ;}i™" are real.
In part the studies carried out for ordinary Toeplitz matrices have
also been carried out for various classes of generalized Toeplitz matrices,
and in particular for the generalized Toeplitz matrices constructed
using Jacobi polynomials. For example, if we again define N(a, b; n)
to be the numbers of )\, ,’s which satisfy & <\, < b and if v(y) is 77!

times the Lebesgue measure of the set {# |0 < 6 < 7, t(cos ) < y}, then

(5) lim L N(a, b; n) = v(a) — v(b)

noe 9,

whenever @ and b are points of continuity of v(y). See [2; p. 114].
In [5] the author obtained formulas analgous to (2) and (3) but

applying to generalized Toeplitz matrices constructed using the various

classical orthogonal polynomials. Thus, for example, Let ¢(x) be defined

N
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and continuous for —1 < # < 1, and have a unique absolute maximum
at #, —1 <&, <1. Let ¢(x) be continuously differentiable in a neigh-
borhood of #, and let ¢"(x,) = —o? < 0. If C, is the generalized Toeplitz
matrix constructed from #(x) using the Jacobi polynomials, then

(6) N = Ha) — (1 — 22)0%k?/8n? + o(n~?) as n— o .

Let #(x) have a unique absolute maximum at @ = 1, let t(x) be con-
tinuously differentiable in a neighborhood of « =1, and let t'(1) =0 > 0.

__—-/

-1 0 1

Then

(7) M = ) = 22 ) 4 o(n)

where 0 < 25, < %43 < +++, are the positive zeros of J,(z). See [5],
where a more precise result analagous to (3) is also given.

In the present paper we will obtain formulas analogous to (4) for
generalized Toeplitz matrices constructed using Jacobi polynomials.
For example let #(x) be continuous for —1 < 2 < 1, let the unique
absolute maximum be at # = 1, and let
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t(x) —t(1) — ol — x)* x—1—,
where 0 and @ are positive. We then have
(8) Mo = 8(1) — (k[n)™ + o(n=*)

as m— o where 0 < tt, = 4, < + -+, lim,_.. ft, = oo, are the eigen values
of an operator depending only upon ¢ and w, and « but not other-
wise upon t(x) nor upon B. The case of a unique absolute maximum
in the interior of —1 < x <1 1is also considered.

The program of demonstration of our results runs parallel to that
employed in [17]. Sections 2-7 are devoted to developing an appro-
priate perturbation theory in Hilbert space. This theory is a rearticu-
lation and partial generalization of the perturbation theory constructed
by Widom. In sections 8-14 and 15-19 this theory is applied to the
case where the maximum of ¢(x) occurs at an end pointof —1 =2 <1,
and to the case where the maximum occurs at an interior point,
respectively.

A large number of known properties of Jacobi polynomials, Jacobi
functions of the second kind, Bessel functions, etc. are required in
the course of this paper. Many of these results are collected in the
Appendix.

2. A perturbation problem. Let H be a Hilbert space with ele-
ments f, g, h, ete. The inner product and norm in H are denoted
by (|) and || ||. Let S and S, be unbounded self-adjoint operators
in H with spectral resolutions.

S = Sxda)(x) ,
S, = Sxd@n(x) .

If S is the closure of the strong limit of the S,’s as m— o then
Rellich’s theorem asserts that in the strong operator topology

lim @,(\) = (V)

for every A, —o < A< o, not in the point spectrum of S. See
[13, p. 56].

Let F' and F, be bounded not necessarily self-adjoint transforma-
tions of H, such that F' is the strong limit of the F,’s as 7 — oo.
In order to fix our attention suppose that the S,’s are bounded, but
not necessarily S. Then for each » S, , = F}S,F, is a bounded self-
adjoint transformation. Let its spectral resolution be
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(1) Sur = MT,0) .
Formally let Sy = F*SF,
(2) S, = Sxdqf(x) )

The problem we wish to study is that of passing from the convergence
of the S,’s to S and the F,’s to F to the convergence of the ¥ ,(\)’s
to ¥ (). However there are several difficulties. First F'*SF is not
in general self-adjoint or even densely defined. Secondly the S, ;’s
may not suitably converge to S;. In §§3-6 we will show essentially
that if 08, n=1,2, ..., 0<S, (that is if the S,’s and S are
bounded from below) then these difficulties can be overcome.

Throughout we assume that the Hilbert space H is separable.
while this is not at all necessary, it makes possible a simpler and
more intuitive language.

3. Definition of S;. We assume henceforth that:
i. 0= 8 is a self-adjoint operator on H;
ii. F is a bounded operator on H.

We define

S ={f|FfeD(S")}.

Here S'? is the unique positive square root of S and D(S"?) is its
domain. We do not assume that S is dense in H although this is the
most interesting special case. Let M be the closure of S in H. M
is a closed subspace of H and inherits the structure of a Hilbert space
from H. Our goal is to construct a self-adjoint transformation Sy
on the Hilbert space M with the properties:

(1) D(SpCS;
(2) (Srf19) = (S"'Ff| S*'Fg)

for all f € D(Sy) and for all ge S. The construction of Sy with these
properties has long been known, see for example [13; p. 85], however
it is included for the sake of completeness. We will need the follow-
ing simple and well known fact which we record as a lemma.

LEMMA 3a. Let A be a self-adjoint transformation on H and
let h,eD(A) n=1,2,..., If

h,—h as n-— o

and
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I Ah, || = O(1) as n— oo
then he D(A) and Ah, — Ah.

b4

Here ‘‘—’’ indicates strong convergence and ‘‘—’’ indicates
weak convergence in H. Lemma 3a is a special case of Lemma 4a
which is proved in §4.

For f,g€ S let us define

{flgp=(S"Ff|S"Fg) + (fl9),
AN = <FLHO™

LeMMA 3b. With the definition of inner product and norm given
by (8) S is a Huilbert space.

(3)

Proof. It is evident that S is a pre-Hilbert space. We need only
verify that S is complete. Suppose f, €S n=1,2,--+, |[|fu — Ffulll—0
as n,m— . Since || fo — full = | fu — full| there exists f € H such
that [[f — f.|l— 0 as m— oo, Since || SF(f, —fu) |l = |[[fa — falll
there exists g € H such that || SY*Ff, —g||— 0 as n— o. Applying
Lemma 3a with h, = Ff, and A = SY* we see (since weak and strong
limits coincide when both exist) that Ff € D(S'?) and that g = S**F¥.
Thus feS and

Wf = fullP =1 SF(f = f) "+ [If = fulP—0 as m— oo .

LEMMA 3c. There exists a linear transformation W of M into
S such that (flg) = < f| Wg > for all fe S, geM and:
LNWEIZ WA =IIFIl for all feM;
i (Wflg) = (f] Wo) for all f,geM;
iii. 0 <(Wrl|f) Sor all feM.

Proof. For ge M fixed (f]|g) is a linear functional on S and since

LAl =1 gl =AMl

(f19) is a bounded linear functional on S. Therefore there exists a
unique element ¢'€ S such that

(fl9)=<f1g for all feS.

Clearly the mapping g — ¢* defines a linear transformation of M into
S, ¢t = Wg. It is evident that ||| Wg||| =< || g || so that i. holds. Sup-
pose that f,g€S. Then

(Wfl9) =<Wf| Wy = (f| W)
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so that ii. is valid if £, g€ S. By continuity it is also valid for f, g€ M.
Thus W is a self-adjoint transformation on M, Since

(WFIS) =<WFIWF> >0 fes

and since S is dense in M we have 0 < W. To show that 0 < W we
need only verify that Wf = 0 is impossible unless f = 0. If Wf =0,
then

@1f)=<gIWf>=0 for all ge S,
but since S is dense in M this implies that f = 0.
THEOREM 3d. There exists a self-adjoint operator Sy on M satis-
Sying conditions (1) and (2).
Proof. We define
Spy=W7—-1.

It is evident from this definition that S, is a self-adjoint operator,
and that

D(S;) =D(W) =R(W)CS,
where R(W) is the range of W. If fe D(Sr) and g€ .S then
Sefle=W7flg) — (flo=<fle—(fl9),
= (S"’Ff | S*Fy) ,

and our proof is complete.

4, The resolvant relation. Let A be a closed linear operator on
M. 1t is not assumed that D(A) is dense in M. A subset Cc< D(A)
is said to be a core for A if the set {(f,9)|9 =Af, fe€C}in Hx H
is dense in the set {(f,9) |9 = Af, f€ D(A)}. Let A, and A be closed
linear operators in H and let C={f|4,.f— Af as n— »}, If C=
D(A) we say that A is the strong limit of the A,’s; if C is a core
for A we say that A is the closure of the strong limit of the A,’s.

LEMMA 4a. Let A, and A be self-adjoint operators on H and
let A be the closure of the strong limit of the A,’s. Then if

FmFs AL =0Q),
we have
feD) and A,f, A—f.

Proof. We denote by p the positive integers {1,2,8,---}. A
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subsequence p, of p is then a subset {n, n, n,:+-} of p with 1 =
n, < m, < -+, By “a,—a asn— oo in b’ we mean that lim,_ . a,, =
a. This notation enables us to dispense with awkward subscripts.
Let C={f|A,f— Af as nm — co}. By assumption C is a core for
A. Since || A,.f. ]| = O(1) given any subsequence p; of p there exists a
subsequence p, of p, such that A,f,—¢g as »— o in p, for some
g€ H. This is because bounded sets in H are weakly conditionally

compact. In particular if & e C then
(Anfulh)—(g|h) as m— o in p,.
On the other hand

(A fulh) = (ful ALR)
for all (large) » and thus

(A.fu | k) — (f| Ah) as n— oo in b, ,
so that

(9lh) = (f1Ah).

Given ke D(A) and 6 > 0 there exists A€ C such that ||k — A < 0,
|| Ak — Ah || < 6. This implies that

(91k) = (f|Ak) for all ke D(A) .

Consequently fe D(A*) and A*f = g; but A* = A. Since every sub-
sequence p, contains a subsequence p, such that A,f, — Af as n— o
in p, it follows that A,f,— Af as n— o in b,

In what follows we assume that:

ili. O £ 8, is a self-adjoint transformationon Hn=1,2, ---; F,
is a bounded transformation on H n=1,2, ---; R(F,) < D(S,)n =
1,2, --- . Assumption iii. implies that S, = F}S,F, is a bounded
operator on H for n=1,2, -.-., We further assume that:

iv. F'is a bounded operator on H and F is the strong limit of
F, as n— oo;

v. S¥? is the closure of the strong limit of S}* as n — oo;

vi. SY*F is the closure of the strong limit of SY*F, as n — oo,
We set

S ={f|S\*F,f — S’Ff as n— o},
It is evident that S’ S.
THEOREM 4b. Under assumptions i—vi if there exists 0 > 0 such

that dist {z, 0(Sp)} = 0, dist{z, 0(S, )} =29, n=1,2, --+, then for all
feM
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{Sur—2I} ' f = {Sy — 2I}7'f as n— o .

Proof. Take fe M. We will show that if p, is an arbitrary sub-
sequence of p then p, contains a subsequence p, such that

{S,r —2I}'f~{Sp —2I}'f asm— o inh,.

This will prove our result. Because dist {2, 0(S, )} = ¢ it follows that
[ {S,.r — 2I}7f || = 0(1) as n— co. Therefore we can find a subsequence
p, of p, such that if g, = {S, » —2I}'f then g, —~9g as n— c in b,
for some ge H. We must show that g = {S; — 2I}"'f. Since F is
the strong limit of F, we have

F.g,— Fg as n— oo in p,,
and since S, 9, = f + 29, we have

(S}LIZann l SvlL/angn) = (Sn,F gn ‘ gn)
=(f+20.]19,) =0Q).

Therefore by Lemma 4a Fge D(SY?) and S!*F,g,— S'"*Fg as n— oo
in p,. In particular geS. Take heS’; then by the above

lig;ﬂ (Sn.r9n | B) = lgn (S2°F,9, | S)*Fh)
= (S'*Fg | S'**Fh) .
On the other hand
liplzn (Su.rgu b)) = lgn (f+20.1h)=(f+2g|h).

Thus
(1) (S*Fg | S**Fh) = (f + 29 | h)

for all ke S’. Since S’ is by assumption a core for S**F (1) holds.
for all €S, and thus for all #€ D(S;). For such an h we have

(§*"Fg | S""Fh) = (g Ssh)
by Theorem 3d. Consequently we have shown that
(918Ssb) = (f + 29| h)
or equivalently
(91{Sy — 2*I}h) = (f | )
for all A€ D(Sy;). This implies that
(S — 2 If'g = f
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and hence that
9 ={Syr —=I}f.
5. Spectral resolutions. Let
S.r = | A0
be the spectral resolution of S, on H and
S, = | v
be the spectral resolution of S; on M. We assume throughout that
.\ =¥,A+), 0= v< o, n=1,2, ..., that 7,(0—) =0, and simi-

larly for T(\).

THEOREM 5a. If A= 0 is not in the point spectrum of Sy and
if feM then

T.0Nf—=TN)f as m— o ,
Proof. Fix feM, and let h = T(\)f, h, = ¥,(\)f. It is enough
to show that if p, is any sequence such that h, — k' as n— o in p,,

then ' = h. In order to identify A’ we proceed as follows. We assert
that if g€ H then

(1) lim @) (S, — 207|000~ A
= @2ri)*] (1S: — eI |90 — iz,

where C is the curve pictured below.

|
]
|
|
|
|
|
——

(=]
>

| I

Lo——¢

Indeed by Theorem 4b
lign ({S,n.r —2I}'f19) = ({Sr — 2I}7'f | 9)
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for all z on C except z = \. Moreover starting from the inequality
| (A — zI)|| < 1/dist {z, 6(A)} one can easily show that for z on C
and some constant k(C)

| (Sar — 2} f [9) | = RO N — 2|7 F (I 9]

Applying the Lebesgue limit theorem we obtain (1).
A simple computation gives

p—x if 0spg=s
0 if pg>»x.

(2) (2m;)—1go z il {

We have
@xiy| (4Sy — 23 |90 — 2)de
= @iy (v — 0| (1 - D d@ (@) 1)

This iterated integral is absolutely convergent and therefore using
Fubini’s theorem and (2) we obtain

(3) (@) (S — el 10— 2z = | (2 — NA@(@F | 9),

=({Sr —MITMNSf9),
= ({8, —M}h|9).

Similarly

(4) (27f’i)“go({sn,p —2IFf 19N — 2)dz = ({S,.r — M. (NS 9),
= ({Sur —MI}h, | 9) .
Using (1), (3), and (4) we see that
(5) {Ss.r — M}k, | 9) — (S — NI}R | 9) as m— oo in p.
Since h, = ¥,(\)f it follows that

(S F,hy | SaPFoh,) = (S, ph | hy)
= (S, TN T.S)

= | v I
=DN| |
We also have, since F' is the strong limit of F,, that
F.h, — Fh' as n— o in p,.

Applying Lemma 4a we find that '€ S and that S.*F,h,— S'*Fh
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as m— o in p,. Suppose that geS; then
(Sn.Fh'n ‘ g) = (S;IZFnh’n l S'rlblefng)

and thus

(6) (Su.rhu | 9) — (SY°Fh" | SY*Fg) as m— oo in P, ;
also

(7) (Srh|9) = (SY*Fh | S'Fy) .

Inserting (6) and (7) in (5) we find that
(8) (S'*Fh' | S'*Fg) — MR’ | 9) = (S**Fh | S'"Fg) — Mh | 9)

for all g€ S’. Using assumption vi. we see that (8) holds for all
g€ S and therefore in particular for all ge D(S;). Appealing to
Theorem 3d we obtain

(B — h|Srg) =Mh — h|g)
for all ge D(Sy). Since b’ — heSC M this implies that
Sp(h' — h) = Mh' — h) .

However by assumption )\ is not in the point spectrum of S, so that
k' — h = 0 and our proof is complete.

6. The perturbation theorem. In this section and also in § 7 we
make the following convention. Suppose that P is a subspace of H.
If E is a projection of P onto a subspace @ of P then E may also
be regarded as projection of H, namely the projection of H onto Q.

THEOREM 6a. Under assumptions i—vi we have for every fe H
7.Nf— TS as m— o,

for every )\ mot in the point spectrum of Sy.

Proof. It follows from Theorem 5a that
(1) 7.Nf=TNSf as n— o ,

for all fe M. Suppose next that g | M. Since ||¥.Mgll = 0(1),
given any subsequence p, there is a subsequence p, of p, such that

r.\g—h as n— o in b,
for some he H. If fe M then
lipm @.Mg 1 f)=@]|f).
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Since (Z.N)f19) = (f|Z.(\)g9) we have using (1)
lim T.NM91f)=@lTNMNSf)=0.

Thus (h|f) = 0; i.e. b 1 M. Now
| S, P = (Sar¥ (M9 | 9),
=" v,
=Ml

Therefore by Lemma 4a Fhe D(S"?); that is, he SCcM. But h 1 M
so that # = 0. We have thus shown that

(2) 7r.(\g—0 asn—o if g 1 M
The relations (1) and (2) together prove that
(3) T.Nf—=TNSf as m— o ,

for all fe H. Since weak convergence of projections implies strong
convergence our proof is complete.

7. Convergence in dimension. In this section we will show how
starting from the conclusion of Theorem 6a and one further assumption
it is possible to prove that the dimensions of the spectral projections
converge. Suppose that 0 < R, n =1,2, --- are bounded self-adjoint
operators defined on subspaces N, of a Hilbert space H. Let 0 < R
be a self-adjoint operator on a subspace N of H. Let

R, = | MEWM),
R = g:_xdE(x) ,

be the spectral resolutions of R, on N, and of R on N. We list two
conditions.

a. E,AN)—EQ) as n— o for all A >0, A¢o,(R), the point
spectrum of R. Here “—” is in H.

b. there is a number m > 0 such that if f,eN,, |[f.]l =1, and
(Bofulfn) = m, <m for nep, then b, contains a subsequence p, such
that f, =~ f+# 0 as n— o in p,. Here “—"" is in H.

THEOREM Ta. Under assumptions a. and b. we have

(1) dim E(\) < oo 0o=x<m,
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and

(2) lim dim E,(\) = dim E(\)

n—oo

Jor 0 =A< m, Mgo,(R).

Proof. We first note that assumption a. alone implies that if
0=N< o, A¢0,(R), then

(3) lim dim E,(\) = dim EQ\) .

In (3) we admit ‘“c0 = o”’, Suppose dim E(\) = k. Then there exist

orthonormal vectors g¢;, g., --+, ¢, in E(\)H. By assumption a. we have
1‘1_)12 En()‘)gj = E()")gj =9; J=1-k,

from which it follows that for all sufficiently large n {E,(\)g;}¥, which
belong to E,(\)N,, are linearly independant.

From this point on we use assumptions a. and b. We suppose
that M¢0,(R) and that 0 =N <m. If dim E(\) = o then we can
find an infinite orthonormal set of vectors {g,}7 in E(\)H. Using a.
we see that there exists a subsequence p, = {0 < n, < 1, < «++} such
that

”Enko\')gk_gkll""o as k— oo ,

If we set f,, = E, (Mgl E, (Mg, || then f, is defined for nep,. We
have f,eN,, ||f.ll =1, and (R,.f.|f.) =N for nep,. Therefore by
b. there is a subsequence p, of p,, such that f, =~ f as n— o in b,
and f #+ 0. But then g, — f #+ 0 as n— o in p,. However it is obvious
that g, — 0 as # — . Thus dim E(\) = o« leads to a contradiction
and (1) is true.

We assert that (2) is true. Set k = dim E(\). If (2) is not true
then in view of (3) there is a subsequence p, such that dim E,(\) >k
for nep,. Let g, -+-, 9, be an orthonormal basis for E(\)H. For
each n € p, we can choose f, € E,(M)N, such that ||f,||=1, fulgy, -,
9:,. We have (R,f.|f,) =) and therefore by b. there is a subsequence
p, of p, such that f, —~f# 0 as n— o in p,. Now f, = E,(\)f, and
by a. E,\)f.— EM\)f as n— o in p,. Therefore f = E(\)f and
feEM\)H. Since f 1 ¢, +++, 9, f must be 0. This is a contradiction
and our assertion follows.

8. Maximum at the end point. As we announced in the intro-
duction §§ 8-14 are devoted to the case in which #(x) has a unique
absolute maximum at = 1. We assume that #(x) is continuous for
—1 =2 =<1 and that
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(1) t(x) < t(1) —-1=x<1.
We further assume that
(2) t1) — t(x) — (1 — 2)*LA — x) as x—1— .

Here w > 0, and L(y), defined for 0 < y < 2, is positive, continuous,
and slowly oscillating as ¥y — 0+. We recall that L(y) “slowly oscil-
lating” means that for every ¢ > 0, L(y)y® is increasing and L(y)y—®
is decreasing for 0 < y < a(e) if a(e) is sufficiently small.

In what follows it will be necessary for us to work with four
Hilbert spaces. The first Hilbert space is L, the elements of which
are complex functions f(k) defined for & = 0, 1, .-, with inner product

(19 = 3 F g k) .

The second Hilbert space is L~ the elements of which are complex
measurable functions on —1 < & <1 with inner product defined by

(f190r = | S @)@y wa o) -

Here w, g(x) = w(x) = (1 — 2)*(1 + «)?, « > —1, 8> —1. The mapping
¢ from L to L~ defined by

9f(2) = SLF ()PP (@)

(the partial sums of this series converge in the metric of L™) and its
and its inverse ¢! from L~ to L defined by

57f-() = | @l Pie? @, so)ia ,

are unitary mappings. Both H and H~ have as elements complex
measurable functions on [0, ) with inner products

(f 19 = | f@Io(wyudu,
(f19u= | F@ae)ade .
The mapping + from H to H" defined by
v = [ f@eueds

(the partial integrals converge in the metric of H”) and its inverse

P (2) = S: S ) (uzyudu
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are also unitary mappings. See in this connection [1; p. 73] and the
references given there.
Let us set

/2 Bl2/ | 1/2
0P (u) = <1 — cos8 ﬂ-) <1 + cos ﬂ) (sm 3‘—) w0
n n n

for 0 <u =7mn. If w > nr then 6P (u) is defined to be 0. For each
n=1,2 +-- we define a mapping from L~ to H" by the formula
Xnf <(w) = f (cos 1‘—)%‘”'5’(%) 0=u=nrm.
n
Note that y.f-(w) is 0 for u > nw. A simple computation shows that
the mapping Y, is isometric and into. We further define
XEif-(x) = f(narc cos x)(n arc cos ) *(1 — &%) tw, (x) " n'? .

The mapping ¥ is a partial isometry of H™ onto L~. Specifically xi
is isometric on ¥,L~ and zero on (¥.L")"', the orthogonal complement
of ¥,L” in H”. Note that ¥y, = I on L~ and x,x% = I on y,L" and
0 on (%.L°)*.

We next introduce various operators on these Hilbert spaces.

a. FE, is defined on L by the formula

f (k) if0=k=n
E Ff (k) =
(k) 0 ifk>mn.

The following operators are defined by “transferring” FE,:

E; on L~ defined by E; = ¢E, ¢ ;
F; on H" defined by F, = y.E. xk .

b. T is defined on L™ by
T7f(») = [t(1) — t@)]f(®) .
We set:

Ton L defined by T =9¢"T"¢;
T. on H™ defined by T, = x.T )k ;
S, on H” defined by S, = 2n™L(n=*)"'T, .

¢. S” is defined on H” by
S°f-(u) = u*f(u) .
d. F is defined on H by
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0251
i

We set
F~ on H defined by F~ = pFt,
If \p1= +++ = N\, .41 are the eigen values of C,, see §1, then
L) = N1 = 2o S L) — Myt
are the eigen values of the following operators:
E,TE,
E;T"E;

EL"’
EL,
FT2FY g

where these symbols are to be read “E,TE, restricted to E,L”, ete.
The eigen values of

F, S F,

F,oH

are in increasing order {({(1) — A, n)2°n*L(n~?)~"}7Zl. In the following
sections we will show that F, S, F, ‘“converges’ to S~ i~ a8 n— o,

and thus, using the results of sections 2-7, that if
o<m=ps---, lklmﬂ,,: +- 0

are the eigenvalues of

SA ~
Fl g~ '

then
lim (t(l) - 7\”n,.k)2‘»/”’20\)-L(n—z)“1 = k= 1’ 2, 000,

or equivalently

N = U1) — 27w~ L(n~*) + o[n~*L(n~%)] .

9. Convergence of (S;)"* to (S7)"%. It follows from §8 that for
every fe H™ we have
Tof-(u) = t,(w)f(w) l=su< oo,

where
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N LCE t(cos %) 0<u=nt
0 nr < U .
Consequently
Saf () = s, (u)f (u)
where

8u(u) = 2°n*[L(n~")] 7", (u)

LeEMMA 9a. Under the assumption of §8 we have

(1) lim s, (u) = u™ 0=u<ow,

n—oo

and for any € > 0 there is a constant M(c) such that for n =1,2, -«

(2) 0= s,(u) = M(e){u® + usju*, 0=u<<ow.

Proof. By assumption
(3) t(1) — t(x) = 1 — x)°L(1 — x)A(x) as £ —1—

where L(y), continuous and positive for 0 < y = 2, is slowly oscillating
as y— 0+, and where 4(1—) = 1. It is well known and easily veri-
fied that this implies that if 0<%y, 0<¥, and 0< a, = ¥,/¥. < Qs
then

(4) L(y,)/L(y,) — 1 as ¥, and ¥,— 0.
We have

s, (u) = (2n sin %’%)%[L@ sin? E“/;) / L(n—Z)] A(cos % )

for 0 <u < nw, and (1) is an immediate consequence of this for-
mula.

From the fact that L(y) is slowly oscillating as ¥y — 0+ it is
easily verified that for each ¢ > 0 there is a constant A(¢) such that
ifo<y, =2 0<y,=<2 then

(5) L(y,)| L(y,) = A@(w/y.)" + (/9] .
It follows from (3) that if M is sufficiently large then
0=<t1)—tx) = MA — x)*L(1 — ) —~1=2e51.

Consequently if 0 =< v < nw we have
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0s,(W)=M (2% sin %)2 [ <2 sin’ ) / L(n‘z)]

0 = s,u) = M| (207 sin® ) + (205w =) 1.

from which (2) follows.

THEOREM 9b. (S7)'* is the closure of the strong limit of (S,)?
as n— oo,

Proof. Let fe D[(S7)"*] and € > 0 be given. Let fs(u) = e~ f(u).
It is evident that if 0 is sufficiently small then

1/2

1 = Fallar = {1 @ P11 = o puduf” < e
and
HSYHF = F)llar = {[ 1A P11 = e pumian} ™ < e

Moreover using (1) and (2) and the Lebesgue limit theorem it is evident
that

(S fs— (S7)fs in H as m— o .
10. Convergence of F), to F.

THEOREM 10a. If F, and F~ are defined as in §8 then F,
converges strongly to F~ as n— oo,

Proof. In order to shorten our formulas let us set

R(k, n, u) = hi'*P® ‘”(cos l){w(cos ﬂ)}m{sin @—}mu—”z .

n n n
Starting from the definition of F, as x.E, x it is easy to verify that
for all fe H®

(1) Fyf-(u) = == 33 R(k, n, wa(k, n)

1
n
if 0=u =nnw and F,f-(u) =0 if w > nw, where

atk, ) = | "F QR n, L .

Let us now assume that f(u) is continuous for 0 =% < o and
vanishes except for 0 < a, = u £ a, < . We will show that under
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this assumption F, f«(u)— F"f+(u) uniformly in any subset 0 < b, =
U =b, < . We first note that
(2) lim (2**Ph;Y)E =1 .

k—oco

This follows immediately from the formula of § 1 defining ;. Formula
(5) of the Appendix asserts that

(3) lim k‘“P,ﬁ"’ﬁ’<cos %) = (2)2)~J(2)

k—co

uniformly for 2z in any compact subset of the complex plane. It is
easily deduced from this that there exists a constant M such that

(4) | R(k,m, Q)| §M<k;|@_1>a+um
if

0<o,=l=a,< >, 0o<k=n, i
Let us set

S0,mw == 5 Rk, n, walk,n),

1 N 0sk<n

50.mw = 5 Rk, n, walk, ).

nd<k=n

Then F,f-(w) = 3,0, n, u) + 3, (0, n,u). Using (2), the inequality
(4), and the corresponding inequality for R(k,n,u) when 0 < b, =
% = b, < oo we find that

| 230, m,u) | = Mn™% 5, (k+ 1)
1 0sk<nd

< Mo+
for

b=u=b,, 0<o<1, n=12 .
It follows from (3) that
(5) lim | B, m, ©) — (£)".0em] = 0
uniformly for

nw=k=Zn, o, == a,

Consequently
lim [a(k, ») — g(kn=")(k[n)'*] = 0
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where
alen=) = | F©Tu(kenyzde
n.

uniformly in k& for no <k <
again we have

Here of course g = ¢~'f. Using (5)

lim [R(k, n, ) — (—f;)llsz(kun*l)] —0

n—rco

uniformly for

It now follows that

(6) lim Z(B,n,u)—%

n—oo 2

g(kn=1J(kn"u) —j—i—‘ =0

ndZksn
uniformly for b, < u < b,. We assert that

(7) liml > g(kn“)Jw(kn“u)ﬁ = Slg(z)Jw(uz)zdz
n—o N, ndsk=n n 8

uniformly for b, = u =< b,. Indeed the sum on the left is a Riemann
sum for the integral on the right, so that (7) is certainly true for
each # > 0. To show that it holds uniformly for b, £ u < b, it is
sufficient to note that

R I GO AN S

du 1 nd<ksn n
uniformly for b= u <b, m»=1,2, --- so that the sequence of func-

tions on the left in (7) is equicontinuous. Given & > 0 let us choose
0 > 0 so small that

‘;(5, n, u). <2, l S:g(z)Jw(uz)zdz| <2,

for b, =u <b,, It then follows on collecting our estimates that
| Frf-(u) — F"f(u)| < e for b, < u =< b, and for all sufficiently large n.

Let C” be the set of functions f€ H~ which are continuous and
have support in a, < u =< a, for some 0 < a;, < @, < . Using what
we have proved above and the fact that || F, ||=1 n=1,2,.--, we
see that if feC” then F,f— F"f as n— . Since C” is dense in
H~ we see, again using the fact that || F, ||=1n=1,2, ---, that
F, —~ F as n— oo, However weak convergence for projections implies
strong convergence so that F, — F~ as n— oo,

11. Convergence of (S;)’F, to (S7)/*F Part I. It remains to
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prove that (S7)/"F" is the closure of the strong limit of (S;)VF..
The considerations here are considerably more involved than those of
8§89 and 10 and will occupy §§ 11-13.

Let D be the set of functions h(z) in H which can be written in
the form A(2) = 2%h,(2) where h,(z) defined for —o0 < 2z < oo is even,
infinitely differentiable and has compact support. We set D~ = ¥ D.

LemMMA 1la. If feD™ then f(u)= u*f(u) where fiu) is the
restriction to 0 < u < o of an even continuous function satisfying
Si(w) = 0(u™") as u— + oo for every r.

Proof. Suppose that fe D™ then, with an evident notation,

£ = [ h@uawzds

where J,(2) = 27*J,(2) is an even continuous function satisfying
|Ja®) | = AL + |2]9) for 0 <2< . Here ¢ =max [0, —a — 1/2)1.
If we set

dk+(2) = k"(z) + g—q—:—lk'(z) ,

then )
AFu(2u) = —u'Ju(zu) .
Consequently

o

(—wrfi) = | h@(—w)rSuadz,

- S hy(2){4"Ja(uz)}e**dz
= S @)z,

where in the last step we have integrated by parts repeatedly. It is
easy to deduce our assertion from this last formula.
Consider the rectangle

O2

—1/2 + ic 12 4 i

04 1‘ 207 ag

oy

=12 1/2
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Let v,(0) be the harmonic measure of the side o, with respect to the
point ¢fz. Later in this section we will need estimates of the v,(6)’s.

LEMMA 11b. With the above motations we have the inequalities:

Y(6) =1 — 6 — 207 cosh zrr ,
7(0) = 0

Y«(0) = 70 cosh trm

Y4(0) =< 0 coshzr .

Proof. For the definition of harmonic measure and its basic prop-
erties see [8]. By the principle of domain extension 7,(f) is less than
or equal to the harmonic measure of the line segment connection
—(1/2) + it to (1/2) + it in the strip bounded by the lines Imz =t
and Imz =0

z plane

This is trivially less than the harmonic measure of the whole line
Imz = . But this last is 6, and thus 7,(0) =< 4.

A second application of the principle of domain extension shows
that v4(0) + v(0) is less than the harmonic measure of the segments
connecting —1/2 to —(1/2) + 4z and 1/2 to (1/2) + ¢z in the half strip
bounded by the lines Rlz = —1/2, Rlz = 1/2, and Imz = 0 and lying
in the upper half plane.

1 .
_._é__l_,ir '5+7¢T

I
|
i
]
12

|
—
S

This is trivially less than the harmonic measure of the two vertical
bounding lines. If w = sin 7z then the half strip is mapped conformally
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ﬁL % sinh 76r

onto the half plane Imw = 0. The point 67 goes over into ¢ sinh 7fz.
Since harmonic measures are invarient under conformal mapping we
see that 7,(6) + 7.(0) is less than the harmonic measure v of the infinte
intervals (oo, —1] and [1, o) with respect to ¢sinhzwfz. But this
can be exactly computed using the Poisson formula for the half-plane.
We find that

v < = sinh w7d r[a:2 + sinh® 77d]dx ,
1

A
ERTCEERIN

sinh 776 .

Since 7,(0) = v,(0) by symmetry and since v,(6) + v(6) < v we find that
v4(0) and v,(0) are both less than (1/7) sinh #7zd. Using the mean value
theorem we see that (1/x) sinh 776 < 70 cosh 77, ete.

Let D, be the subset of D consisting of those functions in D
which vanish for ¢, = 2z < « for some ¢, < 1, and let D; = 4D,. Let

D, be the subset of D consisting of those functions in D which vanish
for 0 < 2z = ¢, for some ¢, > 1 and let D; = +D,. The principal result
of the present section is the following.

THEOREM 1llc. If fe D; or D7 and if (as in § 10)

atk, ) = | F QR (e, n, O
then for v fiwed v =0, =1, £2, -+, we have

a(n, n + v) = 0(n~") as n— oo
for every r.

Proof. We first consider the case fe D; or D;. We have

a(k, n) = a,(k, n) + ayk, n)
where

aie,m) = | FQORG, n,
ate,m) =" FORG,n, 0L .
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Using Lemma 11a and the relation
| Rk, n, 0cde =
0

it is apparent that a,(n, k) = 0(n~") as m— oo for every r > 0. Suppose
now feD]. If we set

nx/2
0

at (e, m) = | Qi(cos S0, 00100z ,
arh,m) = | " Qr(cos £)o.1 00

where
6.(5) = hi ”’{w(cos %)}_m{sin -Eb—}l/gc““/*) ,

and where f,({) = {=*f(C) then, see (10) of the Appendix,
ﬂidl(k, n) = al—(k, n) - ai‘-(k’ n) .

Note that if 8 is large Qf(cos(/n)fi({)0.(() may not be integrable
near { =mnm. This is the reason for splitting off a,(n, k). Apply
Cauchy’s theorem to teach of the curves below and then let o—0+.

incf2 ¢
radius p \_\ L nxf2
e
—int/2 ¢
We obtain
aif(k, n) = L + IF + I,
where

int/2 (int/2)+(nx/2) nxf2
=", =] S ,
int(2 inz{2)+(nx/2)

(—int[2)+(nx/2) nx/2

L+=S ’ I2+=S ’ I3+=S

»
—inz/2 (—int/2)+(nx/2)
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In all cases the integrand is
F(O:(cos> )0, -
n
Let us put
Oi(t) = h;”"‘{cosh—t— — 1}~wlz{cosh t 1}_m{t sinh i-}mt"’
" n n
for 0 < t < . Keeping careful track of arguments we find that
I = | rnQu(cosn Lot
0 n
I = —S“” fl(—it)Qk(coshi )@z(t)dt :
0 n
Since fi({) is even I — It = 0 and thus

mioy(k,n) = I; + I; — I" — IF .

If h = +~'f then we have
£©) = |1

where ¢; < 1. It follows that f,() is an entire function of { and
that for any ¢, ¢, <c¢ <1,

|7+ Linz) | < Ao 0<E=nm2;

see [1; p. 85]. By (11) of the Appendix we have

Q,m[cos <%m' + Sn‘1>]’ < Ante?, 0= &= w2,

if v is fixed. Since

@ﬁ(%iz‘ + s)l < Apeh 0<¢=<nn2

we see that I, vanishes exponentially asn— . I can be similarly
treated.

In order to estimate I; we consider the rectangle below.
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g2 —;-n(n: + 1) + i

1

20— 1) + i
o4 o8
nw %—n(n +1)

Rl

'%'n(n' -1

g1

This rectangle is similar to the rectangle of Lemma 11b. Let
M; =1lu.b.|fi(Q)]| ¢ on o 1=1,2,8,4.

By the principle of harmonic majoration

log fl(%nﬂ + inrﬁ) l =< é%(ﬂ) log M, .

We have M, < An~", M; < Ae*" ©=2,8,4. By Lemma 11b if 7 is
sufficiently small

IA

w»zé, ofri6) + 10 + O} =6, 0=0 %

For 7 so chosen
lfl(%mt + 'h?)l = Ae'n"3 0=rn=mwn/2,

uniformly in n. On the other hand by (11) of the Appendix

Q,H,,(cos <%n: + i77n‘1>)l = An%" 0=n=1wn2,
and an elementary argument shows that

é),,(-é—mt + 7,77>| < An® 0s=n=mn/2.

Since r is arbitrary these estimates imply that I; = 0(n™") as n — oo
for every 7. I can be dealt with similarly.
We now turn to the case fe D]. We have, if h = yf,

£ = Sczh(Z)Jw(ZC)zdz ,
°1
where 1 < ¢, < ¢, < . Since, see [1; p. 4],
Ju(z) = %H,;“(z) + %H;”(z)

we have

2f(©) =r2Q + 20,
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where
£o© = "o a0z,
720 = | m@H 0z,
and hence
a,(k, n) = a(k, n) + a®(k, n)
where

afk, m) = | FOOR®, n, L, i=12.

The functions f™({) and f®({) are analytic in the plane slit from — o
to 0. Let us apply Cauchy’s theorem to one or the other of the two
curves below and then let o — 0+.

wmef2 m———————— >—“——“-——'“:
. Vi
radius pv_\ '\\ ________ - |5 nm

i === 1

i |

A A

—nrf2 e —————— = > —————— -

We see that
af(k, n) = I + I + I i=1,2.

int/2 (int]2)+(nx/2) nx/2

=" 1= ;1=

’
0 int/2 (int[2)+ (nx/[2)

—int/2 (—int/2)+(nw/2) nx/2

=" = ;1=

.
0 —int/2 (—int/2)+(nx(2)

In I", 5 =1, 2,3 the integrand is

FOQPL P (cos =) 2,00

n

where

2.0 = h,:”“’w(cos %)1/2(sin %)llzcw’ .
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From this we see that if
al gl /
Qi) = h;"“(cosh—t— - 1) 2(cosh—t— + 1) 2{15 sinh i}l ’
" " n
then
Tn/2
L9 = —eriee| ™ £0(te7%) Py cosh %)Qi(t)dt,
0
1 = e ™ gy Pl o cosh L) oxeyde .
0 n
Adding we find that
Ilu) + Il(z) — gmlz[enwlzfm(teui/a) + e—m’wl2f(2)(te—ni/2)]
0
(@ B) t ¥
. P (cosh _)Q,,(t)dt .
n
Since arg t =0
exiw/?H;l)(teﬁilz) + e—niwlﬁHéZ)(te—ﬂiIZ) — 0 s
see [1; p. 5]. We have IV + I = 0 and thus

an, k) = I + I + P + I,
It follows from [1; p. 85] that if 1 < ¢ < ¢, then

If “’(%z‘m + 5)] = Aememh 0 <¢=nr2

while by (8) of the Appendix

P,,+,<cos [—;—it + En“‘])l < Antet™? 0séZnm2.

Since trivially

.Q,(%’im' + S)l < An 0=<¢=nr/2
we see that LY vanishes exponentially as # — o and thus that I;Y =
0(n~") as m— o for every r. Similar considerations apply to L.

Using Lemmas 11a and 11b we can deal with I and I® very
much in the way we dealt with I} and I;.

12. Convergence of (S;)*F, to (S™)'*F”. Part IIL.

LEMMA 12a. Let ge D7. Then for every nonnegative integer N
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we have

—— oo ~ 7r 4N (foo
th w? | Fog-(w) Pudu < <——> g w?| g(u) |* udu .
n—oo JO 2 0
Proof. By (1) of §10 we have,
F7g-(u) = n™ > R(k, n, walk, n)
k=0
where

a(k, n) = SZNR(k, n, w)g(w)yudu .

Let g,(u) = g(u)(1 — cosu/n). Using the recursion formula, (1) of the
Appendix, a short computation shows that

(1 — cos %)Fjg-(u) — Frg,-(u)

= WlhCna(n + 1, n)R(n, n, ) — bl kP Aa(n, n)R(n + 1,m,u) .
Using Theorem 1lc this implies that

| (1= cos L) Frg-0) — Fro:- | = 0w

and thus since || F, || =1

Snx
0

1- COS%}ZI Frg-) Pudu = || Fog,- () Pudu + 0,

(1)
SM 1 — cos ﬂrl F,g-(w) |Pudu < S \1 — cosl‘zl g(w) Pudu + 0(n) .
0 n 0 n
Now
= 2(-2-—u—>2 O=u=nr
u ) u T 2n
(2) 1 — cos L = 2sin’ () 2
" 2n gz(—”’—> 0=u<cw.
2n

Multiplying (1) through by (1/4)7*n* and using (2) we find that
e A~ T 4( o0
|l Fog-(u) Pud = () w) o) Pudue + 00~ ,
° 2/ Jo

which implies our result for N = 1. The argument however is valid
in general if we use (1 — cosu/n)¥ in place of (1 — cosu/n).

THEOREM 12b. If fe D then
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lim [[ (S7)YF"f — (S)FFf |l = 0.

n—oo

Proof. An elementary argument gives

SVFf — (SOFFIfIP = L + 2L + 21,

where
L= || weF"f-) — 8, "F2f ) Pudu
1= {Tue | Fof () udu,
L= | s, Fof- Pudu .

By (2) of §9 (if T=1) then
I < Aru“’“ | F - (w) [Pud .
T

Choose N so that if a = 4N — (2w + 1) then @ > 0. We then have
I < AT—“ru‘*N[ FOf-(u) Pudu .
0

It is now evident from Lemma 12a that if T is sufficiently large then

(3) TmI < ¢/d.

Since F"f-(u) = f(u) for fe D] we see using Lemma 1la that for all
sufficiently, large T

(4) L<eld.

Suppose now that T has been chosen so that (3) and (4) hold. Since

lim,_..s,(#)"* = u* boundedly for 0 =< u = T and since by Theorem 10b
F,f«(u)— F"f-(w) in H~ we have

(5) limZ =0.

n—oco

Combining (3), (4) and (5) gives
Iim || (S7)2F"f — (SOY*Fof || < e,

n—oo

but ¢ is arbitrary, ete.

LEMMA 12¢. Let ge D;; then for every monnegative integer N
we have

Ti—ru“"l Flg-() Pudu < (%)”S:uuw () Pudu .

n—oco J0
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THEOREM 12d. If fe D; then
lim || (S*)*F"f — (SO Ff [l = 0.

Note that for fe D;, F"f = 0.
The demonstrations of Lemma 12¢ and Theorem 12d are so much
like those of Lemma 12a and Theorem 12b that they are omitted.

13. Convergence of (S;)"’F, to (S7)*F", Part III. If
flu) = S:f*(z)J.,(zu)zdz
g(u) = rg*(z)Jw(zu)zdz

and if
1) = | 1P gu)T.uaudu

then A*(z) is a ‘‘convolution”” of f*(z) and ¢g*(z). Indeed if o = —1/2
then there exists a very interesting formula for A* in terms of f*
and ¢g*, and it is possible using this formula to read off simple prop-
erties concerning supports such as those proved below. See, for
example, [3] or [4]. However these arguments are not available if
-1<a< —1/2.

Let 8(z) be a nonnegative function in D, such that

(1) S”a(z)zwdz — 2¢1(a + 1) a>-—1.
We define
Aw) = S:é(z)Jw(zu)zdz .

Let also 4,(u) = w=*4(uw). We know from Lemma 1la that 4,(u) =
0(u~") as w— + oo for every r. It is easily seen using (1) that 4,(0) =1.
Also 4,(u) is the restriction to the real axis of an even entire function
4(w) which satisfies |4(w)| =< Ae”'1 + |w]?), w = u + 1v, where
q = max (0, —1/2 — «).

LeEMMA 13a. Let f*(z)e H. If

1. f*(z) vanishes for ¢ <z < co;

2. f = | Fr@Tuaeds

3. f*(n2) = S:f (w)4,0u)Jo(uz)udu ,
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then 2=°f*(\,2) s the restriction to 0 =2 < o of an even infinitely
differentiable function and f*(\,2) =0 for ¢ + x =2 < .

Proof. We will merely sketch the demonstration. Since
JAD) = LIHP@ + HY@)]
we have
2f*(\, 2) = S:[H;"(zu) + H2(zu)] fi(w)d,vu)udu .
It is easily seen that this can be rewritten as
270 ) = |_H ) i a0ausdu

where 2zu has argument 0 for 0 < u < o and argument = for
—o < u < 0. By Cauchy’s theorem if

I= S:H,,ﬁ”(zu) Fi) L Ovie)u

then
I=L+L+ 1L,
where
—ptiTe T+ilt T
I = S ’ L= S s L= S .
-7 —T+iTt T+iT7
~T+ 1Tz T+ iTr

Fixing ¢ conveniently we can show by arguments like those in §11
that if 2>c¢+ NI, L, I,—0 as T— . Using the fact that
fw)d,(0vu) = 0(w~") as u— o for every r we see from the formula
defining f*(\, 2) that 27®f*(\,2) is the restriction to 0 =2z < = of
an even infinitely differentiable function. By continuity f*(\,2) =0
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for z=1¢ + .

LemMA 13b. Let f*(z)e H. If

1. f*(z) vanishes for 0 <z =¢, ¢ > 0;
2. f) = | rr@luaedz (L)

3. 0y w) = | Fad0u)uuaudu ;

141

then z=2f*(\, 2) is the restriction to 0 < z < o of an even infinitely
differentiable function and f*(\,2) =0 for 0=z2=c—x tf ¢c—A>0.

Proof. Again we merely sketch the proof. We have

2f(u) = fOu) + f*(w)

where

row = ["BO G @rde

Fow = | P Eu)f @z,
and thus

2/*(r, 2) = lim [1 + 1]
where

I = S: FO)A,0m) T (uz)udu

™= S: FO)4,0m)To(u2)udu .

By Cauchy’s theorem

I(l) — Il(l) 4 Izll) + 1'3(1) ,
1(2) — 1'1(2) -+ IZ(?) + 1'3(2) ,

r—————— B v e ' T+7:TT

\ !

N e J7
————— 7—__——'

4 A

|
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where
it itT+T

=" =" p={

14
0 itT irT+T
—itT —itT+T

=" =T, =

0 —irT —itT+7T

It is easily verified that I/ 4+ I} = 0, and arguments like those used
in § 11 suffice to prove that ", IV, I,”, and I} -0 as T— o if ¢
is suitably chosen, for 0 <z < ¢ — \, etec.

THEOREM 13c. Let fe D[(S")*F"); then given ¢ > 0 there exists
h e D[(S")*F"] such that:

(1) Wf=nhil<e  [[(SYEF{f—h}|<e,
(2) (SHF h — (S”)*F"h as m— o .,

Proof. It is obviously sufficient to consider two cases. Ff = f
and F7f =0.
Suppose that F"f = f. By assumption f € D[(S")/*F"] so that

| (ST F"f | = S”ul F(w) Pudu < oo .

For 0 <0 <1 let g(u) =rf(0u). Then if f* = 'f, g* = 479 we
have

g*(2) = S: F ()T (uzyudu (M)

— S“’ Fw) (w200 udu (M)
— fH(207)07"

F°f = f implies that f*(z) = 0 for z > 1. It follows that g*(z) =0
for 2z > 6. Consequently F"g =g as well. It is also evident that
g€ D[(S™)*F"]. Since

1 =gl = {717 = £ 6w Pudu,
(S YRF(F = g} = | w1 fw) = £ (0w Pudu

it is apparent that by taking @ sufficiently near 1 we can insure that

I —gll <el2, [ (S F{f — gt <el2.

We next define h(u) = g(u)d,(vu). If X >0 is so small that v +60 < 1
then by Lemma 13a if 2* = 4% h*(z)=0 for z2>1, and thus F"h =
h. Since
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lg = hiP = {19 P11 = d00) P udu
1S FNg — By = | g P11 = 400) P udu

it is evident that we can choose X > 0 so small that » + 6 < 1, and
that

lg—hll<e2z, [[(SY'F{g—h}l<el2.

Thus h satisfiies (1). By Lemma 13a k€ D7, and therefore by Theorem
12b (2) holds as well.

Suppose that F"f = 0. Then, if f* =47f, f*®) =0 for 0 <z < 1.
Choose 1< ¢, <c¢, < o go that if g*(z) = f*() for ¢, <2z <c¢, and
9*(z) = 0 otherwise then ||f* — g*| <¢/2. Let g = +g*. Clearly
F~g =0. We have

=gl =I1r*—9*ll <e¢2,
while
[(S)F{f —g}ll=0.

Next let A(u) = 4,00u)g(u), where X > 0 is so small that ¢, — N> 1,
which implies using Lemma 13b, that F"h =0, and so small that
lg —h||<e2. Then ||f—h]| <e and ||[(S)F{f—h}| =0, so
that (1) holds. By Lemmas 13a and 138b % € D; and thus Theorem 12d
can be applied to verify (2).

14. The asymptotic formula. Let S; be constructed from F~
and S” as in §3. Note that if S” ={f|feH, F'fe D(S")"?} then
S” is dense in H” so that S; is a self-adjoint transformation on H
itself. Let

Sy = r AT ()
o
‘be the spectral resolution of S; on H, and let
S, = g“’ AT
o

be the spectral resolution of S, , = F, S, F,. It follows from Theorems
‘9b, 10a and 13¢ combined with Theorem 6a that
(1) 7o) — (N O0=r< o

for evey N\ ¢ 0,(S7).
Let us define
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RA=S;,NA, N =F'H",

N»,:\’ Nn:FnH .

Since, as is easily seen, R~ > 0, R, > 0, we have the spectral resolu-
tions

R = rxdE"(x) on N~,
0
where
E"(\) =77(\) — 77(0) 0=A< oo,
and
Ry = S:xdE,f(x) on N7
where
E (\)=7,(\) — 7,(0) 0= A< oo,
Since F"(0) = I — F~, ¥, (0) = I — F,, it follows from (1) that
(2) E;(\)— E7(V) 0=\A< o

for all M ¢ o, (R).

LEMMA 14a. With the above definitions let f,e N,, and let
Ifull=1, (BIfalfa) Sm < o for mep. We assert that if f.—f
as n— o in p, then f + 0.

Proof. If f,€ N, then

Fw) = n7t 3, R(k, n, wa(k, n) 0<u<nr
and f,(u) =0 for w > nr. We have
L= I£.0F =07 3 alk, m)
By Schwartz’s inequality
£ < n7 35 Rk, m, w)
Since, see § 10 for a similar estimate, if 0 <k <= n

| R(k, n, w)| < M(lc_:_1>w+“mu,, 0<u<a, <o,
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it follows that
(3) | fulw) | = Mu® 0=u=a,.
Next

) [ < 0= 3 R, m, w)

Since, as is easily verified,

[R'(k,m,w)| = M< bt 1>w+<1/2>um_1 0<u=a,
n
we have
(4) | fiw)| < Mu* 0<u=a,.

It follows from (3) and (4) that the {f.(%)} are uniformly bounded
and equicontinuous on any interval 0 < a, < u < a, < o, Therefore
since f,(u) — f(u) as n in p, we have (if f(u) is suitably redefined on
a set of measure zero)

(5) lim f,(u) = f(w) uniformly for e, =u =a,.
Lt

Given any number m, > 0 we assert that there exists a number
a, > 0 and an integer N such that if n = N

(6) s, (u) = m, Ay = U =N .

The inequality (6) is an immediate consequence of the relations

s, (u) = <2n sin %—;)2 [ (2 sin’ > / L(n‘z)]

5,(1) = M(e)(Zn sin %) [(2n sin® 2?;) + <2n2 sin® %)_T :
See §9. We have
[ £ Pt + ) | £uGo) P = (ROF£2)
|, 2.0 ) P <
By 6) if n=N
s 170 P udu = m, [ 7,00 adn

Therefore if » = N we have

m, S”lf,xu) Pudu < m



146 I. I. HIRSCHMAN, JR.

and thus, since || f, || =1,

(7) [ rudez1 -2

1

The relations (3), (5), and (7) imply that

g?lf(u) Pudu=1—-">0

1

and thus that £+ 0 in H™, as desired.
Applying Theorem 7a we now see that if 0< (<t < fty+--
lim,_., ¢, = oo, are the eigen values of S then

lim 2°n* L(n =) "TH(1) — N k] = 4 k=1,2.--

n—soco

We have thus proved the following.

THEOREM 14b. Under the assumptions of §8 we have
Anp = 8(1) — 27°L(n~")n~*[1, + o(1)]

as n— o« for each fized k=1,2, ...

If we take w =1, L(y) = ¢ then we obtain as a very special case
of Theorem 14b formula (7) of §1.

15. Maximum at an interior point. We will next take up the
case where t(x) has a unique absolute maximum at z, —1 <z, <1.
We assume that #(x) is continuous for —1 < # <1 and that

We further assume that
ol — 2 |°L(x — % x— x,*
R 3
0, | — %, |°L(x — x,) T — X

where o, > 0, 0, > 0, w > 0 and L(y) is a positive even function defined
for —2 <y < 2 and continuous there except at ¥y = 0. At y =0 L(y)
is slowly oscillating.

In what follows we will again find it necessary to work with four
Hilbert spaces.

L is, as before, the Hilbert space of complex valued functions
f (k) defined for ¥ =0,1,2, --+, with inner product

(Flo) = 3, fE)a(k)*



EXTREME EIGEN VALUES OF TOEPLITZ FORMS 147

Similarly L™ is, as before, the space of Lebesgue measurable functions
on —1 = x <1 with inner product

(f 19~ = |_F@g@y w. o)

where w, 4(x) is defined in §1.
E~ and E are Hilbert spaces of Lebesgue measurable functions on
{— o, ) with inner products

(f 195 = | f@aydu,
(195 = |~ F@9E)dz.

We have the following maps between these spaces. There is, as
before, a mapping ¢ from L to L~ defined by

6 -(@) = 3, )i PP (@)

The series on the right is the limit of the partial sums in the metric
of L”. The inverse mapping is

57f ) =[S @ PP @y, w)ds

These mappings are unitary.
There is a mapping + from E to E~ defined by

vf@ =" empede,

where the integral on the right is the limit of the partial integrals
in the metric of E”. The inverse mapping is

vr@) = | e adu,

where etec. These mappings are also unitary.
Let 0 < & < 7w be such that cos &, = x,. We set

0, (w) =
[1 — cos 2run= + &)]*’[1 + cos Rrun~" + &)P?sin?Qrun + &) .

~For each n=1,2, .-+ we define a mapping ¥, from L™ to E~ by
setting

f(eos [2run~ + €)]0,(w)2x/n)? O0=2rmun+ & =<
0 otherwise .

v =]
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Clearly ¥, is an isometric map of L™ into E~. We define a mapping
x¥ from E” to L™ by

L @) = f ([ =& + are cos a] (L — o), oz) " (nf27)" .

X% is a partially isometric mapping of E~ onto L™, yx7 is isometric on
%L~ and zero on (X,L")*, the orthogonal complement of ¥,L”~ in E~.

Moreover XX, = I and %,x5 = I on %,L” and Y,x¥ = 0 on the orthogo-
nal complement of ¥,L".

We now introduce various operators on these Hilbert spaces.
a. K, is defined on L by

f (k) 0=k=n

E f-(k) =
I (k) 0 otherwise .

E, induces the following additional operators:

E; on L~ defined by E, = ¢E, ¢
F, on E” defined by F, = y.E, x.

b. T~ is defined on L™ by
T7f(2) = [tm) — U@)]f (w) .

Starting from 7" we obtain the following related operators:

T on L defined by T=9¢"T"¢;
T, on E” defined by T, = x.T % :
S, on E” defined by S, = [n°/L{n )T, .

c. S” is defined on E” by
S”f (u) = f(u)s(u)

where
{01(—27:[sin &Ju)® u=0
s(uw) = .
0,(2n[sin &Ju)” u>0.
d. F is defined on E by

F (@) lz] =1

Ff'(z):{o 2] >1.

We introduce
F~ on E~ defined by F~ = Fyt,

If Myt = N2 = ++» =\, nq1 are the eigen values of C,, see §1,
then
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UTo) = Nt S UD) — Nppp = 000 = H®o) — Ny
are the eigen values of the following operators:
E,TE,
E;T"E;
F. T Fy,

E.L;
ETL
F E™ .

The eigen values of

F,S F,

F E”

; are, in increasing order, {[t(x,) — N, Jn°L(n")7"};El. Our program in
what follows is like that carried out in sections 8-14, in that we will
show that F, S, F, ‘‘converges” to S, as n— o and thus that if

o< =2p= ""iimﬂk: @,
are the eigen values of
SF,FAE/\ ,
then
lim (¢(2,) — N, )n°L(n™)7 = k=1,2..-
or equivalently

N = U@) — n~L(n )[4, + o(1)]
as n— oo,

Because the material of §§15-19 is in large part like the ma-
terial of §§8-14 we will only give in detail those arguments which
differ from those given there. These occur primarily in § 16 and §17.
In the later sections we will simply list the various results since the
details can be easily supplied.

16. Convergence of (S;)'* to (S7)'* (interior maximum). We
suppose throughout that t(x) satisfies the assumptions of §15. Let
0 < & < 7 be such that cos & = x,.

It follows from §15 that 7T, f(u) = t,(w)f(u) where ¢, (u)=
A(eos &) — tlcos @rn~u + &)] for 0 < 27n~"u + &, < 7 and is zero other-
wise. Consequently S, f(u) = s,(w)f(u) where s,(u) =, (uyn°L{n=")"",
Let s(u) be defined as in § 15.

LEMMA 16a. With the above definitions
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(1) lim s,(u) = s(u) —oo <UL o,
and for any ¢ >0 there is a constant M(c) independent of wu,
—o < u< oo, and n=1,2 -+ such that
(2) sJ(w) = M@lwl® + || |ul.

Proof. It follows from the assumptions of §15 that if Mu) =
cos 2y + &) — cos &, then

3 [ Mu) | L(Mw)) %— 0+

o) — 2 o)
o) —tomm@mit 2= {0 LTy umoe
Since Mu) — 27u sin & as # — 0 we find using (4) of §9 that

0,27 sin &))" u”L(u) as u— 0+

3 t —t 2 -
(3) [écos &) — ¢ cos @mu + &)] {ol(2n sin &)°(—u)°L(n) as 4 — 0— .
Thus for w fixed, w # 0, we see that as n— o

0,21 sin £)°u* L(un=)/L(n™") u>0

4 = {01(27r sin &0"(—w)L(un )/ Lin™) “<0.

A second application of (4) of §9 yields (1). It follows from (3) that
if b is a sufficiently large positive constant then
t(cos &) — t[cos 2nu + &)] < b|u|° L(u),
and thus
s,(u) = blul|® Llun™)/L(n™") .

Using (5) of §9 we obtain our desired result.

THEOREM 16b. (S7)Y* is the closure of the strong limit of (S,)'*
as m— oo,

Proof. Let fe D[(S")"*] and € > 0 be given. If 6 > 0 is sufficiently
small then it is evident that if fs(u) = ¢~*f(u) then

Wf=Follem =€, IS —F)llen =6
Moreover it is evident from (1) and (2) that

(S22 fs — (S7)2fs in E”as n— oo .
17. Convergence of F), (interior maximum).

THEOREM 17a. If F, and F~ are defined as in §15 then F,
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converges strongly to F~ as n— oo,

Proof. Let us write

R(k, n, w) = h* PP (cos 2run—" + £)0,(u)V/ 21 .
Q(k, n, w) = cos 2n(k + N)n~u + k& + ),

where 7 = (@ + B + 1)/2, { = &(a + B + 1)[2 — (¢ + (1/2))z/2. It fol-
lows from (6) of the Appendix that

(1) R(k, m, u) — 2Q(k, n, u) — 0 as k— o
uniformly in » and %, if for some fixed ¢ > 0
EZ2munTt + L =T —¢.

Starting from the definition of F we find that

(2) FLf+(w) = = 3% R(k, n, wa(l, n)
where
(3) alk, n) = S F@)R(k, n, v)dv .

Here I, = {v|0 = 2nn~'v + & = 7}

Let us now assume that f(u) is continuous for —oo < u < o
and vanishes except for |u| < a. We first show that under this
assumption F, f-(u) — F~f-(u) uniformly in any set |[u| =b < . It
follows from (1) that there exists a constant M such that if = is
sufficiently large.

(4) |R(k,m,w)| = M

for |u| < a, and k=0,1, ---. Let us set

0, mouw) = = 5 Rk, m, walk, m),

0sk<n

5. (6, 7, u)=% S R(k, n, wyalk, n) .

nd<k=n

Using (4) and the corresponding inequality for |u| =b we find that
for all large n

(5) a0, n, w) < Mo if |[u|<b.
Let g = +~'f so that

9(2) = 51 Fuye—vdu .
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Using (1), but writing the cosine in complex form, we find that

lim {a(’n, k) — e—i(keo+g)g(ﬁ_"_;_77_> — ei(kéo+§)g<_k_:b_'_2>} —0.

k—oo
Using (1) again we see that as n— o
(6) | 2500, n,u) — 20 — X — Xir — v | — 0

uniformly for |u| < b where

ZI =n"t Z ezni(k+y,)un—1g< k + 7])

dnsk=n

Sy =nt S, gkt gtk imun= ( k + 7/)

dnsksn

ZIV — n-—l 6—21(k€0+§) —ami(k+n)un—1 <k > .
dnsk=n

—_ —1 —27i (k+n)un™
ZJIII =Mn" e i K <
nsk

Il/\

> and >, are Riemann sums so that
(7) lim %, = [ gz,
-8
(7) lim S0 = |~ evrg@)dz,
n—oo -1

for |u| =b. Since we can easily prove that the functions >; (9, n, u)
are for n sufficiently large equicontinuous for [« | < b it follows that
(7) holds uniformly for |u| < b. Similar remarks apply to ;. If
we sum >,;; by parts, the summation being applied to e?*%, it is
eagily seen that lim, . >,;; = 0 uniformly for || =0 and similarly
for >\;». Given ¢ > 0 let us choose 0 so small that

8
IS0 6, m, )| < €2, ]S_sg(z)@mu,dzl <o,

for |u|=b. It then follows on collecting our estimates that
| Fp fe(u) — F"f-(u)| < €& for |u| < b, for all sufficiently large n. The
demonstration can be completed as in §10.

18. Convergence of (S;)’F, to (S7)*F" (interior maximum).
The considerations here are parallel to those of §11, §12, and §13
but somewhat simpler.

Let D be the set of functions #(2) in E which are infinitely dif-
ferentiable and have compact support, and let D™ = D. Let D, be
the subset of D consisting of those functions which have support in
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|2| = ¢, for some ¢, < 1, and let DT = D,. Let D, be the subset of
D consisting of those functions which have support in |z| = ¢, for
some ¢, > 1, and let Dy = +D,.

THEOREM 18a. If fe Dy or D, and if, as in §17,
alk, ) = | FQRG, 7, 0L,
then for v fixed, v =0, =1, +2, ---, we have
a(n,n + v) = 0(n"") as m—
for every r.

Proof. We will carry out only the first steps of the demonstra-
tion since it will be evident in a moment that the arguments used
in § 11 apply almost without change.

We recall that I, ={{| -7 ={ =vm} where v, = (v — &)/2x,
7, = &/2r. Choose 6, 0 < 0, <7, and 0, 0 < 6, < v,. Then

a(k, n) = a,(k, n) + a)k, n) + ayk, n)

where

ale,m) = | FQORGE,», O,

ale,m) = | FORGE, m, OdL
atl, m) = | PR, m, DAL
Since f({)e D~ we have
F© = | g@eaz

where g = 47'f is infinitely differentiable with compact support. Re-
peated integration by parts shows that

(1) S =0(<1™) {—+ o

for every r. Using
[, Rt m, Cyde = m
In

and Schwartz’s inequality we see that

laite, m = n |77 QP
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and using (1) that a,(k, n) = 0(n~") as » — oo uniformly in k. Similar
considerations apply to a,(k, n). If we set

Sgm

" ki Qileos (2nln™ + E)6.QF (0L,

—or

sﬁzﬂh;WQ;[COS @rin + £)]0.0)F(OL,

a; (e, m) = |

az (e, m) = |
where

0,(0) = [1 — cos (2n¢n™" 4 &)1 + cos 2nln~" + &)]"
-sin'? (2nln~ + &)V 2r .

then
'—71"1:111(]0, n) = al—(kv n) — af (k, n) .

Let us apply Cauchy’s theorem to each of the curves below.

in

y

—b\’n ] 62%

\

Y

—itn

We find that
ai(k, n) = I + IF + I

where

—8yn+itn Son+itn Som
I =S ’ I = S ’ I =S

—&n —8yn+itn Sgntitn
—81n—itm Sgn—itnm 8gm
+ — + — + —
e I S ="
—&n —8n—itn Sgn—itn

In all cases the integrand is

F(Oh"Q, [cos (2mtn~ + £)]0.(0)dC .

It is sufficient to verify that each of these six integrals is 0(n~") fas
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1 — o, Since the methods of §11 now apply almost without change
the remainder of the proof for the case fe D{ is omitted, as well as
the proof for the case fe Dy.

LeEMMA 18b. Let ge D] or D;. Then for any nonnegative inte-
ger N and some finite constant A, we have

lim | | Fog-@)du = 4, | w9 Pdu.

n—oo

We will only sketch the proof of this result. Let
On(u) = [cos Crun" + &) — cos &]¥ .

Using the recursion formula and Theorem 18a it is easy to see that
if g.(w) = p.(w)g(w)

P Frg-(w) = Frg,-(u) + 0(n™)

for we I,. It follows that

T | 0,07 [Fog-) Pdu < Tom | (Fog.-f'du,

n—oo n—oo

=T | g du,
since F, is a projection; that is

Tm | )| Fog-(o)l*du < |~ pu(u)* | 9(u) [ du.

n—co

We have
cos 2run~' + &) — cos & = —2sin (run') sin (run" 4+ &) .
Since 0 < 2run— + & < 7 if we I, we have
0< &2 Tun™ + & =< (7 + &)[2 for uel,.

It follows that there exist finite positive constants A, and A, such
that

[(cos 2run™ + &) — cos & | = A, | u| —o <u< o,
—ZAZIMJ ueIn9

ete.

THEOREM 18c. Let fe DT or D;. Then
lim || (S™)*F”f — (SOHVF, 1| = 0.
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Note that if fe D], F~f = 0.

THEOREM 18d. (S7)Y*F~ is the closure of the strong limit of
(S)H*F, as n— oo,

Note that the demonstration of Theorem 18d is simpler than that
of its analogue, Theorem 13¢, in that, because convolution is possible
in E, the analogues of Lemmas 13a and 13b are completely trivial.

19. The asymptotic formula (interior maximum). In this section
we will complete the theory for the case of an interior maximum
giving some details. Let S; be constructed from F~ and S™ asin § 3.
Note that if 8~ = {f|fecE", F feD(S8")"} then 8" is dense in E~
so that S7 is a self-adjoint transformation on E~ itself. Let

sz = | mr o
0.—-
be the spectral resolution of S; on E~, and let
Sor = | raw200
o—
be the spectral resolution of S, = F, S, F,. It follows from Theo-
rems 16b, 17a, and 18b, combined with Theorem 6a that
(1) 7o) — () 0=r< o

for every A ¢ o0,(S7).
Let us define

R = S;\NA N =F'E",

N;\ anFnE .

Since, as is easily seen, R~ >0, R, > 0, we have the spectral resolu-
tions

R — rxdE“(x) on N°, R = S”xdE;(x) on N_
0 0

where

E°(\) =770\ — 77(0) 0=1r< oo,
EZ(\) = T\ — ¥2(0) 0=r< oo,

Since #7(0) = I — F~, ¥,(0) = I — F, it follows from (1) that
(2) E; 00 — EYO) 0=A< o
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for all Mg o, (R7).

Lemma 19a. With the above definitions let f,e N;, and let
Nl =1, (B fulfu) Em for meb., We assert that if f.—f as

n— o in p, then f = 0.
Proof. If f,e N, then

Fulw) = = 33 Ril, n, wall, n)

and f,(u) =0 if w¢ I,. Here R(k,n,u) is defined as in §17, and

alle,n) = | Rt m, 7.0

we have
1= A0 =L am, b1,
n k=0
and therefore by Schwarz’s inequality
[fa(w) |? = = ZR(k n, u)* .

7 (1) of §17 if |u| = @ < o then there exists a constant M such
at | Rk, »,u)] < M for k=0,1, --+ provided % is sufficiently large.
follows that for all large »

3) [fuw)| = M lu| =a.

ext
| fo(u) | = <1 f', R'(k, n, u)* .
n k=o

Te assert that if |4 | = o then for all sufficiently large % and a suitable
snstant M, |R'(k,n,u)| = M for £k=0,1,-+--,n. This inequality
an be reduced by means of the formula

2L pep(@) = (0 + @ + 6+ D),

o the one given above. See [1; p.170]. We may therefore apply
chwarz’s inequality again to obtain for all sufficiently large n
4) [faw) | = M [u|=a.

t follows from (3) and (4) that the {f,(u)} are uniformly bounded
nd equicontinuous on any interval |u| < a < . Therefore if f, - f
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as n— oo in p, we have

(5) lipmf.n(u) = f(w) lul =a
1

uniformly, provided f(u) is suitably redefined on a set of measure

Zero.
Given m, > 0 it is easy to see that there exists a number a > 0

and an integer N such that if n = N
(6) s.(u) = m, fuel|lu|=a}.

The remainder of the proof follows the lines §14 so closely it is
omitted.

THEOREM 19b. If
O<thstm=pm=-, limp=ow,
are the eigen values of R™ then for each k=1,2, ...
Ak = (@) — nL(n™)[ 2 + o(1)]
as m— oo,

Let us consider as an example the case where ¢(x) has a unique
absolute maximum at x, and is twice continuously differentiable in a
neighborhood of ®,. Then ¢'(x,) = 0. We assume that t"(x,) = —o* < 0.
Then in terms of the notation of §15, w =2, ¢, =0, = ¢%/2, L = 1.
Consequently _

s(u) = mo*(sin® &)u’ —o < U< o,

and the eigen values 0 < ¢t, < --- of R™ are easily seen to be the
eigen values of the differential operator R = 4 *R"+ defined by

Rf-() = — %2 sin’ £77(2)

the domain D(R) consisting of those functions f(z) with support in
—1 =< 2 £ 1 which are such that f(z) and f’(2) are absolutely continuous
for —1<2<1, f"()eL*(—1,1) and f(1—)=f(—1+)=0. Since
1, = o*(sin &)’k*/8 we find that

A = H(®o) — 0*(1 — %)k /8n® + o(n~?)
as n— o for each k =1,2,..-. See (6) of §1.

APPENDIX

The Jacobi polynomials P *#(x) defined in § 1 satisfy the recursion
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formula, [1; p. 168],

(1) aP@P() = A,PSP@) + B,P*P(@) + C,Pf'®)
where
(2) A, =20+ 1D +a+B+1)2n+a+ 6+ 1)

‘@2n +a+ B+ 27",
(3) B,=—(@—-8)2n+a+B+2'Cn +a+p)?,
(4) Co=2m+a)n+p2n+a+p)"'Cn+a+B+1)".
We have the following limit relation

(5) lim n—*P;*®(cos zn~") = (2/2)~%J,(2)

n—oo

uniformly for 2z in any bounded subset of the complex z plane, [1; p.173].
We also have

(6) hi2P(*P(cos 0)[w,,g(cos 6)]'* sin'/? § — 1/ % cos (NG + v)—0
as n— oo uniformly for e <6 <7 — ¢, if ¢ > 0. Here
— _ 1
N=n+@+B8+1)2, v= —<a+-2—>7z:/2.
See [12; p. 190].
Let ¢ = max (a, 8, —1/2); then
(7) | PP (cos u) | = A(n + 1)* —o U<

where A depends upon « and B, [12, p. 163]. Furthermore if w =
% + v then, see [12; p. 190],

| PP (cos w) | = A(n + 1)~

uniformly for |v| = v, > 0. Here A depends only upon «, 3 and v,.
Applying Hadamard’s three lines theorem to P.*f(cos w) we find that
for all w

(8) | P{*P(cos w)| < A(n + 1)%»

where A and ¢ are independent of # and w. The inequality (8),
although crude, has the advantage that it holds uniformly in % and w.
We set

(9 Q@) = =] Per(t)e — i w0t
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for all complex z¢[—1,1]. We then have
Q.(2) = (1 —2)"(z + 1)PQIP(2) ,

where Q*f(z) is the standard Jacobi function of the second kind,
[1; p. 170]. We will use Q,(2) rather than QP (2) because it is single
valued in the z-plane slit from —1 to 1. If we set

Qxi(x) = liﬁl Q.(x + )
Qn (%) = lim Q,(x — 1€)
then for -1 < <1
(10) Q. () — Qi (x) = TP P(x)w,,o(%) .

By an argument analogous to that used to prove (8), see [12; p. 219],
we can show that if v = I, w %= 0 then

(11) | Q.(cos w) sin® w | < A(n + 1)tg-lt=

where A and ¢ are independent of # and w. Like (8) this inequality
is quite crude, but it is important because it is uniform in % and w.
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