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Introduction. During the past few years the van der Waerden
conjecture on the minimum of the permanent of a doubly stochastic
matrix has received considerable attention. (See Marcus and Newman
[1] and [2], Marcus and Minc [1], among others.) This conjecture
states that if A is a doubly stochastic matrix, i.e. if

v

aij O,ﬁa”=§:‘,a”=1,
i=1 7=1

then the permanent of A is =#! 7n~". (The permanent of A is > I @i,
where the summation is taken over all permutations ¢ in the symmetric
group.) Despite the seemingly elementary character of the conjecture,
it is, so far as the present authors are aware, still unresolved in
general, although it has been settled in some special cases. (See the
above references.)

An implication of the conjecture is that some term of the permanent
expansion must be greater than or equal to n~". This was established
by Marcus and Mine [1] in 1962. Specifically they showed that if
II @;; is not exceeded by any other term in the permanent expansion,
then

(1) Siloga; = > > a;;loga;; =Znlogn™.

The second inequality above is a simple application of Jensen’s inequality
using the convex funection x log x; the first inequality is the key to the
problem. It is the extension of this inequality to functions defined on
the unit square that is referred to in the title of this paper. We will
show in §4 that under suitable hypotheses

(2) o > S:logf(x, x)de = S: S:f(x, y) log f(x, y) dady = 0 .

The proof of (2) (and incidentally a new proof of (1)) is based
ultimately on the following theorem:

THEOREM 1. Let S be an arbitrary set and f(p, q) a real-valued
Sunction defined on S X S with the following property:

©) if Py, -+, p, 18 any finite sequence of points in S, mot
necessarily distinct, then
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S(@y 1)) + f(@2) D) + + 20 + f( Py, Du) + f(00, D) =0

Then there exists a real valued function ¢ defined on S such that
Jor all (p,q)eS x S

S, 9) = P(p) — P(@) .

Furthermore, given any s€ S, we may determine @(p) so that for
all peS

f(p,8) =) = —f(s,p), and p(s) =0.

This theorem for finite sets S is essentially contained in a paper
by S. N. Afriat [1] which appeared in 1963 in connection with a study
.of empirical preference analysis in economics. Theorem 1 was discovered
independently by the authors in their study of the van der Waerden
conjecture; it is very closely related to the linear programming dual
of a theorem proved by Garret Birkhoff [1], which states that the
doubly stochastic matrices are the convex hull of the permutation
matrices. Indeed it was this last fact which persuaded us that Theorem
1 could be applied directly to the van der Waerden conjecture. In §1
we will give a proof of this theorem which differs essentially from
that for the finite case given by Afriat; it is certainly much shorter.

The proof of (2) to be given in §3 3 and 4 will depend on Theorem
1 and on the following “Arzela type” compactness result proved by
M. Riesz. We state it, for reference, in the form that we shall use it.
It is also convenient to state here a partial converse of the Fubini
theorem proved by L. Tonelli.

THEOREM A (M. Riesz). Let M be a set of functions in L (0, 1).
If .
1° there exists a constant K such that for all x(t)e M
[Jatyat < x,
0

and if

2°  for every ¢ > 0, there is a 6 > 0 such that for all x(t)e M
and all h for which |h| <o

[t + 1) —e@)dt <,

then the set M is conditionally compact in the semse of the metric
of L. A proof of the above result can be found in Nemyeckii [1].

THEOREM B (Fubini converse: L. Tonelli). Let f(x, y) be measurable
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on the unit square. If for almost all x, |f(x, y)| ts summable as a.
function of y, and if

Jido ||, v) 1 dy

exists as an iterated integral and is finite, then f(x,y) is summable
on the unit square.

A proof of this theorem is in McShane |1].

1. Proof of theorem 1. Define g(p, q) = f(p,q) for p +# q and
g(p, p) = 0. Then g satisfies condition (C) and f = g. Choose a fixed
s€ S and define

P(p) = lublg(p, q.) + 9(q,, @) + +++ + 9(qu—, 9.) + 9(q,, 8)}

where the least upper bound is taken over all finite sequences q,, - -+, @,
selected from S. Since g satisfies (C) the finite sum is always < —g(s, D),
and so the least upper bound is finite. Now fix ¢, = ¢ and let the
remaining ¢; range unrestricted. The definition of @ yields at once
P(p) = 9(p, q) + P(q) so that f(p, ¢) = 9(p, ) = P(p) — P(q) as claimed.
Finally f(p, 8) = 9(p, s) = P(p) = —9(s, p) = —f(s, p), which completes.
the proof.

It may be worth remarking that if the range of f is any conditionally
complete lattice ordered group, the proof goes through unchanged.

2. Proof of the matrix theorem. In this section we give a proof
of inequality (1) based on Theorem 1. Suppose as stated in the introdue-
tion that the » X » matrix A is doubly stochastic and that [[a;; =
11 @;ss for all permutations o. It is technically convenient to assume
for the moment also that a,; > 0.

Let b,; = log a;; — loga,; then b;; as a function on S x S, S =
{1,2, .-+, n}, is easily seen to satisfy condition (C). (This follows.
readily from b;; = 0 and >, b,,;; = 0 for all 6.) Hence there exists a
vector ¢; such that b;; < ¢; — ¢;. Thus

loga;; <loga; +c¢, —c;, h,i=1 -, n,
so that
a;;loga;; < a;;loga; +a;;¢;, —a;c;.

If we now sum first with respect to 5 and then with respect to 7, the
vector ¢; drops out and we have

S >aloga; < S logay; .
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The positivity restriction of the a,; is easily removed by a simple
continuity argument.

3. Functions on the unit square. In this and the following
section we shift our attention from the discrete matrix situation of § 2
and study an analogous situation on the unit square.

Let I denote the half open unit interval [0, 1) and .7~ the class
of one-to-one measure preserving transformations of I onto I. We will
prove the following theorem:

THEOREM 2. Let f(x,y) be a measurable function on I x I which
satisfies

1° for all Te .7, f(z, Tw)e L(I) and S f(z, Ty dw < 0,
and ’

2° the limit as 6 — 0 of Sllf(x,oc +8)|da = 0.
(The function f(x, y) is defined t;)utside I x I to be periodic of period
one in x and y.) Then there exists a function @€ L (I) such that
for almost all (x,y)el x I

flx, y) = p(x) — P(y) .

The proof of Theorem 2 requires two lemmas. (Throughout this
section we will assume that 1° and 2° above hold.)

LEMMA 1. Let EC I be the union of a finite number of disjoint
intervals and let Te 7 be such that TE = E. Then

(8) SEf(x, Tz)de < 0.

Proof. We may assume that the intervals of E are semi-open
(open on the right), so that the same is true of the finite set of non-
continuous intervals that compose I — E. Let J = [a, b) be one such
interval of I — E. Define a measure preserving transformation U, on
J as follows: set 4, = (b — a)/2n and

Ux=2+96,, a+2k—10,=x<a+ 2k — 1), ;
Uxt=x—90,, a+@k—-10,=x<a-+2kJ,,
k=1,.--,m.

Then

|| s, Ty do| = 17,0 + 014 + [ 150, 0 — 8 ds

— 0 as n— o by 2° of Theorem 2.
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If we define U, similarly on each of the finite set of J< I — E, and
U,x = Tx for x€ E, then U,c€.7 and

| s@ Uiz | fw Tode <o,

by 1° of Theorem 2. Since S f(x, U, x)dex— 0, the result follows.
—E

I
LEMMA 2. Let f(x, y) be as in Theorem 2. Define for 0 <\ <1
A
(4) ey == |+t +1yde.
Then f(x, y; \) satisfies condition (C) of Theorem 1 on I X I.

Proof. We prove the lemma for the function \f(x, y; \). Define
F(®;, €y <2, Tp3 N) = N f(Xy, o3 N) + 200 + N f(2,, 23 N) = F(2;0). We
will show that given any ordered set = = (x,, -+, x,), F'(x; A) =< 0 for
all 0 <X < 1. The following two easily verified properties of F'(x; \)
will be required:

(5a) given any finite ordered set x, there are finite ordered sets x¥,
each of which has distinet components, and elements x;, such that
identically in X\

F(z; M) = F@@W;N) + «-+ + F(z;))
+ F(x, 23 \) + <o + F(x,, 2,5 0) 5
(5b) identically in
F; ) =F@; ) + F(@® + A5 N) + ooe FF@ AN 4 o0+ Mgy M)

where X =\, + <+ + N,
(We leave to the reader the verification of the above.)

As a consequence of Lemma 1 (F'(x;, ;; A) = 0) and (5a), it will
suffice to prove F'(x;\) =<0 when the components of « are distinct.
Suppose then that » = (x,, ---, 2,), ; # ®; for 2 75,0 =2; <1, and
consider for the moment the «; rearranged in inereasing order, say
Y ***y Yo We define N, =Min{y, — ¥, ¥s — s, ***, Yo — Yur, Y1 +
1—y,}, and note that \, > 0 by our conditions on the z;,. Suppose
first that 0 < N = A, and let E be the set of points z;, + t (¢ =1, ---, n;
0 < t < \) reduced modulo 1. For 0 < ¢t < N define T(x; + t) = 2, + ¢,
t=1,+++,n—1 and T(x, + t) = @, + t, where again all numbers are
reduced modulo 1. Since M = \,, T is well defined on E and TE = E.
For x€ I — E, define Tx = x, and we have Te€ 9. By the periodicity

of f,
F(x; \) = SEf(oc, Tx)dx, which is <0 by Lemma 1.
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We have shown, then, that
(6) for 0 < A=, F;N)=0.

Finally, since for 0 < » <1 we may write » = kX, + r where k is
a nonnegative integer and 0 < r < A, we see that (5b) and (6) complete:
the proof. (This is equivalent to iterating T k times with A =\,
and then using T with A = 7.)

Before staring the proof of Theorem 2 we make a heuristic remark
about hypothesis 2°. If f(x, ¥) = @(x) — @(y), f(x, ) = 0, and all the
functions are smoothly differentiable, then the surfaces z = f(x, ¥) and
z = @(x) — @(y) are tangent along ¥y = «, and so @(x) is determined
(up to an additive constant) by #'(x) = fi(x, ®). This suggests strongly
that the “nature” of @ in general is determined by the behavior of
f(x,y) in the neighborhood of y = x. This will become clear in the:
proof that follows; later we will mention some consequences to @ of
altering 2°.

We proceed now to the proof of Theorem 2. By Theorem 1 and
Lemma 2 we know that for each )\, 0 < A < 1, and for any se I, we
can find a function @(x; s, ) such that for all (x,y)el x I

(7) S, y; ) = (x5 8, ) — P(y; 8,\),
S, ;0 = px; 8, M) = —f(s, 25 \) ,

and
P(s;8, M) =0.

The remainder of the proof will be devoted to analyzing the (conditional)
compactness of the family {p(x;s, \)} in L (I).

Theorem A (Riesz-Arzela) tells us that conditional compactness is
implied by equicontinuity and uniform boundedness. We have from (7)

(8) f@, y; \) = o(x; 8, N) — 2(y; 8, M) = —f(y, 25N,

so that

(9) le@+0;80N — @ s, M| =[fle+d, M|+ [fle, s + 60|
= L@+ 8,9 + Ifw, @+ 9} de .

Thus by 2°, @(x; s, \) is continuous and hence measurable. Furthermore.
from the first inequality of (9) and Theorem B we have easily

(10) S |z + 85 8,%) — P(x; 5, \) | d

= | 1f@ +0,0)| +1f@, 2 + D)} do,
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so that the entire family {p(z; s, \)} is equicontinuous (L).

Uniform boundedness (L) is more of a problem. We have found
it necessary to choose an appropriate sub-family, and this will be done
in the following paragraphs.

Since f(x,y) is measurable on I X I we conclude from 2° and
Theorem B that there exists a number @ > 0 such that f is summable
on the set P bounded by the linesx =0, x =1,y = 2 + a. . We define
f(x, y) = f(x, y) on P and all points in the plane congruent to P modulo
one in « and ¥; elsewhere we set f(x, y) = 0.

We will choose s, €1 so that 0 < s, <@, and both (11) and (12)
are satisfied:

(11) as A —0
sptA | 1

lim =" da | | @, w1 dy = | 1760w dy <
and

. 1 s) kA 1 . L

tim ="y | 7@, )1 do = |1 7@ 50 1o < 0 5
and
12) as m— oo, for almost all xeT,

lim f,(s,, ) = f(s, ®) , and lim f,(, 8)) = f(x, s) ,
where f,(x, ¥) = f(x, y; n7) .

For almost all sel (11) holds since fe L(P) and so €L (I x I).
Similarly, (12) is valid for almost all s€ I by the fundamental theorem
of calculus. (We introduce f,, in (12) to avoid some possible measurability
difficulties.) Thus s, can certainly be chosen as required.

We will now show that the family {p(x;s,, n™*)} is uniformly
bounded (L). We choose s,, -+, s, so that

13) §; <8< v <8 <1,
Sii—8; <2 fori=1,+--,k—1, and1—3,<a;

(14) s, satisfies (11) when s, is replaced by s;, 4 = 2, ---, k; and finally
(15) as n— o,
lim f.(s,, s0) = f(55, 83)
and
lim f.(s, 81) = /(83 81) i=2 k.
Now define [a,, b)) = |0, s, + @), (az, b,) = (s, — a, 1), and (a;, b;) =
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(s; —a,s; +a),t=2,---,k — 1. The union of these intervals covers
I, Write @,(x; s) for o(x; s;, n™"). Then by (8)

(16) | Pu(@; 8) | = [ful®@, ) | + [ fulss, @) | + [Palsis 8D |
for xel and =1, .-+, k.

Hence
an " ie.wis)lda

b bi
= "1 50140+ [ 1£u6e 2) [do + 0= ) [ 24o0 80
% aq
<A, + B;+ C;, where,
for 1 <1 =k, by (14)

s;+n~1 )
A= zub{ng” ay || 17, ) o} < =,
Bo=tub {n (""" de [\ 7w, ) i} < oo ;
8g 0
Cl = 0’ by (7) ’

and for 2 <1 <k, by (15)
Ci = (b; — a;) b {| fu(si, 8) | + | fulsy, 8) [} < o0 .

Since
(18) [1o@s)lde = 2 9w deo,

we have established uniform boundedness (L) and Theorem A applies.
We have then that some subsequence {@n‘(az; s;)} converges to @(x)
(say) in L and f, (%, y) converges to f(x, y) for almost all (x, y)e I x 1.
Since for all (x, ¥), f.(x, ¥) = P.(2; 81) — P.(¥; 81), Theorem 2 follows.

We now return to our remark preceding the proof of the theorem.
We have just seen that the fact that @ is in L(I) has been determined
by condition 2°. It is reasonable to expect that a strengthening of 2°
should lead to a “smoothing” of @, and this is indeed the case. If 2°
is replaced by

“29 for fixed p(1 = p < ) the limit as 6 — 0 of
1
|, 1f@, @ + o)) de = 07,
0
then @ € L,(I). The modification of the proof consists of invoking the

L, version of Theorem A, which is also to be found in Nemyekii [1].
Finally if we replace 2° by
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“2% the limit as 6 — 0 of ess sup, | f(x, z + 0)| = (",

then @ e C(I). (The classical Arzela or Ascoli theorem is used.)

4. The permanent theorem in L(I X I). In this section we
state and prove the L(I x I) analog of the discrete theorem of § 2.

THEOREM 3. Suppose that f(x,y) defined and measurable on
I X I has the following properties:

1° f@,) >0 and | fle, vy do = | 7@, 9)dy =1, for all v, y;
2° for all Te 7, f(x, Tx) is measurable,

log & T2 ¢« 1y,

fx, x)
and
Solog P, a) de =0
and

F@, @ + 0)
log = &,

1
90
()

0

Then flog fe L(! x I) and

)dx—»O, as 0 — 0.

19) o > S log f(, @) du = S j‘f(x, y) log f(z, y) dady = 0 .
0 0 Jo

Proof. Conditions 2° and 3° above suffice for the application of
Theorem 2 to the function log [ f(x, ¥)/f(x, ©)]: there exists @(x) e L(I)
such that for almost all x, ¥

S, y) .
(20) log ) = p(x) — 2(y) .

If we multiply by f(z, y¥) and rearrange, we find

(1) ~% < f(, y) log f(@, ¥)

= f(x, y) log f(x, x) + p(x)f(«x, ¥) — PY)f(e, ¥) ,

where the first inequality is a consequence of —1/e = glbx log x for
¢ > 0. Now, as functions of vy, f(x, v)log f(x, x) and @(x)f(x, y) both
eL by 1° above. Again, if we apply Theorem B to o(y)f(x, v),
integrating first with respect to «, we see that @o(y)f(x, ¥) € L(I x I),
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and so for almost all «, that function is summable as a function of .
Thus by (21), f(x, ¥) log f(x, ¥) is summable ¥ for almost all z,
and integrating gives

(22) 0= | 1@, v)log f@, ) dy

< log f(&, @) + () - | p(W)f@, ) dy .

The first inequality above is Jensen: a/r(Sl f dy) = Sln/r( f) dy, where
0 0
Jr(x) = x log x) Hence

(23) log @, ) = || p(W)f(@, v) dy — 2(@)

and so log f(x, ) is bounded below by a summable function. Now,
since by 1° and Theorem B fe L(I x I), it follows that for almost
all 4, f(x,x 4+ 0)e L(I). We choose ¢ so that f(x,x + d)e L(I).
Since log f(x, « + ) < f(x,  + 0), and since by 2° logf(x, ® + 0) —
log f(x, x) € L(I), we see that

(24) log f(x, ) = f(x, @ + 0) + log [f(x, ®)/f(x, © + d)] ,

and so log f(x, «) is also bounded above by a summable function; hence
log f(x, ©) € L(I). Returning to (21) we apply Theorem B and have
flog fe L(I x I); then integrating both sides of (22) ¢ drops out and
we have (19) as asserted.
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